最新全套游泳池供热热泵方案

最新全套游泳池供热热泵方案
最新全套游泳池供热热泵方案

最新全套游泳池供热热泵方案

恒温游泳池热水热泵设备选型方案

第三章设备清单及报价

系统具有自动补水、自动加热、自动空调恒温、自动增压、自动回水功能

一、380V—100A空开漏保、主电源、户外电箱电源由需方引至机身1米范围内。

二、冷水、热水、回水接口由需方引至机身1米范围内。

第四章、使用成本分析

采用热泵热水机组与选用其它设备、热源、热值和费用比

REALM:热姆空气源热泵热水机组经济分析:

热泵热水机组与其它热源的经济性比较(1)各种热源效率

几种常见热水机组的使用费用的比较(每小时使用热能300KW计算)

非常严重

危险性

比较危险非常危险比较危险危险无

危险

噪音大中中无无

燃值

1 Kcal/kg 10200Kcal/m33800Kcal/m3860Kcal/kwh 860Kcal/kwh

效率

85% 75% 85% 95% 400% 燃料费 4.5元/kg 6元/M3 1.5元/M3 1.0元/kwh 1.0元/kwh

300KW需用燃料

25.3kg 33.7M380M3315kwh 75kwh

300KW需用费用

114元202元120元315元75元年燃烧费用

84万元148万元87.6万元230万元54.75万元365天20小时计

管理人工费

1.5万元500元 1.5万元无无

年维修费

设备寿命

8年5年8年

85.5万元/年148万元/年89.1万元/年230万元54.75万元

运行合计金额

855万元1480万元/年891万元2300万元547.5万元(未含设备折

旧)

以上数据是在环境温度为20度,COP值为4.0的情况下测试所得。

三、各种加热方式的复合成本表(按每天使用20小时计算)

1、武进地区全年平均降雨日加上阴冷天气一年约120—160天左右,、用热泵热水机组比燃油锅炉年节约30万元、比燃气锅炉年节约95760元、比电加热锅炉每年节约32.85万元元不等!

空气源热泵项目设计方案

空气源热泵项目设计方案公司是集科研、生产、销售、服务于一体的专业制作中央空调、净化空调的高科技技术企业。先后与全国著名高等学府、通用机械研究院等单位进行技术合作,科研攻关,通过把高科技成果产品化,坚持技术创新,发展具有自主知识产权的专利技术,生产研发出了高效能的中央空调系列产品。 公司定位于节能减排的可再生能源和新能源产业领域。公司主导产品地源热泵、污水源热泵、工业废热余热型热泵、海水源热泵、水冷冷水机组、水冷离心机组、空气源热泵机组等热泵系列产品及中央空调、净化空调末端系列产品,是利用浅层地热能、污水热能、工业废热余热、海洋热能、空气能等低品位的可再生能源和新能源的重要技术装备产品。公司生产制造的热泵系列产品已为超过4000万平方米的建筑提供可再生能源供热热源和供冷冷源,年运行节能量超过40万吨标准煤。 十二五期间,公司将为社会提供10000台热泵机组,以年节约100万吨标准煤为目标,有效降低温室气体和有害气体的排放,为祖国节能减排事业贡献力量! 我们珍惜每一个客户的选择和认可,敬重每一个客户的批评和建议,感关心和支持世纪昌龙的每一个朋友和合作伙伴。我们将继续以优良的售后服务,巩固并拓展销售市场,真诚地希望与您携手共创辉煌。 2、产品简介 公司专业生产经营热泵型中央空调系列,目前公司产品已发展到第四代、拥

有十大系列一百五十多个型号。 公司产品主要分为中央空调主机和空调末端设备两大单元; 中央空调主机单元主要包括:水源热泵、地源热泵和空气源热泵三大板块; 空调末端设备单元主要包括:风机盘管、射流风机、组合式空调器、新风换气机和组合式净化空调等。 (1)中央空调主机单元 从热源利用上:既可利用地下水,又可利用河水、湖水等地表水、工业废水、城市污水、洗浴污水以及油田回注水等;从压缩机选型上:既有半封闭螺杆式机组、全封闭涡旋式机组,又有离心式机组;从换热器选型上:既有钎焊板式换热器、干式、满液式换热器,又有套管换热器。从形式上:既有风冷式,也有水冷式。 (2)空调末端单元 公司空调末端设备单元共分为四大系列,两百多个产品规格,从形式上可分为:风机盘管、射流风机、组合式空调器、新风换气机和组合式净化空调器等;从送风方式上分为:独立送风设备和集中送风设备;从送风质量上分为:室自然风循环设备和净化加湿设备;从静音方式上可分为:普通型和高静音型;

水源热泵供暖制冷系统运维管理合同

***********新能源开发有限责任公司 ******人民医院水源热泵供热供冷系统 投资运维管理合同 协议编号: 签署日期: 签署地点:

甲方: 乙方:**********新能源开发有限责任公司 依据《中华人民共和国合同法》和其他有关法规,经甲、乙双方协商,就有关事项达成如下合同,双方同意严格执行本合同规定的所有条款。 一、建设经营范围 1、乙方投资范围 (1)热泵机房:热泵机房内水源热泵机组、循环水泵组等主要设备及辅助设施的购置及安装;热泵机房内管道及附件等的购置及安装;设备配电及自控系统的安装; (2)室外水源井换热系统:水源井钻凿施工以及水源井至机房联络管线的敷设施工; (3)室外冷却塔系统:冷却塔设备及其附属管线的购置及安装。 2、甲方负责建设内容 (1)热泵机房土建,热泵机房内的设备基础,冷却塔设备基础,及机房内通风、给排水、消防、照明等配套设施建设; (2)出机房后1米的供回水管线、建筑内的空调末端系统的建设和运营管理; (3)电力电源引入建设; (4)其它协调工作。 二、维护运营时间 经营时间为20年,即由乙方对本项目进行投资、设计、建设、

