嵌入式主板数据采集卡 数字量IO卡 定时计数 测频功能

ART2543 定时计数器卡硬件使用说明书

阿尔泰科技发展有限公司

产品研发部修订

阿尔泰科技发展有限公司

目录

目录 (1)

第一章功能概述 (2)

第一节、产品应用 (2)

第二节、定时计数功能 (2)

第三节、测频功能 (2)

第四节、其它硬件指标 (2)

第五节、板卡尺寸 (2)

第六节、产品安装核对表 (3)

第七节、安装指导 (3)

一、软件安装指导 (3)

二、硬件安装指导 (3)

第二章元件布局图 (4)

第一节、主要元件布局图 (4)

第二节、主要元件功能说明 (4)

一、信号输入输出连接器 (4)

二、板基地址选择 (4)

第三章信号输入输出连接器 (7)

第一节、信号输入输出连接器定义 (7)

第二节、各种信号的连接方式 (7)

第四章可选加减法计数器功能 (8)

第一节、减法计数器 (8)

第二节、加法计数器 (11)

第三节、测频功能的原理 (13)

第五章寄存器地址分配表 (14)

第六章产品的应用注意事项、校准、保修 (17)

第一节、注意事项 (17)

第二节、保修 (17)

ART2543 定时计数器卡硬件使用说明书

版本:6.0.15

第一章功能概述

信息社会的发展,在很大程度上取决于信息与信号处理技术的先进性。数字信号处理技术的出现改变了信息与信号处理技术的整个面貌,而数据采集作为数字信号处理的必不可少的前期工作在整个数字系统中起到关

键性、乃至决定性的作用,其应用已经深入到信号处理的各个领域中。实时信号处理、数字图像处理等领域对

高速度、高精度数据采集卡的需求越来越大。ISA 总线由于其传输速度的限制而逐渐被淘汰。我公司推出的基

于 PCI 总线、USB 总线、PC104 总线等数据采集卡综合了国内外众多同类产品的优点,以其使用的便捷、稳定

的性能、极高的性价比,获得多家客户的一致好评,是一系列真正具有可比性的产品,也是您理想的选择。第一节、产品应用

ART2543 卡是一种基于 PC104 总线的数据采集卡,可直接和计算机的 PC104 接口相连,构成实验室、产

品质量检测中心等各种领域的数据采集、波形分析和处理系统。也可构成工业生产过程监控系统。它的主要应

用场合为:

■电子产品质量检测

■信号采集

■过程控制

■伺服控制

第二节、定时计数功能

◆计数器通道个数:8 个独立的计数器

◆计数器方式(CNTMode):可由软件设置为加计数或减计数

◆计数器位数:32 位

◆计数方式:6 种计数方式软件可选

◆电气标准:TTL 电平

◆门控(GATEn):上升沿、高电平和低电平

◆计数器输出(OUTn):高电平、低电平

◆工作温度范围: -40 ~ +85℃

◆存储温度范围:-40℃~ +120℃

第三节、测频功能

◆测频通道:8 路软件可选直接测频

◆测频信号:0~5V TTL 电平

◆测频类型:计数测频

◆测频范围:1Hz~10MHz

◆测频精度:±1Hz

第四节、其它硬件指标

◆板基地址:300H

第五节、板卡尺寸

90.3mm(长)*96mm(宽)*16mm(高)

阿尔泰科技发展有限公司

第六节、产品安装核对表

打开 ART2543 板卡包装后,你将会发现如下物品:

1、 ART2543 板卡一个

2、 ART 软件光盘一张,该光盘包括如下内容:

a) 本公司所有产品驱动程序,用户可在 PC104 目录下找到 ART2543 驱动程序;

b) 用户手册(pdf 格式电子文档);

第七节、安装指导

一、软件安装指导

在不同操作系统下安装ART2543板卡的方法一致,在本公司提供的光盘中含有安装程序Setup.exe,用户双击此安装程序按界面提示即可完成安装。

二、硬件安装指导

在硬件安装前首先关闭系统电源,待板卡固定后开机,开机后系统会自动弹出硬件安装向导,用户可选择系统自动安装或手动安装。

注意:不可带电插拔板卡。

ART2543 定时计数器卡硬件使用说明书

第一节、主要元件布局图第二节、主要元件功能说明第二章元件布局图

版本:6.0.15

请参考第一节中的布局图,了解下面各主要元件的大体功能。

一、信号输入输出连接器

CN1:信号输入/输出信号连接器

注解:以上连接器的详细说明请参考《信号输入输出连接器》章节。

二、板基地址选择

ADDR1:板基地址拨码开关。板基地址可设置成 200H~3F0H 之间可被 16 整除的二进制码,板基地址默认为 300H,将占用基地址起的连续 20 个 I/O 地址。开关的第1、2、3、4、5、6、7 位分别对应地址 A4、A5、

A6、A7、A8、A9、A10、A11,其中 A10、A11 未用。拨码开关 ADDR1 置“ON”高有效值为1,开关置“OFF”

阿尔泰科技发展有限公司

低有效值为 0。板基地址选择开关 ADDR1 如下图。

拨码开关如下设置:(默认基地址300H )

ON A4A5 A6 A7 A8 A9 A10 A11

常用的基地址选择有:

1 2 3 4 5 6 7 8

ART2543 定时计数器卡硬件使用说明书版本:6.0.15

阿尔泰科技发展有限公司

第三章 信号输入输出连接器

第一节、信号输入输出连接器定义

关于 30 芯插座 CN3 的管脚定义(图片形式)

关于 30 芯插座 CN3 的管脚定义(表格形式)

第二节、各种信号的连接方式

ART2543 定时计数器卡硬件使用说明

第四章 可选加减法计数器功能

版本:6.0.15

ART2543有8个32位的计数器,每个计数器都可独立设置为加计数或者减计数功能。

在计数器功能模式下,可由计数器参数CNTPara. CNTMode 设置为加计数或减计数:当CNTPara. CNTMode=0 时,计数器作减法计数,均作减“1”操作,直到计数值变为0;当CNTPara. CNTMode=1时,计数器作加法计数, 均作加“1”操作,直到计数器的值变为4294967295(即232 -1)。

第一节、减法计数器

方式0—计数结束产生中断

当采用该方式工作时,当赋初值后,若门控信号GATE 为高电平时,计数器马上开始作减1计数,计数器输 出OUT 变成低电平,当计数结束即计数器的值变为0时,计数器输出OUT 变成高电平,并且一直保持到重新装 入初值或复位时为止。如果对正在做计数的计数器装入一个新值,则计数器又从新装入的计数值开始,重新作 减量计数。可用门控端GATE 控制计数,当GATE =0时,禁止计数,当GATE =1时,允许计数。

输出端OUT 由低变高可以用来作为中断请求信号。 时序图如图1所示。

图1

方式1—可编程单次脉冲方式

该方式要在门控信号GATE 作用下工作。当装入计数初值n 之后,输出OUT 变成高电平,要等GATE 有上边 沿时开始计数,此时输出OUT 变成低电平,当计数结束即计数到0时,输出OUT 又变成高电平,即输出单次脉 冲的宽度由装入的计数初值n 来决定。如当前操作还未完,又有一次GATE 上升沿时,则停止当前计数,又重新 从n 开始计数,这时输出单次脉冲就被加宽。当计数器减量计数未到零时,又装入一个新的计数值n1,则这个新 值,只有当GATE 上升沿时,计数器才从n1开始计数。

