对流—扩散问题的有限体积法

流体仿真与应用

第八讲

对流-扩散问题的有限体积法

◆一维无源项的稳态对流-扩散

◆流动过程同时必须满足连续性方程

()??

? ??Γ=dx d dx d u dx d φρφ()0=u dx

d

ρ

◆中心差分格式(例子)

◆离散格式的性质

在数学上,一个离散格式必须要引起很小的误差(包括离散误差和舍入误差)才能收敛于精确解,即要求离散格式必须要稳定或网格必须满足稳定性条件。

在物理上,离散格式所计算出的解必须要有物理意义,对于得到物理上不真实的解的离散方程,其数学上精度再高也没有价值。

通常,离散方程的误差都是因离散而引起,当网格步长无限小时,各种误差都会消失。然而,在实际计算中,考虑到经济性(计算时间和所占的内存)都只能用有限个控制容积进行离散。因此,格式需要满足一定的物理性质,计算结果才能令人满意。

主要的物理性质包括:守恒性、有界性和迁移性。

◆离散格式的性质——守恒性

满足守恒性的离散方程不仅使计算结果与原问题在物理上保持一致,而且还可以使对任意体积(由许多个控制容积构成的计算区域)的计算结果具有对计算区域取单个控制容积上的格式所估计的误差。

◆离散格式的性质——迁移性

x

u D F Pe δρ/Γ=

=在对流-扩散问题中,引入一个控制容积的Peclet 数,它表征对流与扩散的相对大小

◆离散格式的性质——迁移性

③当Pe 为有限大小时,对流和扩散同时影响一个节点的上、下游相邻节点。随着Pe 的增加,下游受的影响逐渐增大,而上游受的影响逐渐变小。

① ,即纯扩散,无对流。

,即纯对流,无扩散。 0=Pe ∞=Pe

◆迎风格式

迎风格式(Upw ind Differencing Scheme )在确定控制容积界面上

值时就考虑了流动的方向性,其思想为:在控制容积界面上对流项的取上游节点处的

值,称之为第二类迎风格式。中心差分格式的缺点是,它不能识别流动的方向,控制容积界面上 的值取相邻上、下游节点的平均值。当对流作用较强时,这样的处理就与其物理特征(某点的值受上游的影响,而不受下游的影响)不一致了。

φφφ

◆迎风格式

◆迎风格式

在控制容积界面上对流项的取其 上游节点处的值

E

W →φW

w φφ=P

e φφ=()()

W P w P E e W w P e D D F F φφφφφφ---=-()()[]()E

e W w w P w e e w w D F D F F D F D φφφ++=-+++W

E →P

w φφ=E

e φφ=()()[]()E

e e W w P w e e e w F D D F F F D D φφφ-+=-+-+

对流扩散方程

徐州工程学院 课程设计报告 课程名称偏微分方程数值解 课题名称对流扩散方程 的迎风格式的推导和求解专业信息与计算科学 班级10信计3 姓名学号 指导教师杨扬 2013年 5 月23 日