运营、收费,并对项目拥有所有权。运营即收费年限为20年(不含建设期)。 三、合同价款及付款方式 1、方案一 免收冬、夏季配套费。 由36元/m2让利至30元/m2(采暖季每天0.25元/m2,比县定标准0.26元/m2降低1分;制冷收费标准由45元/m2让利至40元/m2。(按照每个供暖、制冷季为120天)。 供暖收费参考标准标准:****市收费标准为:36元/m2(采暖季每天每平方米0.30元);汝阳县收费标准为31.2元(每天每平方米0.26元)。 2、方案二 免夏季配套费,冬季接口费标准由50元/m2让利至40元/m2,则共计507万元。 供暖收费标准由由36元/m2让利至27.6元/m2(采暖季每天0.23元/m2,比县定标准0.26元/m2降低3分;制冷收费标准由45元/m2让利至35元/m2。(按照每个供暖、制冷季为120天)。 3、付款时间 付款以人民币通过银行给付,统一汇至中标人的基本银行账户。具体付款幅度如下: 每个供暖/供冷季前十日内支付供暖费。

地源热泵节能技术论文

地源热泵节能技术论文 为了缓解全球能源短缺问题,建筑采暖行业开始引入地下水地源热泵技术,期望能利用该技术所具备的节能。—了地源热泵节能技术,有的亲可以来阅读一下! 地源热泵节能分析 摘要:利用土壤、地表水和地下水等地表浅层的地源热泵,是夏季制冷以及冬季供暖的空调系统,相对比传统的空调系统地源热泵供暖空调技术因全年恒定的地源温度,所以其有较高的运行效率。地源热泵的经济竞争性还是有待考究的。文章首先对地源热泵技术的概念进行了描述,分析了地源热泵供暖空调技术的现状,阐述的地源热泵技术的优点,同时分析了地源热泵技术在国内发展中存在的障碍。 关键词:地源热泵;节能;分析 :TE08: A

为了缓解全球能源短缺问题,建筑采暖行业开始引入地下水地源热泵技术,期望能利用该技术所具备的节能。环保性能有效降低能源损耗,实现建筑暖通节能,为建筑节能做出贡献,为了更深入的了解地下水地源热泵系统特性,笔者现结合地下水地源热泵技术特点,对该技术在建筑暖通工程施工中的应用作详细探讨。 一、地源热泵原理与组成 随着经济的发展和生活水平的提高,公共建筑和住宅的供热和空调己成为普遍的需求。在发达国家中,建筑能源耗费量大约占总能耗的三分之一,其中供热和空调的能耗可占到建筑能耗的65%。在全球能源形势日趋紧张的今天,空调节能变得尤其重要。而且大量燃烧矿物燃料所产生的环境问题也己成为各国政府和公众关注的焦点。因此,除了集中供热以外,急需发展其他的替代供热方式。地源热泵就是能有效节省能源、减少大气污染的供热和空调新技术。地源热泵是利用大地“土壤、地表、地下水”作为热源。地源热泵系统一般由地热能交换系统、水源热泵机房系统和建筑内末端散热系统三部分组成。其中,地热能交换系统可以说是地源热泵与其它传统中央空调系统唯一和最大的区别。 二、地源热泵技术的概念及现状 地源热泵技术是指使用地下的岩石作为稳定的蓄热体,将地下浅层热资源,通过少量的高位能源,将低品位能源向高品位能转移,以实现冬

地源热泵方案书

地源热泵 一、地源热泵介绍 实施可持续发展能源战略已成为新时期我国能源发展的基本方针,可再生能源在建筑中的应用是建筑节能工作的重要组成部分。2004年国家发展和改革委员会发布了中国第一个《节能中长期专项规划》:加快太阳能、地热等可再生能源在建筑物的利用。2006年1月1日《可再生能源法》正式实施,地源热泵系统作为可再生能源应用的主要途径之一,同时也是最利于与太阳能供热系统相结合的系统形式,近年来在国内得到了日益广泛的应用。 地源热泵技术是利用地能或地表浅层地热资源的温度一年四季相对稳定,冬季比环境空气温度高,夏季比环境空气温度低这一特点进行能量转换的空调系统。地源热泵通过输入少量的高品位能源(电能),即可实现能量从低温热源向高温热源的转移。在冬季,把土壤中的热量“取”出来,提高温度后供给室内用于采暖;在夏季,把室内的热量“取”出来释放到土壤中去,并且常年能保证地下温度的均衡。 地源热泵在结构上的特点是有一个由地下埋管组成的地热换热器,它通过循环液(水或以水为主要成分的防冻液)在封闭地下埋管中的流动,实现系统与大地之间的能量转换。 因为地源热泵只使用电力,没有燃烧过程,对周围环境无污染排放;不需使用冷却塔,没有外挂机,不向周围环境排热,没有热岛效应,没有噪音;不抽取地下水,不破坏地下水资源,所以在最新颁布的《中国应对气候变化国家方案》中提出:积极扶持风能、太阳能、地热能、海洋能等的开发和利用。积极推进地热能的开发利用,推广满足环境和水资源保护要求的地热供暖、供热水和地源热泵技术。

二、地源热泵系统构成与原理 地源热泵(也称地热泵)是利用地下常温土壤和地下水相对稳定的特性,通过深埋于建筑物周围的管路系统或地下水,采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移与建筑物完成热交换的一种技术。 地球是一个巨大的蓄热体,一年四季其地表5m以下的土壤温度十分稳定,是一种取之不尽、用之不竭的可再生能源。地源热泵机组工作原理就是在夏季从土壤或地下水中提取冷量,由热泵原理通过空气或水作为载热剂降低温度后送到建筑物中,而冬季,则从土壤或地下水中提取热量,由热泵原理通过空气或水作为载冷剂提升温度后送到建筑物中,从而实现的热交换过程。需要特别指出的是:地热泵中的冷热源不是指地下的热汽或热水,而是指一般的常温土壤、地表水、地下水。 地埋管热泵系统以导热好、抗腐蚀、强度高且可绕曲的材料制成