时序图如图2所示。

阿尔泰科技发展有限公司

方式2—频率发生器方式

图2

设置此方式后,计数器装入初始值n ,从(n -1)开始计数,OUT 变高电平,减到0时OUT 变低电平。经过

一个CLK 周期,OUT 恢复高电平,且计数器又自动装入初值n ,重新从(n -1)开始计数。因此输出端将不断 输出负脉冲,其宽度等于一个时钟周期,两负脉冲间的时钟个数等于计数器装入的初始值。当GATE =0时,禁

止计数,当GATE =1时,允许计数。若计数中改变初值,下次有效。

时序图如图3所示。

图3

方式3—方波频率发生器方式

与方式2类似,当装入一个计数器初值n 后,从(n -1)开始计数,在GATE 信号为高电平时启动计数,定 时/计数器此时作减1计数,大于计数初值的半值时,输出OUT 一直保持高电平,而在小于计数初值的半值时, 输出OUT 就变成低电平。若计数初值n 为偶数,输出为1:1的方波;若计数初值n 为奇数,则在前(n +1)/2个 计数期间,输出保持高电平;在后(n -1)/2个计数期间,输出保持低电平,即OUT 输出的高电平比低电平多

一个时钟周期。若计数中改变初值,下次有效。当GATE =0时,禁止计数,当GATE =1时,允许计数。

时序图如图4所示。

ART2543 定时计数器卡硬件使用说明书

方式4—软件触发选通方式

图4

版本:6.0.15

当采用该方式工作时,当装入一个计数器初值n 后便开始计数,输出OUT 即变为高电平,当计数到0后(即

计数结束),便立即在输出端送出一个宽度等于一个时钟周期的负脉冲。如果在一次计数期间,装入了一个新的

计数值,则立即有效。当GATE =0时,禁止计数;当GATE =1时,允许计数。

时序图如图5所示。

图5

方式5—硬件触发选通方式

当采用该方式工作时,在GATE 信号的上升沿才启动计数器开始计数(所以称之为硬件触发),输出OUT 一直 保持高电平,当计数到0时,输出一个宽度等于时钟周期的负脉冲。此后可用GATE 信号的上升沿重新触发,便 又从初值开始计数,计数期间,输出又一直保持高电平。当计数器减量计数未到零时,又装入一个新的计数值

n1,则这个新值,只有当GATE 上升沿时,计数器才从n1开始计数。

时序图如图6所示。

图6

阿尔泰科技发展有限公司

第二节、加法计数器

为方便说明,令M=4294967295=232-1,为加法计数时的最大值。

若初值为4294967291,则记为(M- 4);若为4294967292,则记为(M- 3),以此类推。

方式0—计数结束产生中断

当采用该方式工作时,当赋初值n后,若门控信号GATE为高电平时,计数器马上开始作加1计数,计数器输出OUT变成低电平,当计数结束即计数器的值变为M时,计数器输出OUT变成高电平,并且一直保持到重新装入初值或复位时为止。如果对正在做计数的计数器装入一个新值,则计数器又从新装入的计数值开始,重新

作加量计数。可用门控端GATE控制计数,当GATE=0时,禁止计数,当GATE=1时,允许计数。

输出端OUT由低变高可以用来作为中断请求信号。时序图如图7所示。

图7

方式1—可编程单次脉冲方式

该方式要在门控信号GATE作用下工作。当装入计数初值n之后,输出OUT变成高电平,要等GATE有上边沿时开始计数,此时输出OUT变成低电平,当计数结束即计数到M时,输出OUT又变成高电平,即输出单次脉

冲的宽度由M与装入的计数初值n的差值(即M-n)来决定。如当前操作还未完,又有一次GATE上升沿时,则

停止当前计数,又重新从n开始计数,这时输出单次脉冲就被加宽。当计数器加量计数未到M时,又装入一个新的计数值n1,则这个新值,只有当GATE上升沿时,计数器才从n1开始计数。

时序图如图8所示。

图8

方式2—频率发生器方式

ART2543 定时计数器卡硬件使用说明书版本:6.0.15

设置此方式后,计数器装入初始值n,从(n+1)开始计数,OUT变高电平,加到M时OUT变低电平。经过

一个CLK周期,OUT恢复高电平,且计数器又自动装入初值n,重新从(n+1)开始计数。因此输出端将不断输

出负脉冲,其宽度等于一个时钟周期,两负脉冲间的时钟个数等于M与计数器装入的初始值n的差值(即M-n)。当GATE=0时,禁止计数,当GATE=1时,允许计数。若计数中改变初值,下次有效。

时序图如图9所示。

图9

方式3—方波频率发生器方式

与方式2类似,当装入一个计数器初值n后,从(n+1)开始计数,在GATE信号为高电平时启动计数,定时/计数器此时作加1计数,在完成前一半计数时,输出一直保持高电平,而在进行后一半计数时,输出又变成低

电平。若装入的初值n为奇数,则输出为1:1的方波。若装入的初值n为偶数,则在前[(M-n+1)/2]个计数期间,输出保持高电平;在后[(M-n-1)/2]个计数期间,输出保持低电平,即OUT输出的高电平比低电平多一个时钟周期。若计数中改变初值,下次有效。当GATE=0时,禁止计数,当GATE=1时,允许计数。

时序图如图10所示。

图10

方式4—软件触发选通方式

当采用该方式工作时,当装入一个计数器初值n后便开始计数,输出OUT即变为高电平,当计数到M后(即计数结束),便立即在输出端送出一个宽度等于一个时钟周期的负脉冲。如果在一次计数期间,装入了一个新的计数值,则立即有效。当GATE=0时,禁止计数;当GATE=1时,允许计数。

时序图如图11所示。

阿尔泰科技发展有限公司

方式5—硬件触发选通方式

图11

当采用该方式工作时,在GATE 信号的上升沿才启动计数器开始计数(所以称之为硬件触发),输出OUT 一直

保持高电平,当计数到M 时,输出一个宽度等于时钟周期的负脉冲。此后可用GATE 信号的上升沿重新触发,便

又从初值开始计数,计数期间,输出又一直保持高电平。当计数器加量计数未到M 时,又装入一个新的计数值 n1,则这个新值,只有当GATE 上升沿时,计数器才从n1开始计数。

时序图如图12所示。

图12

第三节、测频功能的原理

当未知的频率信号是数字高频信号,采用计数测频。在此模式下,先设置计数器的定时时间t0,硬件测试

在t0内的计数个数n ,那么可以计算得到频率信号的周期,从而得到信号的频率,详见下图:

计数测频示意图

如上图所示,频率信号的频率为1/(t0/n )。

计数器 0 当前计数值低16 位

计数器 0 当前计数值高16 位

计数器 1 当前计数值低16 位

计数器 1 当前计数值高16 位

计数器 2 当前计数值低16 位

计数器 2 当前计数值高16 位

计数器 3 当前计数值低16 位

计数器 3 当前计数值高16 位

计数器 4 当前计数值低16 位

计数器 4 当前计数值高16 位计数器 5 当前计数值低 16

计数器 5 当前计数值高 16

计数器 6 当前计数值低 16

计数器 6 当前计数值高 16

计数器 7 当前计数值低 16

计数器 7 当前计数值高 16

读计数器 0 方式控制字

读计数器 1 方式控制字

读计数器 2 方式控制字

读计数器 3 方式控制字

读计数器 4 方式控制字

读计数器 5 方式控制字

读计数器 6 方式控制字

读计数器 7 方式控制字

读计数器加减控制信号

最低位[0]:计数器 0 加减控制

最高位:计数器 7 加减控制

最低位[0]:读 I/O 设备的中断使能输出

最低位[0]:读 I/O 设备的 DMA 中断请求使

最低位[0]:读 IO 通道就绪使能输出

读中断控制

最低位[0]:中断请求

次高位[1]: DMA 中断请求

最高位[2]: IO 通道就绪

最低位[0]有效,第一路测频结束标志信号:

=0:表示测频结束

=1:正在测频计数

阿尔泰科技发展有限公司

ART2543 定时计数器卡硬件使用说明书版本:6.0.15

数据采集卡

USB2002数据采集卡使用说明书 北京阿尔泰科贸有限公司

USB简介 USB(UNIVERSAL SERIER BUS)又称之为通用串行总线,不仅仅简单地将计算机和外设连接在一起,而是使我们进入了一个全新的PC机时代。 USB是您进行数字图象处理的最佳选择,同时她也为数字化设计提供了无限的创造空间,一但您尝试使用了USB,势必爱不释手。 为什么USB越来越受到用户的青赖呢? 第一.USB实现了那些一直梦想快速直接连接外设到PC机的使用者的梦想,添加一个传统外设首先您不得不弄清楚在那些令人迷惑的端口序列中那一个才是您需要的。其次,在通常情况下,您还不得不提前拆开PC机,安装需要的板卡,并且选择跳线,诸如中断设置等,这些非常的麻烦。甚至使一些用户惧怕去想添加外设。USB使添加外设变的十分简单,任何人都可以轻松的做到。 首先,USB用一个标准的插拔端口代替了所有的不同种类的串并口。使用USB连接PC机和外设,您只须把他们连接在一起!剩下的事情USB会自动帮您完成。他就像是给您的PC机添加一个新的功能。您再也不须拆开您的PC机,也不必担心插入板卡,DIP跳线和中断设置。 第二.USB的即插即用功能,当您需要接入外设时,甚至不必关闭电源重启计算机。只要插入便可运行!PC自动检测外围设备并且配置必要的软件。这种功能可用于想分享外设的商业PC和笔记本PC。而当您需要移走外设时,只须拔走USB插头即可。 也许您会问“我可以同时接多个外围设备吗?PC机有足够的USB接口吗?” USB当然可以同时连接多个外围设备;许多PC机有两个以上的USB端口,而集线器——一种特殊的USB外围设备,可以附属多个USB端口,当您需要使用多于两个外设时,接入一个集线器即可。 第三.USB传输数据的速度非常快,达到12MBIT,而在新发行的USB2.0版本中,其传输速度居然达到480Mbit。 第一章概述

1仪器的工作原理及系统构成-高速数据采集卡

1 仪器的工作原理及系统构成 虚拟示波器是由信号调理器,PCI总线的数据采集卡组成的外部采集系统加上软件构成的分析处理系统组成。被测信号送到信号调理电路,进行隔离、放大、滤波整流后送数据采集卡进行A/D转换,最后由控制软件对测试信号进行数据处理,完成波形显示,参数测量、频谱分析等功能。系统结构如图1显示 图1 系统结构图 2 系统的设计及功能实现 2.1硬件部分 硬件部分主要包括传感器、信号调理电路及数据采集卡。 理电路针对不同的测试对象有不同的选择和设计。数据采集是硬件部分的核心, 它的性能直接影响数据采集的速度和精度。另外,LabVIEW可对NI公司的数据 采集卡进行驱动和配置,可充分利用采集卡的性能。基于此,我选择的数据采集 卡是NI公司生产的。下面主要介绍数据采集卡的性能和安装配置。 2.1.1 PCI—6010数据采集卡的简介 PCI—6010采集卡是基于32位PCI总线的多通道的数据采集设备,具有数 字输入/输出、模拟输入/输出和计数器等功能。它通过SH37F—37M电缆与CB —37F—LF 输入输出接口面板连接,该接口面板具有37个螺旋状的接口终端。 同时此数据采集卡具有3个完全独立的DMA控制(模拟输入、定时/计数器0、 定时/计数器1)。本卡还具有刻度校准电路系统。由于运行时,时间和温度漂移 会引起一定的模拟输入、输出误差,为了使此误差最小,可以调整设备的校准刻 度。而它的出厂校准信息存储在EEPROM中,不能修改。而修改此信息必须通 过软件来实现。

该数据采集卡具有8个差动模拟输入通道(即16个对地单信号模拟输入通道),电压范围为±5V, ±1V,±0.2V;2个模拟输出通道,电压范围为±5V。同时它还具有6个数字输入通道,4个数字输出通道。数字输入的VIH(Input high voltag e)的最小值是2.0 V, 最大值是5.25 V,VIL(Input low voltage)的最大值是0. 8 V, 最小值是–0.3 V;数字输出的IOH(Output high current)的最大值是–6 mA ,IOL (Output low current) 的最大值是2 mA。信号通道的最大采样速率是200 kS/s (single channel) ,扫描时最大采样速率是33.3 kS/s (scanning)。 2.1.2 PCI—6010数据采集卡的安装 将NI PCI—6010数据采集卡插到计算机主板的一个插槽中,接好附件。附件包括一个型号为CB—37F—LF的转接板,和一条SH37F—37M电缆。转接板直接与外部信号连接。在完成了NI PCI—6010数据采集卡的硬件连接后,就需要 安装该卡的驱动程序。安装步骤如下: (1)运行程序→National Instrument DAQ→NI-DAQ Setup。在出现对话框中 单击NEXT按钮。 (2)在出现的Seletct DAQ Devices对话框中选中NI PCI—6010,单击NEXT 按钮。 (3)在后续出现的全部对话框中单击NEXT按钮,即可完成NI PCI—6010数 据采集卡的安装。 (4)重新启动计算机。完成数据采集卡的安装。 2.1.3 PCI—6010数据采集卡的配置 在安装好数据采集卡后就要对其进行系统配置。点击图标Measurement & Automation Explorer,在弹出的Devices and Interface 中进行I/O配置。 (1) 这支采集卡在系统的设备的编号:将参数Device值设为1; (2) 设置模拟输入AI的属性:将Polarity 值设为-5V~+5V,将Mode属性设 置为Differentioal(差动); (3) 设置模拟输出AO的属性:在AO窗口中,将属性设为Bipolar(双极性)。 在完成上述设定之后,单击“确定”按钮。在Systerm窗口中有“Test Resources”按钮,可检验设备是否正确配置。通过后再进行简单的通道配置,即可完成数据采集卡的全部设置。

