大学概率论习题六详解

大学概率论习题六详解
大学概率论习题六详解

大学概率论习题六详解

(A )

1、设n X X X ,,,21 是取自总体),2(~p B X 的样本,其中10<

i i

X

1

的分布列、

期望与方差;(2)1X 与2X 的联合分布列。

解 (1)因为),2(~p B X i ,n i ,,2,1 =且独立,则

∑=n

i i

X

1

的分布是),2(p n B ,期望为

np X E n

i i 2)(1

=∑=,方差为)1(2)(1

p np X D n

i i -=∑=。

(2)因为),2(~p B X i ,2,1=i 且独立,则1X 与2X 的联合分布列为

)()(),(2121y X P x X P y X x X P =====y x y x y x p p C C --+-=422)1(

其中2,1,0,=y x

2、设321,,X X X 是取自总体),(~2σμN X 的样本,其中μ、σ为参数,求:(1)样本321,,X X X 的联合分布密度;(2)样本均值的期望、方差与标准差。

解 (1)因为),(~2σμN X i ,3,2,1=i 且独立,则样本1X ,2X ,3X 的联合分布密度为

]})()()[(21exp{)2(1),,(2

222

3

μμμσ

σπ-+-+--

=

z y x z y x p (2)μ=)(X E ,3

)(2

σ=

X D ,3

)()(σ

σ=

=X D X 。

3、设某地两个调查员,分别在该地东部与西部调查职工的月收入。调查员甲在东部随机调查了200

位职工,得样本均值为800元,样本标准差为200元;调查员乙在西部随机调查了180位职工,得样本均值为620元,样本标准差为150元。现将这两个样本看成一个容量为380的样本,求样本均值与样本标准差。

解 设调查员甲调查的样本容量为200=n ,样本均值为800=x ,样本标准差为200=x S ,样本方

差为22

200=x S 。调查员乙调查的样本容量为180=m ,样本均值为620=y ,样本标准差为150=y S ,

样本方差为2

2150=y S 。

如果将甲、乙调查员调查的职工月收入合为一个样本,则该样本的样本容量为380180200=+=+m n ,其样本均值为

74.714)620180800200(380

1

)(1=?+?=++=

y m x n m n z 样本方差为

])()()1()1[(1

1222

22z y m z x n S m S n m n S y x -+-+-+--+=

])()()()1()1[(1122

222m

n y m x n y m x n S m S n m n y x ++-++-+--+= 2

22800200150179200199[379

1?+?+?=]380)620180800200(62018022?+?-

?+ 16.39728=

所以,该样本的标准差为:32.199=S 。

4、设1021,,,X X X 是取自总体),1(~p B X 的样本,其中10<

(1)∑==

10

1

110i i

X T ;(2))(1102X E X T -= (3)p X T -=3;(4)},,,max{10214X X X T =

解 (1)、(4)是统计量,因为它们是样本的函数且不含未知参数p ;而(2)、(3)不是统计量,因

为它们虽然是样本的函数,但含未知参数p 。

5、从总体)3.6,52(~2

N X 中随机抽取了一个容量为36的样本,求样本均值X 落在区间[50.8,53.8]内的概率。

解 因为总体)3.6,52(~2N X ,所以()

205.1,52~N X ,故

()??

?

??-Φ-??? ??-Φ=≤≤05.1528.5005.1528.538.538.50X P

8293.0=

6、设总体)5.0,(~2

μN X ,样本n X X X ,,,21 取自总体X 。如果要以95.4%的概率保证

1.0<-μX 成立,那么样本容量n 应取多大?

解 由于总体()2

5.0,~μN X ,所以???

?

??n N X 25.0,~μ,由于

因为()

????

?

?-Φ-????

??

Φ=<-n n X P /5.01.0/5.01

.01.0μ

954.01/5.01.02≥-???

?

??Φ=n

即要求977.0/5.01

.0≥???

?

??