水源热泵机组在供暖系统中的应用

水源热泵机组在供暖系统中的应用 [摘要] 针对目前地热供暖应用的现状,介绍了一种全新的地热+高温水源热泵的供暖方案。在比较了各种常规的供暖模式的经济及环保效益的同时,为低温地热水、地热尾水中低品位余热水资源提供了一种高效、合理的利用途径。 [关键词] 水源热泵地热供暖地热尾水节能环保 一、概述 1、项目简介 某干休所共有建筑面积6万平方米,为满足冬季供热及生活热水的需求,建设方拟采用地热井水+水源热泵技术联合供暖方式为住宅小区冬季采暖提供热源,根据当地的地质结构及有关技术资料,现计划打地热井1口(井深3800米),单井出水量55T/h,温度90℃。综合考虑初投资及运行费用,并本着最大限度利用地热水资源的原则,拟定采暖方式为:用地热水给小区一次供暖,供热后的尾水由水源热泵进行能量提升为采暖系统再次供热,从而降低尾水排放温度适合生活用热水要求,最大限度的利用水资源。从长期运行的角度出发,对该方案的节能效益进行以下技术经济分析。 2、热泵技术原理 热泵是一种能从自然界的空气、水或者土壤中获取低品位热量,经过电力做功,输出可用的高品位热能的设备。热泵可以把消耗的高品位电能转换为3倍甚至3倍以上的热能,是一种高效供能技术。本文所要叙述的热泵系统是利用水源热泵机组从中低温水中吸收热量供采暖用热,可以实现能源的二次利用,大大提高能源利用率,节约地热水的用量,是一条变废为宝的节能途径。 由于热泵是取之自然界中的能量,效率高,没有任何污染物排放,是当今最清洁、经济的能源方式。在资源越来越匮乏的今天,作为人类利用低温热能的最先进方式,热泵技术已在全世界范围内受到广泛关注和重视。在我国热泵技术是国家重点推广的能源技术之一,目前在国内已经获得了广泛的应用。 二、技术方案 小区建筑冬季采暖热负荷为3000KW,生活热水负荷为1200KW。采暖末端使用地幅热,因此要求供水温度为55℃,回水温度为45℃。采用水源热泵供暖系统的原理示意图如图1所示。 本系统中,地热井出来的90℃、55T/h的地热水由除砂器处理后,经过供暖一级板式换热器和生活热水换热器换热后的水温降为46℃;再经过采暖二级板式换热器换热后出水温度降为20℃排出。活塞式水源热泵机组水源侧进水温度

热泵测试验收方案及标准

热泵测试验收方案及标准-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

热泵测试验收方案及标准 1、验收参考规范: GB50300-2001《建筑工程施工质量验收统一标准》 GB50242-2002《建筑给水排水及采暖工程施工质量验收规范》 GB50235-《工业金属、管道工程施工及验收规范》 GBJ126-89《工业设备及管道绝热工程施工及验收规范》 JBJ29-96《压缩机、风机、泵安装工程施工及验收规范》 GB50150-91《电气装置安装工程电气设备交接试验标准》 2、测试项目: (1)、室内热水设备安装是否合符规范,安装是否水平、垂直,是否存在渗水、漏水,运行是否正常。 (2)、管道安装、保温安装是否合符规范,是否水平;管道是否存在热桥效应,是否存在渗水、漏水;保温是否严密,有无出现遗漏未保温管段。 (3)、控制系统、监视系统安装是否符合规范,是否达标书安装要求。 3、测试工具: 试压泵,压力表,温度表,垂线坠,皮尺,水平尺,钳形表,欧姆表,计时表等4、测试方法: 观察,尺量,计时测温,计时测压,水压试验,测电流电压,运行观察。 5、验收手段、验收方法、验收标准 (1)、水压试验:在管道安装完工即保温之前,将水管充满水后密封,采用增压设备,往系统管道加压至,10min内压力降不不超过;然后降至工作压力进行检查,压力不降,不渗、不漏;观察检查,不得有残余变形.受压元件金属壁和焊缝上不不得有水珠和水雾;视为合格。 (2)、启动所有的系统,检测系统设计是否合理,并能保证每个系统能达到招标文件或投标文件的要求; (3)、设备调试后,启动热泵,开机运行24小时,检测: A、设备运行是否正常,有无故障; B、记录当时的气温、冷水温度t1、加热水量M、耗电量K、停机时热水温度 t2,然后根据下列公式计算热泵在对应的环境温度下的COP值,检测实际的COP值是否与投标数据一致:

地热联合水源热泵供暖工程设计方案

地热联合水源热泵供暖工程设计方案 二0一九年十二月

目录 前言 (3) 第一章工程基本情况 (4) 一、工程概况 (4) 二、方案设计理念 (4) 三、热泵的优良特性 (5) 第二章地源热泵工程配置设计 (9) 一、方案设计依据 (9) 二、负荷计算 (9) 三、机房设备配置 (9) 四、系统自动化控制 (10) 第三章系统投资预算及运行成本分析 (12) 一、机房系统整体投资概算 (12) 三、系统运行成本分析 (13) 第四章工程设计施工与售后服务保障 (14) 一、产品质量保障 (14) 二、技术服务保障................................................... 错误!未定义书签。

前言 本工程是地热水联合水源热泵采暖工程,工程位于********。 本方案按本工程特点,采用地热水和地下水式地源热泵实现整体供暖的设计方案。通过总体技术方案论证与分析,主要经济技术指标如下:

第一章工程基本情况 一、工程概况 1、项目简介 本工程为位于******,总建筑面积为130000㎡,末端采用地板辐射采暖。根据甲方提供的信息,现有65℃的地热井水80m3/h可供使用,为小区供暖。 2、气候条件 清苑区年平均气温12℃,年降水量550毫米,属于温带季风性气候。四季分明,冬季寒冷有雪,夏季炎热干燥,春季多风沙,秋季凉爽舒适。冬冷夏热,雨热同期,来此旅游一般以夏秋季为宜。 3、工程要求 设计冬季室温18℃-20℃。 二、方案设计理念 本工程为居住建筑,设计与施工必须符合我国现行建筑节能措施的节能型建筑规范。按地质条件,本工程具备采用热泵新能源绿色环保空调采暖供热的热源条件,在保证室内环境舒适度的条件下,保障小区清洁与低碳人文环境。因此,本工程设计方针是环保、节能、高效、稳定、耐用。设计原则是充分、合理、安全利用岩土层自然资源。设计宗旨是实现国家可再生能源综合应用绿色建筑要求,达到最佳投资性价比。 依据地理位置、气象条件、建筑类型、建筑规模、岩土层、舒适度条件等要求:第一,按照负荷指标法计算冷热负荷;第二,按地下水源热泵系统特有的比压、比焓、比熵参量计算热泵机组理论循环焓值与理论动力配置,计算热泵机组理论能效比。系统方案将全程贯穿科学有据、节能节省、实效优化的设计理念,达到用户满意的最佳设计与施工效果。