数据采集卡技术原理

核心提示:一、数据采集卡の定义:数据采集卡就是把模拟信号转换成数字信号の设备,其核心就是A/D芯片。二、数据采集简介:在计算机广泛应用の今天,数据采集の重要性是十分显著の。它是计算机与外部物理世界连接の桥梁。各种类型信号采集の难易程度差别很大。实际采集时,噪声也可能带来一些麻烦。数据采集时,有一些基本原理要注意,还有更多の实际の问题要解决。假设现在对一个模拟信号 x(t) 每隔Δ t 时间采样一次。时 一、数据采集卡の定义: 数据采集卡就是把模拟信号转换成数字信号の设备,其核心就是A/D芯片。 二、数据采集简介: 在计算机广泛应用の今天,数据采集の重要性是十分显著の。它是计算机与外部物理世界连接の桥梁。各种类型信号采集の难易程度差别很大。实际采集时,噪声也可能带来一些麻烦。数据采集时,有一些基本原理要注意,还有更多の实际の问题要解决。 假设现在对一个模拟信号 x(t) 每隔Δ t 时间采样一次。时间间隔Δ t 被称为采样间隔或者采样周期。它の倒数1/ Δ t 被称为采样频率,单位是采样数 / 每秒。t=0, Δ t ,2 Δ t ,3 Δ t …… 等等, x(t) の数值就被称为采样值。所有x(0),x( Δ t),x(2 Δ t ) 都是采样值。这样信号x(t) 可以用一组分散の采样值来表示: 下图显示了一个模拟信号和它采样后の采样值。采样间隔是Δ t ,注意,采样点在时域上是分散の。 图 1 模拟信号和采样显示 如果对信号 x(t) 采集 N 个采样点,那么 x(t) 就可以用下面这个数列表示: 这个数列被称为信号 x(t) の数字化显示或者采样显示。注意这个数列中仅仅用下标变量编制索引,而不含有任何关于采样率(或Δ t )の信息。所以如果只知道该信号の采样值,并不能知道它の采样率,缺少了时间尺度,也不可能知道信号 x(t) の频率。 根据采样定理,最低采样频率必须是信号频率の两倍。反过来说,如果给定了采样频率,

数据采集卡主要参数

数据采集(DAQ),是指从传感器和其它待测设备等模拟和数字被测单元中自动采非电量或者电量信号,送到上位机中进行分析,处理。数据采集系统是结合基于计算机或者其他专用测试平台的测量软硬件产品来实现灵活的、用户自定义的测量系统。 ●通道数:就是板卡可以采集几路的信号,分为单端和差分。常用的有单端32路/差分16路、单端16路/差分8路 ●采样频率:单位时间采集的数据点数,与AD芯片的转换一个点所需时间有关,例如:AD转换一个点需要T = 10uS,则其采样频率f = 1 / T为100K,即每秒钟AD芯片可以转换100K的数据点数。它用赫兹(Hz),常有100K、250K、500K、800K、1M、40M等 ●缓存的区别及它的作用:主要用来存储AD芯片转换后的数据。有缓存可以设置采样频率,没有则不可以。缓存有RAM和FIFO两种:FIFO应用在数据采集卡上,做数据缓冲,存储量不大,速度快。RAM是随机存取内存的简称。一般用于高速采集卡,存储量大,速度较慢。 ●分辨率:采样数据最低位所代表的模拟量的值,常有12位、14位、16位等(12位分辨率,电压5000mV)12位所能表示的数据量为4096(2的12次方),即±5000 mV电压量程内可以表示4096个电压值,单位增量为(5000 mV)/ 4096=1.22 mV。分辨率与A/D 转换器的位数有确定的关系,可以表示成FS/2n。FS表示满量程输入值,n为A/D转换器的位数。位数越多,分辨率越高。 ●精度:测量值和真实值之间的误差,标称数据采集卡的测量准确程度,一般用满量程(FSR,full scale range)的百分比表示,常见的如0.05%FSR、0.1%FSR等,如满量程范围为0~10V,其精度为0.1%FSR,则代表测量所得到的数值和真实值之间的差距在10mv以内。 ●量程:输入信号的幅度,常用有±5V、±10V 、0~5V 、0~10V ,要求输入信号在量程内进行 ●增益:输入信号的放大倍数,分为程控增益和硬件增益,通过数据采集卡的电压放大芯片将AD转换后的数据进行固定倍数的放大。由两种型号PGA202 (1、10、100、1000) 和PGA203 (1、2、4、8)的增益芯片。 ●触发:可分为内触发和外触发两种,指定启动AD转换方式。

数据采集卡技术原理

核心提示:一、数据采集卡①定义: 数据采集卡就是把模拟信号转换成数字信 号①设备,其核心就是A/D芯片。二、数据采集简 介:在计算机广泛应用①今天, 数据采集①重要性是十分显著①。它是计算机与外部物理世界连接①桥梁。各种类型信号采集①难易程度差别很大。实际采集时,噪声也可能带来一些麻烦。数据采集时,有一些基本原理要注意,还有更多①实际①问题要解决。假设现在对一个模拟信号x(t)每 隔△ t时间采样一次。时 一、数据采集卡①定义: 数据采集卡就是把模拟信号转换成数字信号①设备,其核心就是A/D芯片。 二、数据采集简介: 在计算机广泛应用①今天,数据采集①重要性是十分显著①。它是计算机与外部物理世界连接①桥梁。各种类型信号采集①难易程度差别很大。实际采集时,噪声也可能带来 一些麻烦。数据采集时,有一些基本原理要注意,还有更多①实际①问题要解决。 假设现在对一个模拟信号x(t)每隔△ t时间采样一次。时间间隔△ t被称为采样间隔或者采样周期。它①倒数1/ △ t被称为采样频率,单位是采样数/每秒。t=0, △ t ,2 △ t ,3 A t……等等,x(t)①数值就被称为采样值。所有x(0),x( △ t),x(2 △ t )都是采样值。这样信号x(t) 可以用一组分散①采样值来表示: 下图显示了一个模拟信号和它采样后①采样值。采样间隔是A t ,注意,采样点在时域上是分散

①。 如果对信号x(t)采集N个采样点,那么x(t)就可以用下面这个数列表示: 这个数列被称为信号x(t)①数字化显示或者采样显示。注意这个数列中仅仅用下标变 量编制索引,而不含有任何关于采样率(或△ t)o信息。所以如果只知道该信号①采样 值,并不能知道它①采样率,缺少了时间尺度,也不可能知道信号x(t)①频率。 根据采样定理,最低采样频率必须是信号频率①两倍。反过来说,如果给定了采样频率,那么能够正确显示信号而不发生畸变①最大频率叫做恩奎斯特频率,它是采样频率①一半。 如果信号中包含频率高于奈奎斯特频率①成分,信号将在直流和恩奎斯特频率之间畸变。图2显示了一个信号分别用合适①采样率和过低①采样率进行采样①结果。 采样率过低①结果是还原①信号①频率看上去与原始信号不同。这种信号畸变叫做混叠(alias )。出现①混频偏差(alias frequency )是输入信号①频率和最靠近①采样率