Φn

利用标准正态分布表,确定0.977的分位数为2.00,故

00.2/5.01.0≥n

解得200≥n ,所以样本容量n 应取200=n 。

7、设有一枚均匀的硬币,以X 表示“抛一次硬币正面朝上的次数”,试问要抛多少次才能使样本均值X 落在区间[0.4,0.6]内的概率不少于0.9?

解 因为)5.0,1(~B X ,在n 充分大时,由中心极限定理,可以近似认为()n N X /25.0,5.0~,则要求

()

????

??-Φ-????

??-Φ≈<

9.01/5.01

.02≥-???

?

??

Φ=n

即要求()

95.02.0/5.01

.0≥Φ=???

?

??

Φn n

由正态分布表查得645.12.0≥n ,解得,65.67≥n 即至少应抛68次。

8、 设随机变量21Y Y X 和,相互独立且都服从标准正态分布,求随机变量

2

22

12Y Y X Z +=

的概率分布.

解 由条件知21Y Y X 和,相互独立且都服从标准正态分布.随机变量

22212Y Y +=χ

作为两个独立标准正态随机变量的平方和,服从自由度为2的2χ分布.因为

2

22

2

22

X

Y Y X Z =

+=

其中(1))10(~,

N X ,(2)2χ服从自由度为2的2χ分布,(3)X 和22212Y Y +=χ相互独立,所以由服从t 分布的随机变量的典型模式知,随机变量Z 服从自由度为2的t 分布.

9、在所调查的100

绘出家庭中拥有电脑频率的线条图。

解 设X 表示城市每户家庭拥有的电脑数,则被调查家庭中拥有电脑数的频率分布表为

则家庭中拥有电脑频率的线条图为

10、一组工人完成某一装配工序所需的时间(分)分别如下:

35 38 44 33 44 43 48 40 45 30 45 32 42 39 49 37 45 37 36 42 35 41 45 46 34 30 43 37 44 49 36 46 32 36 37 37 45 36 46 42 38 43 34 38 47 35 29 41 40 41 求:(1)样本均值、样本方差与标准差;(2) 作出样本频率直方图及其累积频率直方图。

解 (1)74.3950150

1==∑=i i x x ,62.1361)(50

1

2=-=∑=i i x x Q , 78816.271

502=-=

Q

S ,27145.578816.272===S S 。 (2) 以27为第一组的左端点,组距定为3

作出样本累积频率直方图为:

11、某商店100天电冰箱的日销售情况有如下统计数据

求经验分布函数)(x F n ,样本均值X ,样本方差2S 。

解 易见

()().

;;

;9470.1991009275.175.16156303202100

185.31563032021001

2

022220222

2≈==-==?++?+?==?++?+?=

S S X X S X X 由所给统计数据,容易写出经验分布函数:

????

???????≥<≤<≤<≤<≤<=6

1 6585.05460.04

350.03220.02 0 )(x x x x x x x F n ,,,,,, 

12、某电子元件寿命X 服从参数为0015.0=λ的指数分布,其分布函数为

x e x F λ--=1)( 0>x

如今从中抽取6个电子元件测其寿命,获得容量为6的样本621,,,X X X ,求下列事件的概率:(1)“到800小时没有一个元件失效”;(2)“到3000小时所有元件都失效”。

解 指数分布的函数是0,1)(>-=-x e

x F x

λ,这里0015.0=λ。

(1)令()),,,min(6211X X X X =,则其分布函数为 []x e x F x F λ66

11)(11)(--=--=

)800()800),,(min()1(621>=>X P X X X P

0007466

.0)800(18000015.061==-=??-e F 所以,“到800小时没有一个元件失效” 的概率为0.0007466。

(2)令()()6216,,,max X X X X =,则其分布函数为:

()()[]()6

6

61x

e

x F x F λ--==

()()()()()300030003000

,,,max 66621F X P X X X P =<=< ()

93517.016

3000

0015.0=-=?e

所以,“到3000小时所有元件都失效” 的概率为0.93517。

(B )