一、实验目的: 进一步巩固理论学习的结果,学习双曲型对流扩散方程的迎风格式的构造 方法,以及稳定的条件。从而进一步了解差分求解偏微分方程的一些基本概念,掌握数值求解偏微分方程的基本过程。在此基础上考虑如何使用Matlab 的软件进行上机实现,并针对具体的题目给出相应的数值计算结果。 二、实验题目: ?? ? ??-=-==<<<<+=+);2/1exp(),1();exp(),0();2/exp()0,(10,10,11t t u t t u x x u t x f u b u a u xx x t 其中a1=1,b1=2, ) 2/exp(),(t x t x f --=。 用迎风格式求解双曲型对流扩散方程,观差分解对真解的敛散性()2/exp(t x u -= 三、实验原理: 1、用迎风格式求解双曲型对流扩散方程,迎风格式为: ) 01(21 1 )01(2112 1 1112 1 11 1<++-=-+->++-=-+--+++-+-+a f h u u u b h u u a u u a f h u u u b h u u a u u n j n j n j n j n j n j n j n j n j n j n j n j n j n j n j n j τ τ 若令,/*1,/*12h b h a r τμτ== 则迎风格式可整理为: > <<++-+-+=><>++++--=-+++-+2)01()()21(1)01()()21(111111a f u u r u r u a f u u r u r u n j n j n j n j n j n j n j n j n j n j τμμμτμμμ2、稳定条件: ) () (01),*11*2/(01),*11*2/(2 2<-≤>+≤a h a b h a h a b h ττ(*) 四、数值实验的过程、相关程序及结果: 本次的实验题目所给出的边界条件是第一边界条件,直接利用所给的边界条件,我们可以给出界点处以及第0层的函数值,根据a1的正负性,使用相应的<1>或者<2>式,求出其他层的函数值。误差转化成图的形式,并输出最大值。 针对三种不同的输入对应输出结果 :

有限差分法、有限单元和有限体积法简介

有限差分法、有限单元法和有限体积法的简介 1.有限差分方法 有限差分方法(Finite Difference Method,FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2.有限元方法 有限元方法(Finite Element Method,FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 在数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的

对流扩散方程引言

对流扩散方程的定解问题是指物质输运与分子扩散的物理过程和黏性流体流动的数学模型,它可以用来描述河流污染、大气污染、核污染中污染物质的分布,流体的流动和流体中热传导等众多物理现象。关于对流扩散方程的求解很也备受关注,因此寻找一种稳定实用的数值方法有着重要的理论与实际意义。 求解对流扩散方程的数值方法有多种,尤其是对流占优扩散方程,这些方法有迎风有限元法,有限体积法,特征有限体积法,特征有限差分法和特征有限元法,广义差分法,流线扩散法,以及这些方法与传统方法相结合的方法如迎风广义差分法,迎风有限体积法有限体积——有限元法等这些方法数值求解效果较好,及有效的避免了数值震荡,有减少了数值扩散,但是一般计算量偏大 近年,许多研究者进行了更加深入的研究,文献提出了对流扩散方程的特征混合元法,再次基础上,陈掌引入了特征间断混合元方法,还有一些学者将特征线和有限体积法相结合,提出了特征有限体积元方法(非线性和半线性),于此同时迎风有限元也得到较大的发展,胡建伟等人研究了对流扩散问题的Galerkin 部分迎风有限元方法和非线性对流扩散问题的迎风有限元,之后又有人对求解发展型对流扩散问题的迎风有限元法进行了理论分析 有限差分法和有限元是求解偏微分方程的常用数值方法,一般情况下考虑对流占优的扩散方程,当对流项其主导作用时,其解函数具有大梯度的过渡层和边界层,导致数值计算困难,采用一般的有限元或有限体积方法虽然具有形式上的高精度,不能解决数值震荡的问题,虽然我们不能简单的将对流占优扩散方程看做对流方程,但由于次方程中含有一阶不对称的导数,对流扩散方程仍会表现出“对流效应”,从而采用迎风格式逼近,尽量反应次迎风特点,此格式简单,克服了锋线前沿的数值震荡,计算结果稳定,之前的迎风格式只能达到一阶精度,我们采用高精度的广义迎风格式,此格式是守恒的,精度高,稳定性好,具有单调性,并且是特征线法的近似,有效的避免了锋线前沿的数值震荡。 有限体积是求解偏微分方程的新的离散技术,日益受到重视。有限体积与有限差分、有限元法最大的区别及优点在于有限体积将求解区域内的计算转化到控制体积边界上进行计算,而后二者均是直接(或间接)在域内计算,故有限体积有着明显的物理涵义,在很大程度上减少计算工作量又能满足计算精度要求,加快收敛速度。由于此方法讲散度的积分化为子域边界积分后子啊离散,数值解满足离散守恒,而且可以采用非结构网格,所以在计算物理特别是计算流体力学领域上有限体积有广阔的前景。 间断Galerkin(DG)方法是在1973年,Reed和Hill在求解种子迁移问题时,针对一阶双曲问题的物理特点提出的。之后C.Johnson,G.R.Richter等人对双曲问题的DG方法做了进一步的研究,并且得到了该机的误差分析结果,由于这种方法具有沿流线从“上游”到“下游”逐层逐单元计算的显示求解的特点,并且可以进行并行计算,所以被广泛应用于各类方程的求解。最近Douglas等人在{25}中处理二阶椭圆问题时,得到DG方法的有限元空间不需要满足任何连续性条件,因此空间构造简单,具有较好的局部性和并行性。DG发展的一个重要方面是对对流占优扩散方程的应用。G.R.Richter等在1992年提出利用DG方法求解定长对流扩散问题 近年DG方法有了新的发展,其中YeXiu提出间断体积元方法备受人们关注,2004年,她将有限体积法与DG相结合,提出了椭圆问题的间断有限体积法,此方法解除了逼近函数在跨越边界上连续的限制,之后更多的研究者应用到Stokes问题,抛物问题,双曲问题,并得到了较好的结果,该方法不但继承了有限体积的高精度计算简单及保持物理间局部守恒等优点,而且有限元空间无需满足任何连续性要求,空间构造简单,有较好的局部和并行性。 当对流扩散方程中的对流项占主导地位时,方程具有双曲方程的特点,这是由于对流扩散方程中的非对称的对流项所引起的迎风效应使对流扩散方程的数值求解更困难,用传统的中心差分法和标准的有限元求解会差生数值的震荡,从而使数值模拟失真,为了克服这一困难,早在20世纪50年代,就有人提出了迎风思想,由于使用迎风技巧可以有效的消除数值解不稳定性,因此吸引了众多学者的关注,从1977年,Tabata等人就针对对流扩散方程提出了三角形网格上的迎风格式{42,38},并进行了深入的研究,梁栋基于广义差分法,提出并分析了一类建立在三角网格上的广义迎风差分格式,袁益让2001年就多层渗流方程组合系统提出并分析了迎风分数步长差分方法,以上均是讨论的线性对流扩散问题,胡建伟等通过引入质量集中算子,构造并分析了一类基于三角网格的质量集中型的部分有限元方法处理线性和非线性对流扩散问