地源热泵供暖实施方案

地源热泵供暖方案

————————————————————————————————作者:————————————————————————————————日期:

静海时运花园地源热泵供暖方案 某中学地源热泵技术 供暖方案

第一部分地源热泵项目设计

一、项目概况及设计依据 该总建筑面积约22916平方米,节能建筑,其中教学楼分别为2872㎡和2761㎡各一栋,综合教学楼3916㎡,专业教室2545㎡,学生公寓两栋计8722㎡,餐厅2100㎡,其中学生餐厅暂不考虑供暖,机组选用KLSH-160D两台,按照供热需求调剂使用以便节能;地源侧循环泵和用户端循环泵分别按照机组配置;水泵的启用模式与机组启用模式相同,可降低运行费用。地源热泵水源水系统来自室外地下埋管系统,其水系统在闭式PE管路中循环,无须自地下提取地下水。 设计依据 1、甲方提出的设计任务及相关专业提供的条件图; 2、《采暖通风与空气调节设计规范》(GB50019-2003) 3、《地源热泵系统工程技术规范》(GB50366-2005) 4、《民用建筑电气设计规范》JGJ16-2008 5、《民用建筑电气设计手册》 6、《智能建筑设计规范》GB/T50314-2000 7、《智能建筑弱电工程设计施工图集》GBBT-471 8、《建筑电气工程施工质量及验收规范》GB50303-2002 9、《建筑电气通用图集》92DQ1 10、暖通专业要求及暖通专业条件图 二、方案考虑原则 1、在条件允许的情况下,满足建筑物冬季采暖要求; 2、在保证安全可靠的情况下,尽量节省投资费用;

污水源热泵工作原理及效益分析

污水源热本调研报告 所谓污水源热泵,主要是以城市污水做为提取和储存能量的冷热源,借助热泵机组系统内部制冷剂的物态循环变化,消耗少量的电能,从而达到制冷制暖效果的一种创新技术。 城市污水源热泵空调技术能实现冬季供暖、夏季空调、全年生活热水供应(很廉价的热水供应方案)、夏季部分免费生活热水供应。城市污水热泵空调是一项高新技术,具有节能、环保及经济效益,符合经济与社会的可持续性发展战略。城市污水源热泵机组以污水为冷热源,冬季采集来自污水的低品位热能,借助热泵系统,通过消耗部分电能(1份),将所取得的能量(大于4份)供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调的目的。 1、污水源热泵的工作原理 污水源热泵的主要工作原理是借助污水源热泵压缩机系统,消耗少量电能,在冬季把存于水中的低位热能“提取”出来,为用户供热,夏季则把室内的热量“提取”出来,释放到水中,从而降低室温,达到制冷的效果。其能量流动是利用热泵机组所消耗能量(电能)吸取的全部热能(即电能+吸收的热能)一起排输至高温热源,而起所消耗能量作用的是使介质压缩至高温高压状态,从而达到吸收低温热源中热能的作用。 污水源热泵系统由通过水源水管路和冷热水管路的水源系统、热泵系统、末端系统等部分相连接组成。根据原生污水是否直接进热泵机组蒸发器或者冷凝器可以将该系统分为直接利用和间接利用两种

方式。直接利用方式是指将污水中的热量通过热泵回收后输送到采暖空调建筑物;间接利用方式是指污水先通过热交换器进行热交换后,再把污水中的热量通过热泵进行回收输送到采暖空调建筑物。 2、污水源热泵系统的特点: (1)环保效益显著 城市污水源热泵是利用了污水作为冷热源,进行能量转换的供暖空调系统。供热时省去了燃煤、燃气、然油等锅炉房系统,没有燃烧过程,避免了排烟污染;供冷时省去了冷却水塔,避免了冷却塔的噪音及霉菌污染。不产生任何废渣、废水、废气和烟尘,环境效益显著。 (2)高效节能 冬季,污水温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季污水温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。 (3)运行稳定可靠 污水的温度一年四季相对稳定,其波动的范围远远小于空气的变动。是很好的热泵热源和空调冷源,水体温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。不存在空气源热泵的冬季除霜等难点问题。 (4)一机多用,应用范围广 此热泵系统可供暖、空调,生活热水供应(夏季免费)等。一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统。 (5)投资运行费用低

地源热泵简介地源热泵概述

地源热泵简介地源热泵概述 地源热泵是一种利用浅层地热资源(也称地能,包括地下水、土壤或地表水等)的既可供热又可制冷的高效节能空调设备。 地源热泵通过输入少量的高品位能源(如电能),实现由低温位热能向高温位热能转移。地能分别在冬季作为热泵供热的热源和夏季制冷的冷源,即在冬季,把地能中的热量取出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。通常地源热泵消耗1kWh的能量,用户可以得到4kWh以上的热量或冷量。 地源热泵由来 "地源热泵"的概念,最早于1912 年由瑞士的专家提出,而该技术的提出始于英、美两国。北欧国家主要偏重于冬季采暖,而美国则注重冬夏联供。由于美国的气候条件与中国很相似,因此研究美国的地源热泵应用情况,对我国地源热泵的发展有着借鉴意义。编辑本段地源热泵的热源地源热泵目前,地源热泵已成功利用地下水、江河湖水、水库水、海水、城市中水、工业尾水、坑道水等各类水资源以及土壤源作为地源热泵的冷、热源。编辑本段地源热泵组成地源热泵供暖空调系统主要分三部分:室外地能换热系统、地源热泵机组和室内采暖空调末端系统。其中地源热泵机主要有两种形式:水—水式或水—空气式。三个系统之间靠水或空气换热介质进行热量的传递,地源热泵与地能之间换热介质为水,与建筑物采暖空调末端换热介质可以是水或空气。 主要特点