1、设n x 与2

n S 分别是容量为n 的样本均值与样本修正方差,如今又获得了一个样本观察值1+n x ,那么

将它加入到原来的样本中,便得到容量为1+n 的样本,证明:

1

11++=

++n x x n x n n n ,2122

1)(111n n n n x x n S n n S -++-=++ 证

n n

i i

x n x

=∑=1

,∑+=++=1

1

1n i n n i x x n x

故其样本均值为1

1

1++=

++n x x n x n n n 。

()∑=+-=n

i n

n

i

x n s n x

1

22

21,()2

111

2221++=++-=∑n n i n n i x x n s n x

因此该样本方差为()()??????++-++-=

+++212

1222

11111n n n n n n x x n n x x n s n n s ()2121

1

1n n n x x n s n n -++

-=

+ 2、设n X X X ,,,21 是取自总体),(~2σμN X 的样本,2

S 是样本方差。求)(2S E ,)(2S D 。

解 因为

()()1~12

2

2

--n S n χσ,则1)1(2

2

-=???? ?

?-n S n E σ,())1(2122-=???

?

?

?-n S n D σ。由期望与方差的性质即得2

2

)(σ=S E ,1

2)(4

2

-=n S D σ。

3、设n X X X ,,,21 是取自总体)(~λP X 的样本,X 与2

S 分别是样本均值与样本方差。试求

)(X E ,()X D ,)(2S E 。

解 因为总体)(~λP X ,则有λ=)(X E ,λ=)(X D ,所以

λ=)(X E , n

X D λ

=

)(

λλ

λ

=--=

])1([

1

)(2

2

S n E n S E

4、设),,,(921X X X 和),,,(1621Y Y Y 是分别来自总体)4,(~ )4,(~b N Y a N X 和的两个相互独立简单随机样本;记

∑∑==-=

-=

16

1

2

9

1

2

1 )( )(i i i i

Y Y Q X X

Q .

,2 求未知常数b a ,,使满足

9.012=?

?????<

a P .

解 由条件知4==Y X D D .由正态总体样本方差的抽样分布,知4121Q =χ服从自由度为8的2

χ分布;422

2Q =χ服从自由度为15的2χ分布.由条件知

815

84

1548152

12

21

2

12χχ===Q Q Q Q F 服从自由度为(15,8)的F 分布.

由F 分布上侧分位数表(附表5)查出自由度分别为(8,15)和(15,8)的F 分布水平0.05的两个上侧分位数:22.3)8,15( 645.2)15,8(05.005.0=≈F F 和,其中

645.22/)]16,8()14,8([)15,8(05.005.005.0=+≈F F F ;