有限差分和有限体积的 有限元等

有限差分和有限体积的有限元等 有限元法、有限差分法和有限体积法的区别 标签:函数有限元插值差分格式 有限差分方法(Finite Differential Method)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以泰勒级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限元法(Finite Element Method)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法。从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函

对流扩散方程有限差分方法.

对流扩散方程有限差分方法 求解对流扩散方程的差分格式有很多种,在本节中将介绍以下3种有限差分格式:中心差分格式、Samarskii 格式、Crank-Nicolson 型隐式差分格式。 3.1 中心差分格式 时间导数用向前差商、空间导数用中心差商来逼近,那么就得到了(1)式的中心差分格式]6[ 2 1 11 1122h u u u v h u u a u u n j n j n j n j n j n j n j -+-+++-=-+-τ (3) 若令 h a τ λ=,2h v τ μ=,则(3)式可改写为 )2()(2 111111 n j n j n j n j n j n j n j u u u u u u u -+-+++-+--=μλ (4) 从上式我们看到,在新的时间层1+n 上只包含了一个未知量1 +n j u ,它可以由时间层n 上的值n j u 1-,n j u ,n j u 1+直接计算出来。因此,中心差分格式是求解对 流扩散方程的显示格式。 假定),(t x u 是定解问题的充分光滑的解,将1 +n j u ,n j u 1+,n j u 1-分别在),(n j t x 处 进行Taylor 展开: )(),(),(211ττO t u t x u t x u u n j n j n j n j +??? ?????+==++ )(2),(),(3 22211 h O x u h x u h t x u t x u u n j n j n j n j n j +????????+????????+==++ )(2),(),(3 22211 h O x u h x u h t x u t x u u n j n j n j n j n j +????????+????????-==-- 代入(4)式,有 2 111 1122),(h u u u v h u u a u u t x T n j n j n j n j n j n j n j n j -+-+++---+-= τ )()()(2222 h O v x u v h O a x u a O t u n j n j n j ?-????????-?+????????++????????=τ )()()(222h O v a O x u v x u a t u n j n j n j ?-++????????-??? ?????+????????=τ