(1)地源热泵技术属可再生能源利用技术。由于地源热泵是利用了地球表面浅层地热资源(通常小于400米深)作为冷热源,进行能量转换的供暖空调系统。地表浅层地热资源可以称之为地能,是指地表土壤、地下水或河流、湖泊中吸收太阳能、地热能而蕴藏的低温位热能。地表浅层是一个巨大的太阳能集热器,收集了47%的太阳能量,比人类每年利用能量的500倍还多。它不受地域、资源等限制,真正是量大面广、无处不在。这种储存于地表浅层近乎无限的可再生能源,使得地能也成为清洁的可再生能源一种形式。 (2)地源热泵属经济有效的节能技术。其地源热泵的COP值达到了4以上,也就是说消耗1KWh的能量,用户可得到4KWh以上的热量或冷量。 (3)地源热泵环境效益显著。其装置的运行没有任何污染,可以建造在居民区内,没有燃烧,没有排烟,也没有废弃物,不需要堆放燃料废物的场地,且不用远距离输送热量。 (4)地源热泵一机多用,应用范围广。地源热泵系统可供暖、空调,还可供生活热水,一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统;可应用于宾馆、商场、办公楼、学校等建筑,更适合于别墅住宅的采暖、空调。然而实现地源热泵主机系统的这一机多用,则需要一整套系统解决方案,其有动力输配系统-----节能空调机房,室内末端输送设备采用地暖分集水器,水力平衡分配器,生活热水采用多功能水箱。由此可体现出地源热泵主机的一机多用也代表着暖通系统的整个运行体系。水力平衡分配器(5)地源热泵空调系统维护费用低。地源热泵的机械运动部件非常少,所有的部件不是埋在地下便是安装在室内,从而避免了室外的恶劣气候,机组紧凑、节省空间;自动控制程度高,可无人值守。

最新全套游泳池供热(热泵方案)

恒温游泳池热水热泵设备选型方案 项目名称 室内标准恒温游泳池热源设备 项目要求 1、室内恒温游泳池贮水约320M3,表面积220M2。 2、采暖和除湿热负荷99.7kw 3、泳池恒温加热200kw,补水加热功率70kw 4、选用热源设备对泳池加热及恒温(室内恒温游泳池池水温度宜在 25~30 ℃左右,这里取28℃即可)。 3、环境温度低于15℃时开始预热,常州地区冬天冷水温度按10℃计算。 设备选型方案 选用4台RMRB25SR空气源热泵热水机组(并联)对泳池加热恒温和空调采暖。 备注:RMRB25SR热泵的泳池工况如下:输入/输出功率:22KW/86KW,冷凝温度:28℃,蒸发温度10℃。 泳池加热设备选型计算 1.给水系统 选择循环过滤给水系统 将已弄脏了的游泳池水,经过净化、消毒等过程达到符合游泳水质要求后,再送如游泳池重复使用的给水系统。

初次预热 预热时间根据供水条件和使用要求确定。一般按24-48小时来计算。 补充水 补充水量:由泳池水面蒸发的水量、过滤设备冲洗水量、游泳池排污水量、溢流水量、游泳者身体带走的水量等部分组成;参考《设计手册》:室内公共池每天的补水量泳池容积的百分数5%~15%,这里取15%; 初次充水、补水方式:水源为城市自来水时,应设置补给水箱或利用平衡水池间接进行,以防止回流污染水源或设备;游泳池专用水源时,可以直接补水。 补给水箱或平衡水池的容积:公共游泳池按50L/平方米计算(这里需要25吨水)。 2、水的循环 循环周期以及循环流量 公共池的循环周期一般取8个小时,则循环流量为: 循环水流量=1.1×游泳池的水容积÷循环周期 = 1.1×320 m3÷8H = 45m3/h 水泵的扬程按循环管道、净化设备、加热设备阻力和水泵与水位高差计算确定。过滤器阻力按设备确定。 3、水的加热与恒温(保持在28℃左右) 游泳池的初次预热(24-48个小时) 320M3的泳池水在24-48小时内从10℃加热到28℃。 泳池的补充水量:320M3×15%÷8小时=6M3/小时 泳池加热恒温

水源热泵分析

水源热泵供暖系统供水温度的确定 因为水源热泵供暖系统能够将通常情况下不能被直接利用的低位热能从水源中取出,提升后并加以利用,具有良好的节能环保特性。现针对利用水源热泵系统进行供暖时,其供水温度的选择问题进行分析。 1、供水温度对水源热泵机组运行的影响 在冬季供暖工况下,如果水源热泵低温热源侧的进出口水温不变,则水源热泵的供水温度越高,其制热性能系数(cop值)就越低,提供相同的热量所需的运行费用就越高。COP=38.126△t-0.633,△t=(th.i+th.o)/2-(tc.i+tc.o)/2 2、合理的供水温度选择 通过上面的计算可知,利用水源热泵机组进行冬季供暖时,供水温度越低,机组的cop值就越大,经济性越好,但供水温度也不能太低,否则将导致末端散热设备过大或无法满足散热设备对供水温度的内在要求。显然合理的供水温度应该是既能满足用户的用热需求,同时又有最佳的经济性。 3、如果水源热泵机组供水温度过高,水流量不变的情况下,蒸发压力即吸气压力会增加,同样的对应的制热量也会增加,消耗功率也会增加。,主要原因是因为对机组而言,过高的蒸发器水体温度,会导致蒸发压力过高,而对特定的冷煤系统在应用过程中,冷凝压力是一个定值,这个时候压差比就比较小,压差比小就意味着压缩机而言回油会受到很大的影响,无法保证热泵系统的正常工作,温度过高也会烧坏压缩机。