0.378645

.21

)15,8()8,15(1

05.095.0≈=

=-F F . 因此{}{}90.0)8,15()8,15(22.3378.005.095.0=<<=<

90.0158158

15881515

8 1212=??????<<=??????<<=??????<

.,;, 0375.622.38

15 22.3158 7088.0378.08

15 0.378158=?==≈?==b b a a

青岛理工大学 概率论习题册第八章作业及答案

习题8-1 1. 填空题 (1) 假设检验易犯的两类错误分别是____________和__________. 解 第一类错误(弃真错误); 第二类错误(取伪错误). (2) 犯第一类错误的概率越大, 则右侧检验的临界值(点)越_____, 同时犯第二类错误的概率越_____. 解 小, 小. 2. 已知一批零件的长度X (单位:cm)服从正态分布(,1)N μ, 从中随机地抽取16个零件, 得到长度的平均值为40cm. 求: (1) 取显著性水平α=0.05时, 均值μ的双侧假设检验的拒绝域; (2) μ的置信水平为0.95的置信区间; (3) 问题(1)和(2)的结果有什么关系. 解 (1)拒绝域为 (-∞, 39.51)∪(40.49, +∞). (2) 置信区间为 22()(40 1.96,40 1.96),x z x z αα+=-(39.51,40.49).= (3) 对于显著性水平α=0.05, μ的双侧假设检验的接受域恰为μ的置信水平为0.95的置信区间. 习题8-2 1. 填空题 (1) 设总体2 ~(,)X N μσ, 12,,,n X X X 是来自总体X 的样本. 对于检验假设0H :0μμ=( μμ0≥或μμ0≤), 当2σ未知时的检验统计量 是 ,0H 为真时该检验统计量服从 分布; 给定显著性水平为α, 关于μ的双侧检验的拒绝域为 , 左侧检验的拒绝域为 , 右侧检验的拒绝域为__________. 解 X t =; 自由度为n -1的t 分布; 2 t t α…;t t α-…;t t α…. 2. 统计资料表明某市人均年收入服从2150μ=元的正态分布. 对该市从事某种职业的职工调查30人, 算得人均年收入为2280x =元, 样本标准差476s =元. 取显著性水平0.1, 试检验该种职业家庭人均年收入是否高于该市人均年收入? 解 选取检验统计量X t =拒绝域为t >)1(-n t α=t 0.1(29)=1.3114. 可以认为该种职业家庭人均年收入高于市人均年收入.

概率论与数理统计浙大四版习题答案第七章

第七章 参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解:μ,σ2的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σ μ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)???>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,)1()(<<=-==-Λ为未知参数。 解:(1)X θc θθc θc θc θdx x c θdx x xf X E θθc θ θ =--=-== =+-∞+-∞+∞ -? ? 1 ,11)()(1令, 得c X X θ-= (2),1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =? 3.[三]求上题中各未知参数的极大似然估计值和估计量。 解:(1)似然函数 1211 )()()(+-=== ∏θn θn n n i i x x x c θ x f θL Λ 0ln ln )(ln ,ln )1(ln )ln()(ln 1 1 =- +=-++=∑∑ ==n i i n i i x c n n θθ d θL d x θc θn θn θL

概率论第一章课后习题答案

《概率论与数理统计》课后习题解答 习题一 3.设A ,B ,C 表示三个事件,用A ,B ,C 的运算关系表示下列各事件: (1)A 发生,B 与C 不发生; (2)A 与B 都发生,而C 不发生; (3)A ,B ,C 都发生; (4)A ,B ,C 都不发生; (5)A ,B ,C 中至少有一个发生; (6)A ,B ,C 中恰有一个发生; (7)A ,B ,C 中至少有两个发生; (8)A ,B ,C 中最多有一个发生. 解:(1)C B A ; (2)C AB ; (3)ABC ; (4)C B A ; (5)C B A ; (6)C B A C B A C B A ++; (7)BC AC AB ; (8)BC AC AB 或C B C A B A . 5.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码. (1)求最小的号码为5的概率; (2)求最大的号码为5的概率. 解:设事件A 表示“最小的号码为5”,事件B 表示“最大的号码为5”,由概率的古典定义得 (1)12 1)(31025==C C A P ; (2)20 1)(31024==C C B P . 6.一批产品共有200件,其中有6件废品,求: (1)任取3件产品恰有1件是废品的概率; (2)任取3件产品没有废品的概率; (3)任取3件产品中废品不少于2件的概率. 解:设事件i A 表示“取出的3件产品中恰有i 件废品”)3,2,1,0(=i ,由概率的古典定义得