有限差分、有限元区别

有限差分方法(Finite Differential Method)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以泰勒级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限元法(Finite Element Method)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法。从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。 有限体积法(Finite V olume Method)又称为控制体积法。其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积发的基本方法。

基于Peclet数判别法的一维对流扩散方程分类研究

基于Peclet 数判别法的一维对流扩散方程分类研究 摘要:采用Peclet 数的绝对值大小来判别一维对流扩散方程为对流占优型或是扩散占优型方程,运用三种隐式差分格式—中心隐式格式、对流C-N 型格式和扩散C-N 格式,对不同Peclet 数的算例进行离散和求解。然后,将计算区域中所有节点的解析解与数值解表示成矩阵形式,并求解出它们的矩阵2范数之后作比较,两者越接近则代表差分格式精度越高。通过比较得出了当方程Peclet 数的绝对值小于等于0.5时,方程为扩散占优型方程。在离散方法选取方面,针对扩散项的离散可以采用更高精度的差分格式,如扩散C-N 格式;当Peclet 数的绝对值大于等于20时,方程为对流占优型方程。此时,针对对流项可以采用更高精度的差分格式,如对流C-N 格式;当Peclet 数的绝对值介于0.5与20之间时,无法用Peclet 数判断方程类型,不过可以选择折衷的离散格式减小误差,如中心隐式格式。 关键字:一维对流扩散方程 Peclet 数判别法 有限差分方法 数值模拟 MR(2010)主题分类号:39A14;65M06 中图分类号:O242.2 文献标识码: A 1.引言 一维对流扩散方程是描述流体流动和传热问题的一类线性化模型方程。土壤、大气等多孔介质中水、盐分、温度以及污染物质的对流扩散问题都会遇到此类方程。在一维对流扩散方程的求解过程中,反映流体对流和扩散两种物理作用的分别是对流项和扩散项。所以,根据方程中对流项还是扩散项占主导作用,通常可将方程分为对流占优型和扩散占优型两类方程。然而,要想得到精确度较高的数值结果,这两种类型方程的离散方法不能采用相同的离散格式。因此,需要有一种判别方法来判断方程的类型,关于对流占优型和扩散占优型方程的判别方法一直是近年来研究的热点问题。这对研究不同类型的方程使用合适的差分格式进行离散具有实际的意义。由于Peclet 数的绝对值表示了对流作用相对扩散作用的大小,即绝 大,扩散所起的作用就可以忽略。反之,当Peclet 数为零时,方程就为纯扩散方程。本文选用一维定解非稳态对流扩散方程为例,通过考察Peclet 数的绝对值大小来对方程进行分类,方程一般形式如下: 2(,),,0 122(1)(,0)()(,)(),(,)()12(,) u u u a f x t x x x t t x x u x g x u x t t u x t t u u x t υ?φ???? ?? ?? ????+=+≤≤≥???==== 其中a 和υ分别代表对流项系数和扩散项系数。假定求解区间长度为s , Peclet 数的绝对值

有限差分,有限元,有限体积等的区别介绍

有限差分,有限元,有限体积等离散方法的区别介绍 1 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。 对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高