解决设想方案 日本在1980年代开展了超级热泵计划,开发出4类热泵,其中有利用45度余热水,制热出水温度85的中高温热泵,以及利用80度余热水,产出150度蒸汽的高温热泵。 欧洲有采用改进离心压缩机性能技术路线的高温热泵,采用R134a制冷剂,三级离心压缩模式,制热出水温度可以达到85度。 一般需要解决以下几个关键技术问题。 1.压缩机的选择:热泵设备常用的压缩机类型主要是螺杆压缩机、全封闭涡旋压缩机与半封闭活塞压缩机等,经过对不同类型压缩机工作特性进行比较研究,高温热泵设备一般选用全封闭涡旋压缩机。 2.工质的选择:为保证高温热泵设备在稳定的可允许的工作压力下运用,采用特殊的制冷剂为工质,换热效率高并对环境无污染,对臭氧层无破坏作用。 3.氟路系统控制的优化:保证整体机组的长时间高温稳定运行和使用寿命,并根据环境温度和蒸发温度,自动调节高温空气热泵设备运行工作状态和调件。

地源热泵系统与传统供热对比分析

一、什么是地源热泵 我们先来简单的认识一下什么的地源热泵,地源热泵是利用浅层地能进行供热制冷的新型能源利用技术,是热泵的一种,热泵是利用卡诺循环和逆卡诺循环原理转移冷量和热量的设备。地源热泵通常是指能转移地下土壤中热量或者冷量到所需要的地方。通常热泵都是用来做为空调制冷或者采暖用的。地源热泵还利用了地下土壤巨大的蓄热蓄冷能力,冬季地源把热量从地下土壤中转移到建筑物内,夏季再把地下的冷量转移到建筑物内,一个年度形成一个冷热循环。 二、一般比较: 地源热泵中央空调和传统中央空调相比,最大的特点就在于它的节能性,这也是很多用户不顾高额初投资选择地源热泵中央空调的原因,地源热泵除了节能外,还有很多的优点,我们可以通过与传统中央空调的对比来分析地源热泵到底具有哪些优势,为什么如此深受用户青睐。 地源热泵中央空调与传统中央空调对比:环境保护 从土壤源热泵的整个运行原理来看,土壤源热泵系统实际是真正意义的绿色环保空调,不管是冬季还是夏季的运行,都不会对建筑外大气环境造成不良影响。而普通中央空调系统,将废热气或水蒸气排向室外环境,无一例外的都对环境造成了极大的污染。以地球表 面浅层地热资源作为冷热源,利用清洁的、近乎无限可再生的能源,符合可持续发展的战略要求。地源热泵中央空调与传统中央空调对比:运行效率 对于普通中央空调系统,不管是采用风冷热泵机组还是采用冷却塔的冷水机组,无一例外的要受外界天气条件的限制,即空调区越需要供冷或供热时,主机的供冷量或供热量就越不足,即运行效率下降,这在夏热冬冷地区的使用就受到了影响。而土壤源热泵机组与外界的换热是通过大地,而大地的温度很稳定,不受外界空气的变化而影响运行效率,因此,土壤源热泵的运行效率是最高的。 地源热泵中央空调与传统中央空调对比:经济方面 地源热泵系统还可以集采暖、空调制冷和提供生活热水于一体。一套热泵系统可以替换原有的供热锅炉、制冷空调和生活热水加热的三套装置或系统,从而减少使用成本,十分经济。 地源热泵中央空调与传统中央空调对比:运行费用 地源热泵系统在运行中的节能特点也是显而易见的:通常地源热泵消耗1kW的能量,用户可以得到4kW以上的热量或冷量,其制冷、制热系数可达4以上,与传统的空气源热泵相比,要高出40%,其运行费用为普通中央空调的50%~60%。达到相同的制冷制热效率,土壤源热泵主机的输入功率较小,即为业主提供了较低运行费的空调系统,在全年时间使用空调的场所,这种效果尤为明显。锅炉只能将70%~90%的燃料内能为热量,因此地源热泵要比电锅炉加热节省三分之二以上的电能,比燃料锅炉节省约二分之一的能量。 地源热泵中央空调与传统中央空调对比:主机设置 对于普通中央空调系统,若设置风冷热泵机组进行冷热空调,则风冷热泵主机的设置必须要与外界通风良好,要么设置于屋顶,要么设置于地面,这对别墅空调受限就更严重。而土壤源热泵主机的设置就非常灵活,可以设置在建筑物的任何位置,而不受考虑位置设置的限制。若设置冷水机组+锅炉进行冷热空调,冷却塔和锅炉的位置就更受限制。因此,就主机的设置而言,地源热泵系统的主机设置是非常灵活的。. 地源热泵中央空调与传统中央空调对比:系统简单 一机多用,节约设备用房,应用范围广。地源热泵可供暖、空调,还可用于生活热水供应系统,一套系统可替代锅炉加空调的两套系统,因此一机多用,节省了建筑空间及设备的初投资,机组紧凑,节省设备用房空间,由此而产生的经济效益相当可观。 地源热泵中央空调与传统中央空调对比:无需除霜 大地土壤温度一年四季相对保持恒定,冬季也能保持在15℃以上,埋地换热器不会结霜,可

水源热泵制冷和采暖方案分析

水源热泵 采暖/制冷的方案

[content] 一、前言 (3) 二、方案和投资 (4) 三、采暖/制冷运行费用分析 (8) 四、结论 (9)

以往,办公用房及大型建筑多为双系统解决采暖和制冷,即冬季燃煤锅炉供暖或集中供热,夏季制冷由水冷式冷水中央空调机组或用风冷民用家用小型空调。 水源热泵是一种利用地下浅层地热资源,既可供热又可制冷的高效节能空调系统。该系统通过输入少量高品位的电能,实现低温位热能向高温位转移。地表水的热能是基本恒定的,在冬季作为热泵供暖的热源和夏季作为空调的冷源,即在冬季,把地能中的热量"取"出来提高温度后,供给室内采暖;夏季把室内的热量取出来,通过地表水(或介质)释放到地下。通常水源热泵消耗lkW的能量,用户可以得到4kW以上的热量或冷量。 与电锅炉和燃料锅炉供热系统相比,只能将90%以上的电能或70~90%的燃料内能转化为热量,供用户使用。因此,水源热泵要比电锅炉节省三分之二以上的电能,比燃料锅炉节省二分之一以上的能量。由于水源热泵的热源温度全年较为稳定,一般为10~25℃,其制冷、制热系数可达4.4~5.4,与传统的空气源热泵相比,效率要高出40%左右,制冷时其运行费用为普通中央空调的50~60%,与风冷民用家用小型空调 相比,制冷时节约运行费用60~70%。水源热泵作为一种被国家计委、国家科委、建设部列入“十一五”规划的新技术,它有如下特点: A.属于可再生能源。 B.高效节能及低价位的运行费用。 C.环境效益显著。 D.一机多用,即可以采暖,又可以制冷,还可以全天提供生活用热水,省去了采暖设施及生活热水系统的投资。 在诸多的热泵机组品牌中意大利克莱门特机组,由于拥有独特的蒸发器专利技术,其效率比世界任何厂家生产的同类型最好的机组高出11%以上,降低了运行费用。 意大利克莱门特水源热泵,由于具有独特的系统控制技术及压缩机生产技术,是目前唯一拥有能够一次性将3℃以上可利用温度,由机组蒸发器全部提取,减少了机组对井水流量的需求,大幅度减少打井的一次性投资。