(1)0855.0)(3200 2194161≈=C C C A P ; (2)9122.0)(3200 31940≈=C C A P ; (3)0023.0)(3200 3611942632≈+=+C C C C A A P . 8.从0,1,2,…,9这十个数字中任意取出三个不同的数字,求下列事件的概率: A 表示“这三个数字中不含0和5” ; B 表示“这三个数字中包含0或5” ; C 表示“这三个数字中含0但不含5”. 解:由概率的古典定义得 157)(31038==C C A P ;158)(1)(=-=A P B P ;30 7)(31028==C C C P 9.已知5.0)(=A P ,6.0)(=B P ,8.0)(=A B P ,求)(AB P 和)(B A P . 解:4.08.05.0)|()()(=?==A B P A P AB P )]()()([1)(1)()(AB P B P A P B A P B A P B A P -+-=-== 3.0) 4.06.0 5.0(1=-+-= 10.已知4.0)(=B P ,6.0)(=B A P ,求)(B A P . 解:314.014.06.0)(1)()() ()()(=--=--==B P B P B A P B P B A P B A P 11.某种品牌电冰箱能正常使用10年的概率为9.0,能正常使用15年的概率为3.0,现某人购买的该品牌电冰箱已经正常使用了10年,问还能正常用到15年的概率是多少? 解:设事件B A ,分别表示“该品牌电冰箱能正常使用10,15年”,依题可知 3.0)()(,9.0)(===B P AB P A P ,则所求的概率为 3 19.03.0)()()|(===A P AB P A B P 12.某人忘记了电话号码的最后一个数字,因而他随意地拨最后一个号码.

《概率论与数理统计》习题答案(复旦大学出版社)第八章

习题八 1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N(4.55,0.1082).现在测了5炉铁水,其含碳量(%)分别为 4.28 4.40 4.42 4.35 4.37 问若标准差不改变,总体平均值有无显著性变化(α=0.05)? 【解】 0010 /20.025 0.025 : 4.55;: 4.55. 5,0.05, 1.96,0.108 4.364, (4.364 4.55) 3.851, 0.108 . H H n Z Z x x Z Z Z α μμμμ ασ ==≠= ===== = - ===- > 所以拒绝H0,认为总体平均值有显著性变化. 2. 某种矿砂的5个样品中的含镍量(%)经测定为: 3.24 3.26 3.24 3.27 3.25 设含镍量服从正态分布,问在α=0.01下能否接收假设:这批矿砂的含镍量为3.25. 【解】设

0010 /20.005 0.005 : 3.25;: 3.25. 5,0.01,(1)(4) 4.6041 3.252,0.013, (3.252 3.25) 0.344, 0.013 (4). H H n t n t x s x t t t α μμμμ α ==≠= ==-== == - === < 所以接受H0,认为这批矿砂的含镍量为3.25. 3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差s2=0.1(g2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05). 【解】设 0010 /20.025 2 0.025 : 1.1;: 1.1. 36,0.05,(1)(35) 2.0301,36, 1.008,0.1, 6 1.7456, 1.7456(35) 2.0301. H H n t n t n x s x t t t α μμμμ α ==≠= ==-=== == === =<= 所以接受H0,认为这堆香烟(支)的重要(克)正常. 4.某公司宣称由他们生产的某种型号的电池其平均寿命为21.5小时,标准差为2.9小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短?设电池寿命近似地服从正态分布(取α=0.05). 【解】

概率论与数理统计习题及答案第七章

习题7-1 1.选择题 (1)设总体X 的均值口与方差 /都存在但未知,而X 1,X 2,L ,X n 为来 自X 的样本,则均值 口与方差 (T 2的矩估计量分别是 (). (A) X 和 (B) 1 n X 和—(X n i 1 i )2 . (C) 口和 2 (T ? 1 (D) X 和一 n n (X i i 1 x)2. 解 选 (D). (2) 设X : U[0, ],其中 e >0为未知参数,又X ,,X 2,L ,X n 为来自总体 X 的样本 ,则e 的矩估计量是( ). (A) X . (B) 2X . (C) max{X i }. (D) m i^ X i } . 解选(B). 2.设总体X 的分布律为 其中0v B v 为未知参数,X1, X 2,…,X.为来自总体X 的样本,试求e 的矩 估计量. 解 因为 E (X )=(- 2)x3 e +1x(1 -4 e )+5x e =1-5 e ,令 1 5 X 得到 的矩估计量为 3.设总体X 的概率密度为