一维对流扩散方程的稳定性条件推导

一维稳态对流扩散方程稳定性条件的推导 姓名: 班级:硕5015 学号: 2015/12/15

证明: 一维稳态对流扩散方程: 22u x x φφρ??=Γ?? 采用控制容积积分法,对上图P 控制的容积作积分,取分段线性型线,对均分网格可得下列离散方程: ()()()()()()()()11112222e w e w P E W e w e w w w e e u u u u x x x x φρρφρφρδδδδ??????ΓΓΓΓ+-+=-++????????????????记:()()()()1122e w P e w w e a u u x x ρρδδΓΓ=+-+ ()()12 e E e e a u x ρδΓ=- ()()12w W w w a u x ρδΓ= + 定义通过界面的流量u ρ记为F ,界面上单位面积扩散阻力的倒数x δΓ记为D ,则原式简化为: P P E E W W a a a φφφ=+ 12 E e e a D F =- 12 W w w a D F =+ ()P E W e w a a a F F =++- 令 u x F Pe D ρδ==Γ 则 1111222 E W P Pe Pe φφφ????-++ ? ?????=

当Pe 大于2以后,数值解出现了异常;P φ小于其左右邻点之值,在无源项情 况下是不可能的。因为当2Pe >时系数12 E e e a D F =-小于零,即右边点的通过对流及扩散作用对中间点所产生的影响是负的,这会导致物理上产生不真实的解,所以2u x Pe ρδ=≤Γ 证毕。

对流_扩散方程源项识别反问题的MCMC方法_曹小群

DOI:10.3969/j.issn.1000-4874.2010.02.001

水动力学研究与进展A辑2009年第2期 128 1 引言 对流-扩散方程是描述粘性流体运动的非线性Burgers方程的线性化模型,它可以刻画许多自然现象,如:水体和大气中污染物的输移、扩散和降解,海水盐度和温度的扩散,流体流动与传热和电化学反应等。研究对流-扩散模型具有重要的理论价值和实际意义,它已经广泛应用于环境科学、能源开发、流体力学和电子科学等领域。总的来说,目前关于对流-扩散方程的研究大致可以分为两个方面。一方面是在给定初边值条件下,通过不同的数值计算方法求解对流-扩散方程,以模拟研究对象(例如:温度、盐度和污染物等)在时间和空间上的发展演化,这类问题可以统称为正问题。迄今为止已经有很多成熟方法求解对流-扩散方程,如有限差分方法(FDM)[1,2,3]、有限体积方法(FVM)[4,5,6]和有限元方法(FEM)[7,8,9]等。 另外一方面是关于对流-扩散方程反问题的研究,即通过所研究对象的观测资料来估计和识别方程中的参数、源项、边界和初始条件等。从某种意义上讲,反问题的求解是对流-扩散模型研究中一个更重要的问题,因为它的正确与否直接影响模型的可靠性。由于偏微分方程反问题固有的非线性和不适定性[10], 对流-扩散方程反问题的求解会存在巨大困难,通常的方法常常导致求解失败。近年来, 国内外学者关于对流-扩散反问题开展了广泛研究。Andreas Kirsch对一维扩散方程逆过程反问题进行了稳定性分析,并给出了误差估计公式[11]。Yildiz[12]、刘继军等[13-16]对相关问题采用Tikhonov 正则化方法进行了深入研究。闵涛等[17]以函数逼近和Tikhonov正则化为基础,利用算子识别摄动法和线性化技术,建立了河流水质纵向弥散系数反问题的迭代算法,并进行了数值试验。闵涛等[18]利用有限元法求解了二维稳态对流-扩散方程,并利用迭代法对二维稳态对流-扩散方程参数反演进行了研究。闵涛等[19]利用遗传算法就对流-扩散方程的源项识别反问题进行了研究。潘军峰等[20]对一维对流-扩散方程的反问题利用Tikhonov正则化方法进行了研究。吴自库等[21]结合利用伴随同化方法和处理数学物理反问题的技巧就对流-扩散方程逆过程的反问题进行了数值研究。综上所述,由于对流-扩散方程反问题的不适定性,所以它的求解一般要采用特殊方法,如Tikhonov正则化方法、变分伴随方法和遗传算法等等。本文在贝叶斯理论的基础上,提出采用马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,简称MCMC)方法[22,23]来识别对流-扩散方程中多个点源中的未知参数。 结合利用贝叶斯方法和MCMC算法求解反问题,具有以下优点:1) 能方便地将各种先验信息和误差信息高效地融合到问题求解过程中,减小问题的不确定性;2) 和确定性算法不同,反问题的不适定性不再是MCMC算法要考虑的问题,且计算获得的是全局最可能解,而通常的最优化算法可能陷入目标函数局部极小值;3) 能对定义在高维空间且无明确数学表达式的概率分布密度函数进行数值计算,而确定性方法无法解决此类问题;4) MCMC算法通过构造Markov链来进行随机模拟,是一种动态Monte Carlo方法,计算速度高于一般的Monte Carlo 方法和模拟退火算法,而且计算复杂度不依赖于计算空间的维数。 2 反问题模型 不失一般性,用对流-扩散方程来模拟污染物在河道中的扩散,考虑对流-扩散方程的初边值问题[19,21],公式如下: 2 2 1 (), (,)(0,)(0,) (0,)0,(,)0,(0,) (,0)0,(0,) q i i i C C C u E kC s x x t x x x t L T C t C L t t T C x x L δ = ???? +=?+? ???? ?? ∈× ? ?==∈ ? =∈ ?? ∑ (1) 其中C为污染物的浓度,u为流速,E为扩散系数,k为污染物的降解率,L表示河道长度。δ是狄拉 克函数, i x和 i s,(1,2,) i q = 分别表示多个点污染源的位置和排放强度。假定(,) C x t在t T =时的分布已知,那么源项识别反问题就是根据这些已知 distribution, the Adaptive Metropolis algorithm was used to construct the Markov Chains of unknown parameters. And the converged samples were used to estimate the unknown parameters of source term. The results of numerical experiments show that the method has many virtues, such as high accuracy, quick convergent speed and easy to program and implement with computer. Key words: convection-diffusion equation; source term; inverse problem; Markov Chain Monte Carlo method