《地源热泵系统工程技术规范》GB50366-2005解读

国家标准《地源热泵系统工程技术规范》GB50366-2005设计要点解析 中国建筑科学研究院空气调节研究所邹瑜徐伟冯小梅 摘要:本文针对不同地源热泵系统的特点,结合《规范》条文,对地源热泵系统设计特点、方法及要点进行了深入分析,为地源热泵系统的设计提供指导。 关键词:地源热泵系统、设计要点、系统优化 1 前言 实施可持续发展能源战略已成为新时期我国能源发展的基本方针,可再生能源在建筑中的应用是建筑节能工作的重要组成部分。2006年1月1日《可再生能源法》正式实施,地源热泵系统作为可再生能源应用的主要途径之一,同时也是最利于与太阳能供热系统相结合的系统形式,近年来在国内得到了日益广泛的应用。地源热泵系统利用浅层地热能资源进行供热与空调,具有良好的节能与环境效益,但由于缺乏相应规范的约束,地源热泵系统的推广呈现出很大盲目性,许多项目在没有对当地资源状况进行充分评估的条件下就匆匆上马,造成了地源热泵系统工作不正常,为规范地源热泵系统的设计、施工及验收,确保地源热泵系统安全可靠的运行,更好的发挥其节能效益,由中国建筑科学研究院主编,会同13个单位共同编制了《地源热泵系统工程技术规范》(以下简称规范)。该规范现已颁布,并于2006年1月1日起实施。 由于地源热泵系统的特殊性,其设计方法是其关键与难点,也是业内人士普遍关注的问题,同时也是国外热点课题,在新颁布的《规范》中首次对其设计方法提出了具体要求。为了加深对规范条文的理解,本文对其部分要点内容进行解析。 2 《规范》的适用范围及地源热泵系统的定义 2.1 《规范》的适用范围 该《规范》适用于以岩土体、地下水、地表水为低温热源,以水或添加防冻剂的水溶液为传热介质,采用蒸气压缩热泵技术进行供热、空调或加热生活热水的系统工程的设计、施工及验收。它包括以下两方面的含义: (1)“以水或添加防冻剂的水溶液为传热介质”,意旨不适用于直接膨胀热泵系统,即直接将蒸发器或冷凝器埋入地下的一种热泵系统。该系统目前在北美地区别墅或小型商用建筑中应用,它优点是成孔直径小,效率高,也可避免使用防冻剂;但制冷剂泄漏危险性较大,仅适于小规模应用。 (2)“采用蒸气压缩热泵技术进行……”意旨不包括吸收式热泵。 2.2 地源热泵系统的定义 地源热泵系统根据地热能交换系统形式的不同,分为地埋管地源热泵系统(简称地埋管系统)、地下水地源热泵系统(简称地下水系统)和地表水地源热泵系统(简称地表水系统)。其中地埋管地源热泵系统,也称地耦合系统(closed-loop ground-coupled heat pump system)

污水源热泵系统与集中供热系统对比

污水源热泵系统与集中供热系统对比 原生污水源热泵原理: 在高位能的拖动下,将热量从低位热源流向高位热源的技术。它可以把不直接利用的低品位热能(如空气、土壤、水、太阳能、工业废热等)转化为可利用的高位能,从而达到节约部分高位能(煤、石油、天然气、电能等)的目的。 在制冷状态下,污水源热泵原理是通过压缩机对冷媒做工,使其进行汽——液转化的循环。通过蒸发器内冷媒的蒸发将由风机盘管循环所携带的热量吸收至冷媒中,在冷媒循环的同时再通过冷凝器内冷媒的冷凝,由水路循环将冷媒所携带的热量吸收,最终由水路循环转移至城市原生污水里。在室内热量不断转移至地下的过程中,通过风机盘管,以13℃一下的冷风的形式为房间供冷。 在制热状态下,污水源热泵原理是通过压缩机对冷媒做功,并通过换向阀将冷媒流动方向换向。由地下的水路循环吸收地下水或土壤里的热量,通过冷凝器内的冷媒的蒸发,将水路循环中的热量吸收至冷媒中,在冷媒循环的同时再通过蒸发器内冷媒的冷凝,由风机盘管循环将冷媒所携带的热量吸收。在城市原生污水中的热量不断转移至室内的过程中,以35℃以上热风的形式向内供暖。 污水源热泵原理优势特点: 1)利用可再生能源,环保效益好 污水源热泵原理利用了城市原生污水中丰富的热量资源作为冷热源,进行能量转换的供暖制冷空调系统。城市原生污水是一个巨大的能量采集器,巨大的城市废热从市政污水管路中排出,这种储存于城市原生污水中的能源数以清洁的,可再生能源。 2)高效节能,运行费用低 污水源热泵原理是采用温度恒定的城市原生污水作为能源,能效比COP在4.5~5.0之间,比空气源热泵高出40%左右,污水源热泵机组运行费用比常规中央空调低30%~40%左右。 3)运行安全稳定,可靠性高 无燃烧设备,无爆炸隐患,使用安全。如使用燃油、燃气锅炉供暖,其燃烧产物对居住环境污染极重,影响人们的生命健康。污水源热泵机组利用常年温度稳定的城市原生污水,夏季不会向大气中排除废热,加剧城市的“热岛效应”;冬季不受外界气候影响,运行稳定可靠,不存在空气源热泵除霜和供热不足的问题。4)空调主机以及多用,便于布置,使用范围广泛 空调主机体积小,污水源热泵机组安装在储藏室等辅助空间,既可制冷,又可制热,也不需要高的入户电容量。地源热泵系统可供暖、空调,还可供生活热水,一机多用,一套系统可替换原来的锅炉加空调的2套装置或系统;可应用于宾馆、