f(x ;) (1)x ,0 x 1, 0, 其它? 其中 0> -1是未知参数,X,冷… ,X n 是来自 X 的容量为n 的简单随机样本 求 : (1) 的矩估计量; ⑵ 0的极大似然估计量? 解 总体X 的数学期望为 - 1 9 2X 1 令E(X) X ,即一1 X,得参数B 的矩估计量为? ? 2 1 X 设X 1, X 2,…,x n 是相应于样本X 1, X 2,…,X n 的一组观测值,则似然函 数为 n (1)n X i , 0 x i 1, i 1 0, 其它. In x i 1 In X i i 1 4.设总体X 服从参数为 的指数分布,即X 的概率密度为 E(X) 1 xf(x)dx o ( 1)x dx 当 00 且 In L nln( 1) In X i , dln L n In x =0,得 0的极大似然估计值为 而0的极大似然估计量为

上海工程技术大学概率论第一章答案

习题一 2.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P ( AB 解: P (AB ) =1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.6。 3. 设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率。 解:因为 A B C A B ?,所以0()()P ABC P AB ≤≤,又 P (AB )=0,则()0P ABC =, P (A ∪B ∪C ) =P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) =14+14+13-112=34 。 4.将3个不同的球随机地放入4个杯子中去,求所有杯中球的最大个数分别为1,2,3的概率。 解:设i A ={杯中球的最大个数为i },i =1,2,3。 将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故 34 13C 3!3()84 P A == 而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()164 P A ==,因此 213319()1()()181616 P A P A P A =--=--= 或 12143323C C C 9()164P A ==. 6.从1,2,3,4,5,6,7,8,9,0这10个数字中任取五个数按先后顺序组成多位数,求下列事件的概率:(1) 这五个数字组成一个五位偶数;(2) 2和3都被抽到且靠在一起. 解(1)5105987648764190 P A ????-???==. (2)145102!876445 C P A ????==. 7.对一个五人学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率;(2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 解:基本事件总数为57, (1)设A 1={五个人的生日都在星期日},所求事件包含基本事件的个数为1个,故 P (A 1)=517=51()7 ;

同济大学_概率论与数理统计期中试卷

同济大学 09 学年 第一学期 专业 级《 概率统计 》期中试卷 考试形式:( 闭卷 ) 一、填空题(共 30 分,每空2分): 1.事件C B A ,,中至少有一个发生可表示为 ,三个事件都发生可表示为 ,都不发生可表示为 . 2.设()4.0=A P ,()3.0=B P ,()4.0=B A P ,则() =B A P . 3.一袋中有10个球,其中3个黑球,7个白球. 每次从中任取一球,直到第3次才取到黑球的概率为 ,至少取3次才能取到黑球的概率为 . 4.设随机变量X 的分布函数()??? ?? ??≥<≤<≤--<=31318 .0114 .010x x x x x F ,则X 的分布列为 . 5.进行10次独立重复射击,设X 表示命中目标的次数,若每次射击命中目标的概率都是4.0,则X 服从 分布,其数学期望为 ,方差为 . 6.设连续型随机变量()λe X ~,)0(>λ,则=k 时,{}4 12= >k X P . 7.已知随机变量()2~P X ,则102-=X Y 的数学期望=EY ,方差=DY . 8. 已知随机变量X 的概率密度函数为()?? ?>-<≤≤-=2 ,20 2225.0x x x x f ,则X 服从 分布,设随机变量 12+=X Y ,则=EY . 二、选择题(共10 分,每小题 2 分) 1.设事件B A ,互不相容,且()()0,0>>B P A P ,则有 ( ) (A )()0>A B P (B )() ()A P B A P = (C )() 0=B A P (D )()()()B P A P AB P =