第六章模拟量输入输出与数据采集卡

第六章模拟量输入输出与数据采集卡 通过本章的学习,使考生掌握D/A,A/D转换的原理和典型芯片,在此基础上了解工业控制计算机常用模板的组成和应用。 要求: (1)了解D/A转换的工作原理和8位,12位D/A转换芯片;D/A转换器与总线的连接和应用方法。 (2)了解A/D转换器的工作原理和指标,熟悉A/D转换的典型芯片和多路转换器,采样保持器的工作原理。 (3)了解数据采集卡的组成和指标及其应用方法,了解工控机配套模板的概况。 一、重点提示 本章重点是D/A,A/D转换器的工作原理,与总线的连接方法。 二、难点提示 本章难点是利用这些芯片和多路开关、采样保持器组成数据采集卡的应用方法。 考核目的:考核学生对微型计算机的模拟通道的构成及工作原理的掌握。 1.数模转换器D/A (1)D/A转换的指标和工作原理 / (2)典型D/A转换器芯片 (3)D/A转换器与总线的连接 2.模数转换器A/D (1)A/D转换器的工作原理(双积分和逐次逼近型A/D转换),A/D转换器主要指标 (2)典型A/D转换器芯片(ADC0809及.12位A/D芯片)的功能和组成,与总线的连接 3.多路开关 (1)数据采集系统对多路开关的要求 (2)几种多路开关芯片 (3)几种多路开关的主要技术参数 4.采样保持器 (1)采样保持器的工作原理 (2)常用的采样保持器芯片 5.数据采集卡的组成及其应用 本章知识结构如下: (一)D/A转换接口 D/A转换器的作用是将二进制的数字量转换为相应的模拟量。D/A转换器的主要部件是电阻开关网络,其主要网络形式有权电阻网络和R-2R梯形电阻网络。 集成D/A芯片类型很多,按生产工艺分有双极型、MOS型等;按字长分有8位、10位、

数据采集板卡指标

NI632x Specifications Specifications listed below are typical at 25°C unless otherwise noted. Refer to the X Series User Manual for more information about NI PCIe-6320/6321/6323 devices. Analog Input Number of channels NI 6320/6321..............................8 differential or 16single ended NI 6323.......................................16 differential or 32single ended ADC resolution...............................16 bits DNL................................................No missing codes guaranteed INL..................................................Refer to the AI Absolute Accuracy Table Sampling rate Maximum...................................250 kS/s single channel, 250 kS/s multi-channel (aggregate) Minimum....................................No minimum Timing accuracy.........................50 ppm of sample rate Timing resolution.......................10 ns Input coupling.................................DC Input range......................................±10V, ±5V, ±1V,±0.2V Maximum working voltage for analog inputs (signal + common mode)................±11 V of AI GND CMRR (DC to 60 Hz).....................100 dB Input impedance Device on AI+ to AI GND......................>10 GΩ in parallel with100 pF AI– to AI GND......................>10 GΩ in parallel with100 pF Device off AI+ to AI GND......................1200 Ω AI– to AI GND.......................1200 Ω Input bias current.............................±100 pA Crosstalk (at 100 kHz) Adjacent channels.......................–75 dB Non-adjacent channels................–90 dB Small signal bandwidth (–3 dB)......700 kHz Input FIFO size................................4,095 samples Scan list memory.............................4,095 entries Data transfers...................................DMA (scatter-gather), programmed I/O Overvoltage protection (AI <0..31>, AI SENSE, AI SENSE2) Device on....................................±25 V for up to two AI pins Device off...................................±15 V for up to two AI pins Input current during overvoltage condition......................±20 mA max/AI pin Settling Time for Multichannel Measurements Accuracy, full scale step, all ranges ±90 ppm of step (±6 LSB)..........4 μs convert interval ±30 ppm of step (±2 LSB)..........5 μs convert interval ±15 ppm of step (±1 LSB)..........7 μs convert interval Analog triggers................................None

数据采集卡选型

基于虚拟仪器技术的柴油发动机测控系统 2007-03-09 19:03:27 作者:吴伟斌洪添胜来源:互联网 摘要: 介绍了采用NI公司的DAQ卡、SCXI信号调理模块及PC机构成的一个基于虚拟仪器技术的柴油发动机制测控系统。它通过LabVIEW的编程,使用户界面直观地显示在显示器上,方便了调试。该系统已应用在柴油发动机燃用柴油和十六种植物油的稳态性能测试试验上,运行情况良好,且各测量参数的误差与发送机试验图家标准对比,都满足了要求。 关键词: 虚拟仪器数据采集卡信号调理模块测功器LabVIEW 发动机测试仪器经历了模拟仪器、数字化仪器和智能仪器三个阶段。模拟仪器的基本结构是由磁机械式的,采用模拟器件组成各种电路,精度低、速度慢、适应性差;而数字化仪器如数字转速表等,主要由数字电路来实现,在测试精度、速度和仪器寿命等方面都比模拟仪器有较大的提高。随着数字信号处理技术及大规模集成电路的发展,出现了以微机为核心的智能仪器,但由于其是以功能模拟的形式存在的,无论开发还是应用,都缺乏灵活性。20世纪80年代后期,微机性能是得到极大提高,而向测试分析的通用软件开发平台的成功应用,使得虚拟仪器应运而生。利用虚拟仪器技术,用户可以自定认义仪器的功能,创建32位编译程序,从而提高了常规数据采集和测试等任务的运行速度。W40型电涡流测功器是华南农业大学从德国进口的测功设备。该测试设备的数字化水平较低,控制台均采用机械式按钮,且经过近二十年的连续运转,设备已严重老化,出现明显的零点漂移,部分测试电路板已出现故障,经多次修理仍不正常,严重影响了测试工作的正常进行。为此,在确保数据采集的精度和实时性、改善数据处理功能、提高易操作性和整个测试设备数字化水平的原理下,充分利用虚拟仪器的优势,对原有设备进行了更新和扩充,形成了一个测控系统。 1 系统硬件设计1.1 系统硬件组成测试系统的硬件组成主要包括NI公司的PCI-6024E 型DAQ卡和SCXI信号调理模块。SCXI信号调理模块包括机座模块SCXI-1000、热电偶模块组SCXI-1125和SCXI-1328、应力应变模块组SCXI-1520和SCXI-1314等。系统结构图