计算流体力学课后题作业

课后习题 第一章 1.计算流体动力学的基本任务是什么 计算流体动力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。 2.什么叫控制方程?常用的控制方程有哪几个?各用在什么场合? 流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。如果流动包含有不同组分的混合或相互作用,系统还要遵守组分守恒定律。如果流动处于湍流状态,系统还要遵守附加的湍流输运方程。控制方程是这些守恒定律的数学描述。 常用的控制方程有质量守恒方程、动量守恒方程、能量守恒方程、组分质量守恒方程。质量守恒方程和动量守恒方程任何流动问题都必须满足,能量守恒定律是包含有热交换的流动系统必须满足的基本定律。组分质量守恒方程,在一个特定的系统中,可能存在质的交换,或者存在多种化学组分,每种组分都需要遵守组分质量守恒定律。 4.研究控制方程通用形式的意义何在?请分析控制方程通用形式中各项的意义。 建立控制方程通用形式是为了便于对各控制方程进行分析,并用同一程序对各控制方程进行求解。

各项依次为瞬态项、对流项、扩散项、源项。 6.CFD商用软件与用户自行设计的CFD程序相比,各有何优势?常用的商用CFD软件有哪些?特点如何? 由于CFD的复杂性及计算机软硬件条件的多样性,用户各自的应用程序往往缺乏通用性。 CFD商用软件的特点是 功能比较全面、适用性强。 具有比较易用的前后处理系统和其他CAD及CFD软件的接口能力,便于用户快速完成造型、网格划分等工作。 具有比较完备的容错机制和操作界面,稳定性高。 可在多种计算机、多种操作系统,包括并行环境下运行。 常用的商用CFD软件有PHOENICS、CFX、SRAR-CD、FIDAP、FLUENT。PHOENICS除了通用CFD软件应该拥有的功能外,PHOENICS软件有自己独特的功能:开放性、CAD接口、运动物体功能、多种模型选择、双重算法选择、多模块选择。 CFX除了可以使用有限体积法外,还采用基于有限元的有限体积法。用于模拟流体流动、传热、多相流、化学反应、燃烧问题。其优势在于处理流动物理现象简单而几何形状复杂的问题。 SRAR-CD基于有限体积法,适用于不可压流体和可压流的计算、热力学的计算及非牛顿流的计算。它具有前处理器、求解器、后处理器三大模块,以良好的可视化用户界面把建模、求解及后处理与全部的物理模型和算法结合在一个软件包中。