概率论与数理统计浙大四版习题答案第八章

第八章 假设检验 1.[一]某批矿砂的5个样品中的镍含量,经测定为(%)3.25 3.27 3.24 3.26 3.24。设测定值总体服从正态分布,问在α = 0.01下能否接受假设:这批矿砂的含镍量的均值为3.25. 解:设测定值总体X ~N (μ,σ 2),μ,σ 2 均未知 步骤:(1)提出假设检验H 0:μ=3.25; H 1:μ≠3.25 (2)选取检验统计量为)1(~25 .3--= n t n S X t (3)H 0的拒绝域为| t |≥).1(2 -n t α (4)n=5, α = 0.01,由计算知01304.0)(1 1,252.35 1 2=--= =∑=i i X X n S x 查表t 0.005(4)=4.6041, )1(343.05 01304.025 .3252.3||2 -<=-= n t t α (5)故在α = 0.01下,接受假设H 0 2.[二] 如果一个矩形的宽度ω与长度l 的比618.0)15(2 1 ≈-= l ω,这样的矩形称为黄金矩形。这种尺寸的矩形使人们看上去有良好的感觉。现代建筑构件(如窗架)、 工艺品(如图片镜框)、甚至司机的执照、商业的信用卡等常常都是采用黄金矩型。下面列出某工艺品工厂随机取的20个矩形的宽度与长度的比值。设这一工厂生产的矩形的宽度与长短的比值总体服从正态分布,其均值为μ,试检验假设(取α = 0.05) H 0:μ = 0.618 H 1:μ≠0.618 0.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628 0.668 0.611 0.606 0.609 0.601 0.553 0.570 0.844 0.576 0.933. 解:步骤:(1)H 0:μ = 0.618; H 1:μ≠0.618 (2)选取检验统计量为)1(~618 .0--= n t n S X t

概率论与数理统计第一章课后习题及参考答案

概率论与数理统计第一章课后习题及参考答案 1.写出下列随机试验的样本空间. (1)记录一个小班一次数学考试的平均分数(以百分制记分); (2)一个口袋中有5个外形相同的球,编号分别为1,2,3,4,5,从中同时取 出3个球; (3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数; (4)在单位圆内任意取一点,记录它的坐标. 解:(1)}100,,2,1{ =Ω; (2)}345,235,234,145,135,134,125,124,123{=Ω; (3)},2,1{ =Ω; (4)}|),{(22y x y x +=Ω. 2.在}10,,2,1{ =Ω,}432{,,=A ,}5,4,3{=B ,}7,6,5{=C ,具体写出下列各式:(1)B A ;(2)B A ;(3)B A ;(4)BC A ;(5)C B A . 解:(1),9,10}{1,5,6,7,8=A , }5{=B A ;(2)}10,9,8,7,6,5,4,3,1{=B A ; (3)法1:}10,9,8,7,6,2,1{=B , }10,9,8,7,6,1{=B A , }5,4,3,2{=B A ; 法2:}5,4,3,2{===B A B A B A ; (4)}5{=BC , }10,9,8,7,6,4,3,2,1{=BC , }4,3,2{=BC A , }10,9,8,7,6,5,1{=BC A ;

(5)}7,6,5,4,3,2{=C B A , {1,8,9,10}=C B A . 3.设}20|{≤≤=Ωx x ,}121| {≤<=x x A ,}2 341|{≤≤=x x B ,具体写出下列各式:(1)B A ;(2)B A ;(3)AB ;(4)B A . 解:(1)B B A = , }22 3,410|{≤<<≤==x x x B B A ;(2)=B A ?; (3)A AB =, }21,10|{≤<≤ ≤==x x x A AB ;(4)}231,2141|{<<<≤=x x x B A .4.化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .解:(1)A B B A B A B A ==)())(( ; (2)AC B C A B C B B A ==)())((;(3))())()((B A B B A B A B A B A =AB AB A A B A A === )(.5.A ,B ,C 表示3个事件,用文字解释下列事件的概率意义:(1)C B A C A C B A ;(2)BC AC AB ;(3)(C B A ;(4)BC AC AB . 解:(1)A ,B ,C 恰有一个发生; (2)A ,B ,C 中至少有一个发生; (3)A 发生且B 与C 至少有一个不发生; (4)A ,B ,C 中不多于一个发生. 6.对于任意事件A ,B ,证明:Ω=-A B A AB )(.