PC数据采集卡说明书

PC-6311D模入模出接口卡技术说明书 1.概述: PC-6311D 模入模出接口卡适用于具有ISA 总线的PC系列微机,具有很好的兼容性,CPU从目前广泛使用的64位处理器直到早期的16位处理器均可适用,操作系统可选用经典的MS-DOS,目前流行的Windows系列,高稳定性的Unix等多种操作系统以及专业数据采集分析系统 LabVIEW 等软件环境。在硬件的安装上也非常简单,使用时只需将接口卡插入机内任何一个ISA总线插槽中,信号电缆从机箱外部直接接入。也可插入我所研制的PC扩展箱内使用。 PC-6311D模入模出接口卡安装使用方便,程序编制简单。其模入模出及I/O信号均由卡上37芯D型插头及另配的转换插头与外部信号源和设备连接。对于模入部分,用户可根据实际需要选择单端或双端输入方式。对于模出部分,用户可根据控制对象的需要选择电压或电流输出方式以及不同的量程。 2. 主要技术参数: 2.1 模入部分 2.1.1输入通道数:(标*为出厂标准状态,下同) 单端32路;* / 双端16路 2.1.2输入信号范围: 0V~10V*;/ ±5V 2.1.3输入阻抗:≥10MΩ 2.1.4A/D转换分辨率:12位 2.1.5A/D转换速度:10μS 2.1.6A/D启动方式: 程序启动/外触发启动 2.1.7A/D转换结束识别: 程序查询/中断方式 2.1.8A/D转换非线性误差:±1LSB 2.1.9A/D转换输出码制: 单极性原码*/双极性偏移码 2.2.10系统综合误差:≤0.2% FSR 2.2 模出部分: 2.2.1输出通道数: 2路 (互相独立,可同时或分别输出,具有上电自动清零功能。) 2.2.2输出范围: 电压方式:0~5V;0~10V*;±5V;±2.5V 电流方式:0~10mA;4~20mA 2.2.3输出阻抗:≤2Ω (电压方式) 2.2.4D/A转换器件:DAC1210 2.2.5D/A转换分辨率:12位 2.2.6D/A转换输入码制: 二进制原码(单极性输出方式时)*; 二进制偏移码(双极性电压输出方式时) 2.2.7D/A转换综合建立时间:≤2μS 2.2.8D/A转换综合误差: 电压方式:≤0.2% FSR 电流方式:≤ 1% FSR 2.2.9电流输出方式负载电阻范围: 使用机内+12V电源时:0~250Ω 外加+24V电源时:0~750Ω 2.3 数字量输入输出部分: 2.3.1DI:8路;TTL标准电平 2.3.2 DO:8路;TTL标准电平;有输出锁存功能 2.4 电源功耗: +5V(±10%)≤400mA;

采集卡的选择和主要参数

采集卡的选择和主要参数 图像采集卡是将视频信号经过AD转换后,将视频转换成电脑可使用的数字格式,经过PCI总线实时传到内存和显存。在采集过程中,由于采集卡传送数据采用PCI Master Burst方式,图像传送速度高达40MB/S,可实现摄像机图像到计算机内存的可靠实时传送,并且几乎不占用CPU时间,留给CPU更多的时间去做图像的运算与处理。 一、采集卡基本原理 采集卡有多种种类、规格。但尽管其设计和特性不同,大多数采集卡的基本原理相同。近年来,数字视频产品取得了显著发展。数字视频产品通常需要对动态图像进行实时采集和处理,因此产品性能受图像采集卡的性能影响很大。由于早期图像采集卡以帧存为核心,处理图像时需读写帧存,对于动态画面还需“冻结”图像,同时由于数据传输速率的限制,因此图像处理速度缓慢。 90年代初,INTEL公司提出了PCI(Peripheral Component Interconnect)局部总线规范。PCI总线数据传宽度为32/64位,允许系统设备直接或间接连接其上,设备间可通过局部总线完成数据的快速传送,从而较好地解决了数据传输的瓶颈问题。 由于PCI总线的高速度,使A/D转换以后的数字视频信号只需经过一个简单的缓存器即可直接存到计算机内存,供计算机进行图像处理也可将采集到内存的图像信号传送到计算机显示卡显示;甚至可将A/D输出的数字视频信号经PCI总线直接送到显示卡,在计算机终端上实时显示活动图像。数据锁存器代替了帧存储器,这个缓存是一片容量小、控制简单的先进先出(FIFO)存储器,起到图像卡向PCI总线传送视频数据时的速度匹配作用。将图像卡插在计算机的PCI插槽中,与计算机内存、CPU、显示卡等之间形成调整数据传送。 由于PCI总线的上述优点,许多图像板卡公司陆续推出了基于PCI总线的图像采集卡,另外还有PC104 plus、Compact PCI等总线形式。 二、与图像采集卡相关技术名词 1、DMA DMA( Direct Memory Access)是一种总线控制方式,它可取代CPU对总线的控制,在数据传输时根据数据源和目的的逻辑地址和物理地址映射关系,完成对数据的存取,这样可以大大减轻数据传输时CPU的负担。 2、LUT(Look-Up Table) 对于图像采集卡来说,LUT(Look-Up Table)实际上就是一张像素灰度值的映射表,它将实际采样到的像素灰度值经过一定的变换如阈值、反转、二值化、对比度调整、线性变换等,变成了另外一个与之对应的灰度值。这样可以起到突出图像的有用信息,增强图像的光对比度的作用。很多PC系列卡具有8/10/12/16甚到32位的LUT,具体在LUT里进行什么样的变换是由软件来定义的。 3、Planar Converter Planar Converter能从以4位表示的彩色象素值中将R、G、B分量提取出来,然后在PCI传输时分别送到主机内存中三个独立的Buffer中,这样可以方便在后续的处理中对彩色信息的存取。在有些采集卡(如PC2Vision)中,它也可用于在三个黑白相机同步采集时将它们各自的象素值存于主机中三个独立的Buffer中。

研华,NI,阿尔泰公司简介及数据采集卡

研华 公司简介 研华公司成立于1983年,是一家全球领先的电子平台产品和服务提供商。其业务范围包括完整的系统集成、硬件、软件、以客户为中心的设计服务和全球后勤支持,均由产业领先的后端办公电子商务解决方案进行保障。通过与解决方案伙伴的密切合作,我们能够为各种工业应用提供完整的解决方案。研华一直致力于高质量,高性能计算平台和制造的创新,公司的使命是通过提供值得信赖的电子平台产品和服务,开创全球e世纪的创新动力。研华产品的应用和创新永无止境。 研华将自己定位为ePlatform服务提供商,一直并将继续在嵌入式电脑,应用平板电脑,工业网络电脑和自动化领域创建领导品牌。我们与合作伙伴一起,为不同的垂直产业提供各种产品,如环境与设备监控,网络通讯,网络安全,POS/POI自助终端,e化工厂/e自动化,医疗和家庭自动化等。研华将客户连接e化世界的进程带入一个新的阶段:由嵌入式电脑,应用平板电脑,工业网络电脑和自动化四条产品线提供完整的解决方案。从工业自动化到医疗电脑及家庭自动化,我们都可以满足每一个客户的独特需求。 数据采集卡 研华PCI-1713模拟量输入卡:该板卡具有32 路单端或16 路差分模拟量输入,或组合输入方式,12位A/D转换分辨率,A/D转换器的采样速率可达100 kHz,每个输入通道的增益可编程,卡上有4K采样FIFO缓冲器,2500VDC 隔离保护,支持软件、内部定时器触发或外部触发。

研华PCI-1720U模拟量输出卡:该板卡具有四路12 位D/A 输出通道,多种输出范围。由于能够在输出和PCI总线之间提供2500VDC的隔离保护,PCI-1720非常适合需 要高电压保护的工业场合。 研华PCI-1730数字量输入/输出卡:它提供了16路数字量输入和16路数字量输出,高输出驱动能力和中断能力,具有2500VDC高电压隔离I/O通道。 研华PCI-1780U计数器/定时器卡:是基于PCI总线设计的接口卡。该卡使用了AM9513芯片,能够通过CPLD实现计数器/定时器功能。此外,该卡还提供8个16位计数器通道,并具有8通道可编程时钟资源,8路TTL数字量输出/8路TTL数字量输入,最高输入频率达20MHz,有多种时钟可以选择,可编程计数器输出,同时有计数器门选通功能。

一种高速数据采集卡的设计与实现.