有限差分,有限元,有限体积等离散方法的区别介绍

https://www.360docs.net/doc/5f9779677.html,/s/blog_501a61220100f9rs.html 有限差分,有限元,有限体积等离散方法的区别介绍 (2009-10-25 22:07:18) 转载 以下介绍是本人从网络上搜集的,供计算数学虫子参考。也许小木虫论坛有,我没搜索到。欢迎大家补充内容。 转自https://www.360docs.net/doc/5f9779677.html,/bbs/viewthread.php?tid=1618917&pid=16196206&page=1#pid16196206 1 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分

非线性对流扩散方程不同解法稳定性比较

2013—2014学年第二学期 《Matlab 编程技术》作业 专业班级 石工博13-02 研究方向 油气田开发 姓 名 王壮壮 学 号 B13020075

结合自己研究方向,运用Matlab编写科学计算及可视化或其它相关程序。要求: 1)将要解决的问题交代清楚(数学模型、目标等); 2)编写的程序的关键语句要有注释说明; 3)程序能顺利运行,运行结果和编写的m文件一并提交; 4)独立完成。

非线性对流扩散方程不同解法稳定性比较 流体力学基本方程组本身就是非线性的对流扩散方程,非线性Burgers 方程就是N-S 方程很好的模型方程,它的一维形式如下: L x x u x u u t u ≤≤??=??+??022μ (1) 边界条件为 ? ? ?====0,,00 u L x u u x (2) 初始条件是任意可以给出的。 我们知道,遇到对流项,我们用迎风格式是绝对没有问题,无论是一阶迎风还是二阶迎风格式都是能够解决非线性对流方程的,如果网格Peclet 数允许的话,中心差分也是可以考虑的。 不过,对于非线性对流,我们来看看另外两个G-S 格式,一个是G-S 型迎风半隐格式,另一个是G-S 型Samarskii 半隐格式,对于任何类型的对流扩散方程,可以收敛到定常解,并且是绝对稳定的,特别适合于解决定常问题。 对于式(1)这两个格式分别为 () 2 11 111111212h u u u R h u u u u u n i n i n i n i n i n i n i n i n i +-+++-+++-+=-+-μτ (3) 21 1 1111112112h u u u R R h u u u u u n i n i n i n i n i n i n i n i n i n i +-+++-+++-???? ??++=-+-μτ (4) 其中 μ 2h u R n i n i = 式(3)就是G-S 型迎风半隐格式,它具有一阶精度,是从一阶迎风格式发展而来的;式(4)是G-S 型Samarskii 半隐格式,具有二阶精度,它是从Samarskii 格式发展而来的。上面说过,它们只适用于求解定常解,因此上标的时层n 可以看作是迭代步,可以说它们没有时间精度,如果想用这两个格式求解非定常解,那可是徒劳的。 对于上两式,我们可以采用迭代法求解,把它们写成迭代式,分别为 ()[]( )( ) ( ) n i n i n i n i n i n i n i n i n i R h u h u u R u u u h u ++++++--= +-++-++142212*********τμτμτ (5)