温室大棚、花卉苗圃采暖方案

温室大棚空气源热泵采暖工程 设 计 方 案 书 山东中科蓝天科技有限公司

目录 第一章工程概况 0 第二章技术方案 (1) 第一节系统运行原理及说明 (1) 第二节温室加温采暖设备分类 (2) 第三节温室加温采暖热负荷概念 (3) (一)温室加温原理 (3) (二)温室的热量平衡 (4) (三)温室设计采暖热负荷 (5) 第四节温室采暖热负荷计算 (6) (一)温室采暖室内外设计温度 (6) (二)通过围护结构传热计算 (8) (三)冷风渗透热损失 (10) (四)地面传热热损失 (11) (五)温室采暖热负荷 (13) 第五节空气源热泵系统介绍及配置14 第三章温室大棚空气源采暖系统投资预算 (16) 第一章工程概况

(1)项目地点: 本项目位于滕州花卉苗圃培养区和植物景观区。花卉种苗区和景观植物区各有4个大棚,每个大棚约500平方,本项目设计上重点突出节能、环保的理念。 (2)供热面积: 花卉种苗培养区建筑面积2000㎡,植物景观区面积2000㎡。 (3)结构形式:墙体及顶棚采用中空玻璃,大棚内部净高5米,棚内设置有活动保温被,种苗培养区在苗床下方已铺设地面翅形散热管。 (4)解决方案设想及大棚要求: a.采用空气压热泵作为制热能源,解决苗圃培养区和植物景观区的冬季采暖问题,保持大棚内的温度符合花卉培养的温度要求。 b.建筑形体简洁,建筑外墙采用隔热材料,玻璃采用中空玻璃。应满足建筑节能设计标准要求。 c.温室大棚朝南向布置,平面布置通风良好。 d.控制系统实现全自动运行,循环泵等根据温度设定值实现自动开启、关闭,系统实现无人值守、自动运行。 第二章技术方案 第一节系统运行原理及说明

风冷热泵与水源热泵制供热方案

风冷热泵方案与水源热泵制冷供暖方案 一、项目概况 北京某办公楼位于城南,该办公楼为改造项目,地上五层,地下一层,总建筑面积约8000平米。需解决夏季空调制冷,冬季供暖问题,全年保持室温在18℃-25℃。 二、制冷供暖解决方案 1、风冷热泵加辅助电加热方案 利用风冷热泵实现夏季制冷,冬季供暖考虑到风冷热泵机组在室外温度-8℃时启动困难,需增加辅助电加热。 2、水源热泵方案 该方案要求在建筑物附近打三口井,井深80-100米,一口抽水,出水量为100M3/h,两口井回灌,保持地下水资源稳定,利用井水作为冷热源,水源热泵机组夏季制冷,冬季供暖满足办公楼要求。 三、负荷计算及机组 1. 设计依据、范围及原则 本方案包含某办公楼的空调制冷供暖系统,包括冷热源、设备选型及末端系统方案。能够独立实现夏季制冷,冬季供暖。保证大楼的正常使用。 2. 空调冷热负荷计算 考虑到该建筑主要为办公室,根据国家标准单位建筑面积制冷负荷选取100W/M2, 建筑总冷负荷约为800KW。单位建筑面积供暖热负荷选取60W/M2, 建筑总热负荷约为480KW。3. 机组设备选型及技术参数 选择方案时应该考虑节省投资和保障该建筑正常制冷供暖要求。风冷热泵机组设计装机容量为835.2KW,配置风冷热泵机组MTD-80SH叁台。水源热泵机组设计装机容量为930KW,配置水源热泵机组MSRB80壹台。 表一机组选型 项目风冷热泵水源热泵 设备名称风冷冷(热)水机组水源热泵机组 设备型号 MTD-80SH MSRB80 数量 3台 1台

单台制冷量 278.4KW 930KW 单台制热量 304KW 1116KW 总制冷量 835.2KW 930KW 总制热量 912KW 1116KW 总耗电量 262.2KW 178.8KW 单台外形尺寸长 4320mm 3640mm 宽 2110mm 1300mm 高 2130mm 2200mm 表中机组的设计装机容量基本满足大楼的需求。 4.风冷热泵机组由于存在在室外温度-8℃时启动困难,需增加功率为480KW的辅助电加热设备,解决在严寒情况下供暖问题。 5.水源热泵机组对水资源要求严格,需要井水温度、流量稳定。必要时,应设置独立换热站,把井水与机组隔离。 四、风冷热泵机组与水源热泵机组的特点 1、风冷热泵机组的特点 (1)风冷冷(热)水机组采用模块化设计,完全不必设置备用机组,运行过程中电脑自动控制,调节机组的运行状态,使输出功率与工作环境的实际利用率相协调。 (2)模块化机组的可靠性高,该机组由数个模块组成,任何模块的临时检修停运都不会影响整机的正常运行,大大提高了整个空调系统的合理性和可靠性。 (3)机组可任意放置屋顶或地面,没有机房设施和冷却水塔系统,不占用有效使用面积。同时安装施工工作大为简便。 (4)由于机组在运行过程中是全电脑自动控制,所以日常不需要专业技术人员管理维护。(5)风冷热泵有不足之处,由于在室外温度-8℃时启动困难,需增加辅助电加热。 2、水源热泵的特点 水源热泵机组以水为载体,冬季采集来自湖水、河水、地下水及地热尾水,甚至工业废水、污水的低品位热能,借助热泵系统,通过消耗部分电能,将所取得的能量供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调的目的。该机组具有设计标准、选择优良、操作简便、安全可靠等优点。由于水源热泵技术利用地表水作为空调机组的制冷制热的源,所以其具有以下优点: (1)环保效益显著

相关文档
最新文档