一种高速数据采集卡的设计与实现 摘要:为了实现对武器系统模拟信号的采集和数据分析,根据PC/104总线的数据采集系统的设计思想,数据采集卡以A/D转换器、CPLD和FIFO相结合来实现信号的连续采集与数据传输的控制。A/D转换器实现信号的采样保持和模数转换,CPLD实现数据采集和存储过程的控制。实验结果表明,该数据采集卡操作简单、实时性强、性能稳定,可实现对被测信号高速连续的数据采集。 关键词:数据采集;复杂可编程逻辑器件;FIFO;时序控制;逻辑控制 O 引言 测试设备是武器系统中最主要的子系统之一,它的工作正常与否将直接影响到整个武器系统的作战性能。在对武器系统进行测试的过程中,需要对一系列的电压、电流等模拟量信号进行快速、实时的数据采集和分析,检查这些模拟量的指标是否符合要求,可以对武器系统是否发生故障做出诊断,保证武器系统的正常工作。根据现代战争对武器系统的作战需求,提高快速机动保障能力,研制出体积小、结构紧凑、便携式的测试设备就成为主要的目标。 本文设计了一种基于PC/104总线的高速数据采集系统,其目的在于替代示波器在武器系统测试中的作用。常规采集方案主要有两种: (1)由单片机直接控制的采集方案,这是最简单最常用的控制方案。由于每次采样都要有单片机的参与,需占用单片机的时间,影响其数据处理,而且对于多通道、多个A/D转换器的控制,因所需处理的信息更多,则更加不方便。 (2)由DMA控制的采集方案。此方案硬件电路复杂,若与单片机配合使用,需要单片机具有总线挂起功能,否则还需要进行总线切换,影响数据的及时处理。 综合以上两种方案的优缺点,本数据采集卡自动采样硬件电路主要采用可编程逻辑器件CPLD和先进先出FIFO(First In First Out)技术设计而成,可以很好地实现高速数据采集。 1 数据采集卡总体方案设计 数据采集卡是由信号调理电路、带采样保持器的A/D模数转换器、多路模拟开关、FIFO数据缓存、CPLD芯片及时钟电路等部分组成,具有高精度、高可靠性、高抗干扰能力等特点。总体结构设计原理如图1所示。 2 芯片介绍 该数据采集卡采用的芯片主要有:AD9283模/数转换器、AD508A多路选择开关、EPM7128SCL84-6CPLD和CY7C4261 FIFO缓存器。下面对以上所用芯片做一简要介绍。 2.1 AD9283模/数转换器简介 本数据采集卡选用了ANALOG DEVICE公司生产的高速8位模/数转换器AD9283。它采用先进CMOS制作工艺,提供20脚表面贴装封装形式。片内集成高性能采样和保持放大器,输入信号可采用单输入或差分输入;处理输入电压

如何正确使用和选择数据采集卡

如何正确使用和选择数据采集卡 作者:USB17 文章来源:北京迪阳公司点击数:更新时间:2007-5-16 数据采集卡, USB数据采集卡, PCI数据采集卡, 高速数据采集卡, 采集卡, 数据采集 在计算机广泛应用的今天,数据采集的重要性是十分显著的。它是计算机与外部物理世界连接的桥梁。各种类型信号采集的难易程度差别很大。实际采集时,噪声也可能带来一些麻烦。数据采集时,有一些基本原理要注意,还有更多的实际的问题要解决。 采样频率、抗混叠滤波器和样本数 假设现在对一个模拟信号x(t) 每隔Δ t 时间采样一次。时间间隔Δ t 被称为采样间隔或者采样周期。它的倒数1/ Δ t 被称为采样频率,单位是采样数/ 每秒。t=0, Δ t ,2 Δ t ,3 Δ t …… 等等,x(t) 的数值就被称为采样值。所有x(0),x( Δ t),x(2 Δ t ) 都是采样值。这样信号x(t) 可以用一组分散的采样值来表示: 下图显示了一个模拟信号和它 采样后的采样值。采样间隔是Δ t ,注意,采样点在时域上是分散的。 图 1 模拟信号和采样显示 如果对信号x(t) 采集N 个采样点,那么x(t) 就可以用下面这个数列表示: 这个数列被称为信号x(t) 的数字化显示或者采样显示。注意这个数列中仅仅用下标变量编制索引,而不含有任何关于采样率(或Δ t )的信息。所以如果只知道该信号的采样值,并不能知道它的采样率,缺少了时间尺度,也不可能知道信号x(t) 的频率。 根据采样定理,最低采样频率必须是信号频率的两倍。反过来说,如果给定了采样频率,那么能

够正确显示信号而不发生畸变的最大频率叫做恩奎斯特频率,它是采样频率的一半。如果信号中包含频率高于奈奎斯特频率的成分,信号将在直流和恩奎斯特频率之间畸变。图2显示了一个信号分别用合适的采样率和过低的采样率进行采样的结果。 采样率过低的结果是还原的信号的频率看上去与原始信号不同。这种信号畸变叫做混叠(alias )。出现的混频偏差(alias frequency )是输入信号的频率和最靠近的采样率整数倍的差的绝对值。所以说采样频率最好是被测信号的4~~10倍,这样测量的信号才不会失真. 图 2 不同采样率的采样结果 图3给出了一个例子。假设采样频率fs 是100HZ, ,信号中含有25 、70 、160 、和510 Hz 的成分。 图3说明混叠的例子 采样的结果将会是低于奈奎斯特频率(fs/2=50 Hz )的信号可以被正确采样。而频率高于50HZ 的信号成分采样时会发生畸变。分别产生了30 、40 和10 Hz 的畸变频率F2 、F3 和F4 。计算混频偏差的公式是:

基于研华数据采集卡的LabVIEW程序设计

第10章基于研华数据采集卡的 L a b V I E W程序设计 本章利用研华公司的PCI-1710HG数据采集卡编写LabVIEW程序,包括:模拟量输入、模拟量输出、开关量输入以及开关量输出等。 10.1 模拟量输入(AI) 10.1.1 基于研华数据采集卡的LabVIEW程序硬件线路 在图10-1中,通过电位器产生一个模拟变化电压(范围是0V~5V),送入板卡模拟量输入0通道(管脚68),同时在电位器电压输出端接一信号指示灯,用来显示电压变化情况。 图10-1 计算机模拟电压输入线路 本设计用到的硬件为:PCI-1710HG数据采集卡、PCL-10168数据线缆、ADAM-3968接线端子(使用模拟量输入AI0通道)、电位器(10K)、指示灯(DC5V)、直流电源(输出:DC5V)等。 10.1.2 基于研华数据采集卡的LabVIEW程序设计任务 利用LabVIEW编写应用程序实现PCI-1710HG数据采集卡模拟量输入。 任务要求: (1)以连续方式读取电压测量值,并以数值或曲线形式显示电压测量变化值; (2)当测量电压小于或大于设定下限或上限值时,程序画面中相应指示灯变换颜色。