反应流模拟的有限体积法的比较

2017,53(15)1引言水和大气中污染物的传播、流体的热传导,化学工程中色谱柱问题[1],物理与化学中光谱描述[2],电磁场中高速运动导体涡流问题[3]都与反应流模型相关。反应流模型是一组带有非线性源项的对流占优偏微分方程[1-2,4-5],通常伴有自催化反应。自动催化剂经过突变转变为另外一种形式的物质,这种物质也可以进行自动催化反应,导致与原始自动催化剂发生竞争[6]。如果可以精确求解反应流模型,就可以分析化学、物理、电磁学、空气动力学和流体动力学等诸多学科中所遇到的反应相关的问题,对于推动这些学科的发展具有重要工程意义。 反应模型中的偏微分方程通常是对流占优的。针对对流占优的对流-扩散问题,常规的求解方法可以分为两类:一类是一阶精度的差分方法,包括一阶向前差分和Lax-Friedrichs 格式等,它们可以造成严重的数值耗散,从而无法捕捉到波前的准确位置;另一类是二阶精度的差分方法,包括二阶向前差分、Lax-Wendroff 、Beam-Warming 、Fromm 等,它们可以合理捕捉波前位置,但是却容易产生不同程度的数值震荡[4,7]。相比常规的方法,三阶精度的QUICK 格式和加了通量限制器[8-10]反应流模拟的有限体积法的比较 侯庆志1,沈嘉渊2,魏建国2 HOU Qingzhi 1,SHEN Jiayuan 2,WEI Jianguo 2 1.天津大学计算机科学与技术学院,天津300354 2.天津大学软件学院,天津300354 1.School of Computer Science and Technology,Tianjin University,Tianjin 300354,China 2.School of Software,Tianjin University,Tianjin 300354,China HOU Qingzhi,SHEN Jiayuan,WEI https://www.360docs.net/doc/5f9779677.html,parison of finite volume methods for numerical simulation of reacting https://www.360docs.net/doc/5f9779677.html,puter Engineering and Applications,2017,53(15):63-67. Abstract:For the numerical simulation of reacting flow,a unified flux scheme is deduced according to the finite volume method.Fluxes corresponding to ten different methods are obtained and their numerical behavior is systematically compared.It is shown that the first-order accuratemethods like the upwind and Lax-Friedrichs (LF )schemes,the second-order accuratemethods including the second order upwind,Lax-Wendroff,Beam-Warming and Fromm schemes,and the third-order accurate QUICK scheme,will cause serious either numericaldissipation orunphysical oscillation,due to which numerical accuracy is remarkably reduced.The modified TVD-LF (MTVDLF )scheme with a flux limiter can eliminate both the numerical dissipation and unphysical oscillation,and the Superbee limiter is most suitable for the simulation of reacting flow. Key words:autocatalytic reaction;convection reaction;finite volume method;flux scheme 摘要:针对自催化反应流模型的计算,推导了基于有限体积方法的统一通量格式以及十种常用格式的具体形式,并通过数值实验比较了其数值特性。结果表明:无论是一阶精度的迎风格式和Lax-Friedrichs 格式,二阶精度的二阶向前差分、Lax-Wendroff 、Beam-Warming 和Fromm 格式还是三阶精度的QUICK 格式都会引起较严重的数值耗散和数值震荡,严重降低了数值精度,而带有通量限制器的MTVDLF 格式可以消除数值耗散和数值震荡,并且带有Su-perbee 限制器的MTVDLF 最适合模拟自催化反应流问题。 关键词:自催化反应;对流反应;有限体积法;通量格式 文献标志码:A 中图分类号:O242.1doi :10.3778/j.issn.1002-8331.1701-0355 基金项目:国家自然科学基金(No.51478305);公益性行业科研专项(No.201401033)。 作者简介:侯庆志(1978—),男,副教授,博导,研究领域为基于物理模型的流场仿真、可视化及其工程应用,E-mail :qhou@https://www.360docs.net/doc/5f9779677.html, ; 沈嘉渊(1993—),男,硕士研究生,主要从事偏微分方程数值求解研究。 收稿日期:2017-01-23修回日期:2017-05-03文章编号:1002-8331(2017)15-0063-05 Computer Engineering and Applications 计算机工程与应用 63 万方数据

相关文档
最新文档