第10章 基于研华数据采集卡的LabVIEW 程序设计 – 209 – 10.1.3 基于研华数据采集卡的LabVIEW 程序任务实现 1.建立新VI 程序 启动NI LabVIEW 程序,选择新建(New )选项中的VI 项,建立一个新VI 程序。 在进行LabVIEW 编程之前,必须首先安装研华设备管理程序Device Manager 、32bit DLL 驱动程序以及研华板卡LabVIEW 驱动程序。 2.设计程序前面板 在前面板设计区空白处单击鼠标右键,显示控件选板(Controls )。 (1)添加一个实时图形显示控件:控件(Controls )→新式(Modern )→图形(Graph ) →波形图形(Waveform Chart ),标签改为“实时电压曲线”,将Y 轴标尺范围改为0.0-5.0。 (2)添加一个数字显示控件:控件(Controls )→新式(Modern )→数值(Numeric )→ 数值显示控件(Numeric Indicator ),标签改为“当前电压值:”。 (3)添加两个指示灯控件:控件(Controls )→新式(Modern )→布尔(Boolean )→圆形指示灯(Round LED ),将标签分别改为“上限指示灯:”、“下限指示灯:”。 (4)添加一个停止按钮控件:控件(Controls )→新式(Modern )→布尔(Boolean )→停止按钮(Stop Button )。 设计的程序前面板如图10-2所示。 图10-2 程序前面板 3.框图程序设计——添加函数 进入框图程序设计界面,在设计区空白 处单击鼠标右键,显示函数选板(Functions )。 在函数选板(Functions )下添加需要的函数。 (1)添加选择设备函数:用户库→ Advantech DA&C (研华公司的LabVIEW 函数库)→ EASYIO → SelectPOP → SelectDevicePop.vi ,如 图10-3所示。 图10-3 SelectPop 函数库

数据采集卡新手进阶

研华采集卡驱动程序工作原理及流程说明 (适用于 pci-1710 1711,1712 ,1713, 1714 ,1716 ,1718 ,pcl-818 ,pcl-816) 1 引言 研华公司是台湾和中国大陆工业电脑产品最大的供应厂商,其 PC&Web-based数据采集和控制产品更是以优良的性价比获得了众多的客户的青睐。32位DLL驱动程序是研华为诸如VC,VB,DELPHI,Borland C++,C++ Builder 等高级语言提供的接口,通过这个驱动程序,编程人员可以方便的对硬件进行编程控制。该驱动程序覆盖了每一款研华的数据采集卡以及MIC-2000、ADAM-4000和ADAM-5000系列模块,应用极为广泛,是编制数据采集程序的基础。本文是在实际编写动态数据采集程序中经验的积累,对利用32位驱动程序有实用价值。 2 32位驱动程序概览 32位驱动程序主要包括10类函数及其相应的数据结构,这些函数和数据结构在Adsapi 32.lib中实现。这10类函数分别是: Device Functions设备函数 Analog Input Function Group模拟输入函数组 Analog Output Function Group模拟输出函数组 Digital Input/Output Function Group数字输入/输出函数组 Counter Function Group计数器函数组 Temperature Measurement Function Group温度测量函数组 Alarm Function Group报警函数组 Port Function Group端口函数组 Communication Function Group通信函数组 Event Function Group事件函数组 可以把这10类函数分为两个部分:设备函数部分(只包括第一类函数)和操作函数部分(包括第一类函数外的所有函数),设备函数部分负责获取硬件特征和开关硬件。而操作函数部分则在硬件设备就绪以后,进行具体的采集、通信、输出、报警等工作。具体工作结束后,调用设备函数关闭设备。这些函数的调用过程如图1所示。

DAQ数据采集卡快速使用指南

DAQ数据撷取卡快速使用指南 首先感您选购NI的DAQ产品,以下将简短地为您叙述快速安装与使用DAQ卡的步骤。 在安装DAQ的硬件之前,请您先确认是否安装了DAQ的驱动程序,基本上您的计算机必须有Measurement And Automation (MAX)来管理您所有的NI装置,另外您必须安装NI-DAQ 软件,目前建议安装最新的版本(您可利用光盘安装或是上网下载最新版本驱动程序.ni./support点选Drivers and Updates),新版驱动程序可支持大多数NI的DAQ卡片,包含S、E、M系列以及USB接口产品。 在安装完成NI-DAQ之后,您可以在桌面上发现有MAX应用程序,此时您可以关闭计算机,进行硬件安装,将PCI或是PCMCIA接口的DAQ卡片插入并重新开机,开机之后操作系统会自行侦测到该装置,并且自动安装驱动程序,依照对话框的带领便能顺利完成安装程序。 安装程序完成后,建议您开启MAX在Device and interface选项中会有Traditional DAQ 以及 DAQmx两个类别,那是依照您的卡片型号支持哪一种API而分类,一般而言,E系列卡片两种都支持,而M系列只支持DAQmx,S系列则不一定,在对应的Traditional DAQ或DAQmx中找到您的DAQ卡片型号,然后建议您先进行校正以及测试。 您可参考.ni./support/daq/versions确认您硬件适用的版本 如何做校正与硬件测试: 若需校正硬件,请于MAX中,您所安装的卡片型号上按鼠标右键选择self-calibration 即可,系统会对DAQ卡以现在温度做一次校正。

数据采集卡基本简介

数据采集卡基本简介 具体来说,这种设计分两部分:数据采集部分和数据处理部分。 数据采集就是利用LabVIEW的驱动程序对数据采集卡进行设置并使其按设置工作,进行数据的采集;数据处理则是将采集到的数据送至计算机进行运算处理等等。 对于初学者,可先从第二部分开始。将实际的数据采集先用LabVIEW自带的数组或者波形函数来代替,着重设计数据处理的软件部分。这部分可以包括:滤波、数据存储、数据读取、波形显示、波形分析处理(如傅立叶变换、谱密度计算等等)。这些在LabVIEW中都有集成的函数模块,也就是VI,只要对每个VI的输入输出设置正确就好。 当软件部分设计完成后,再设计数据采集部分。这是软硬件结合的部分。既要对所用的数据采集卡的参数和工作方式有充分的正确的认识,又要对如果利用LabVIEW驱动采集卡掌握。一般来说采集卡都带有LabVIEW的驱动,只要参看数据采集卡的使用说明(PDF),就可以掌握了。选择好数据采集卡后,将该采集卡的驱动光盘放入计算机并按其指示进行安装,则其驱动模块将装入原LabVIEW软件中,然后和第一步的软件编程一样,对驱动所要用的VI的输入输出参数设置正确,编写程序即可。 当两部都做完后,将整个采集系统运行一下,对于设计中存在的疏漏再进行修改。推荐使用《LadVIEW8.20程序设计从入门到精通(附光盘)》作者:陈锡鸿 这本书不错,深入浅出,初学必备~~ 数据采集(DAQ)基础知识 现今,在实验室研究、测试和测量以及工业自动化领域中,绝大多数科研人员和工程师使用配有PCI、PXI/CompactPCI、PCMCIA、USB、IEEE1394、ISA、并行或串行接口的基于PC的数据采集系统。许多应用使用插入式设备采集数据并把数据直接传送到计算机内存中,而在一些其它应用中数据采集硬件与PC分离,通过并行或串行接口和PC相连。从基于PC的数据采集系统中获取适当的结果取决于图示一中的各项组成部分: ?PC ?传感器 ?信号调理 ?数据采集硬件 ?软件

相关文档
最新文档