概率论与数理统计-朱开永--同济大学出版社习题一答案

习 题 一 1.下列随机试验各包含几个基本事件? (1)将有记号b a ,的两只球随机放入编号为Ⅰ,Ⅱ,Ⅲ 的盒子里(每个盒子可容纳两个球) 解:用乘法原理,三个盒子编号为Ⅰ,Ⅱ,Ⅲ看作不动物,。两个球看作是可动物,一个 一个地放入盒中;a 球可放入的任一个,其放法有 313=C 种,b 球也可放入三个盒子的 任一个,其放法有313=C 种,由乘法原理知:这件事共有的方法数为11339C C ?=种。 (2)观察三粒不同种子的发芽情况。 解:用乘法原理,三粒种子,每一粒种子按发芽与否是两种不同情况(方法)。三粒种子发芽共有81 21212=??C C C 种不同情况。 (3)从五人中任选两名参加某项活动。 解:从五人中任选两名参加某项活动,可不考虑任选的两人的次序, 所以此试验的基本事件个数 1025==C n 。 (4)某人参加一次考试,观察得分(按百分制定分)情况。 解:此随机试验是把从0到100 任一种分看作一个基本事件,101=∴n 。 (5)将c b a ,,三只球装入三只盒子中,使每只盒子各装一只球。 解:可用乘法原理:三只盒子视为不动物,可编号Ⅰ,Ⅱ,Ⅲ,三只球可视为可动物,一 个一个放入盒子内(按要求)。a 球可放入三个盒子中的任一个有313=C 种方法。b 球因 为试验要求每只盒子只装一个球,所以a 球放入的盒子不能再放入b 球,b 球只能放入其余(无a 球 的盒子)两个中任一个,其放法有21 2=C 个。c 只能放入剩下的空盒中,其放法只有一个。三个球任放入三个盒中保证每个盒只有一个球,完成这件事共有方法为 611213=??C C 种。 2. 事件A 表示“五件产品中至少有一件不合格品”,事件B 表示“五件产品都是合格品”,则,A B AB U 各表示什么事件?B A 、之间有什么关系? 解: 设k A =“五件中有k 件是不合格品” =B “五件都是合格品”。此随机试验E 的样 本空间可以写成:{}12345,,,,,S A A A A A B = 而 12345A A A A A A =U U U U ,A B S ∴=U φ=AB ,A 与B 是互为对立事件。 3. 随机抽验三件产品,设A 表示“三件中至少有一件是废品”,设B 表示“三件中至少有两件是废品”,C 表示“三件都是正品”,问 ,,,,A B C A B AC U 各表示什么事件?

《概率论与数理统计》习题及答案第八章

《概率论与数理统计》习题及答案 第八章 1. 设x.,x2,???,%…是从总体X中抽岀的样本,假设X服从参数为兄的指数分布,几未知,给泄入〉0和显著性水平a(Ovavl),试求假设H o的力$检验统计量及否建域. 解 选统汁量*=2人工乙=2如庆 则Z2 -Z2(2n) ?对于给宦的显著性水平a,査z'分布表求出临界值加⑵",使 加⑵2))=Q 因z2 > z2 > 所以(F": (2/1)) => (/2 > /; (2n)),从而 a = P{X2 > 加⑵“} n P{r > Za(2/0) 可见仏:2>^的否定域为Z2>Z;(2?). 2. 某种零件的尺寸方差为O-2=1.21,对一批这类零件检查6件得尺寸数据(毫米):,,,,,。设零件尺寸服从正态分布,问这批零件的平均尺寸能否认为是毫米(a = O.O5). 解问题是在/已知的条件下检验假设:“ = 32.50 Ho的否定域为1“ l> u af2 u0(n5 = 1.96 ,因1“ 1=6.77 >1.96,所以否泄弘,即不能认为平均尺寸是亳米。 3. 设某产品的指标服从正态分布,它的标准差为b = 100,今抽了一个容量为26的样本,计算平均值1580,问在显著性水平a = 0.05下,能否认为这批产品的指标的期望值“不低于1600。 解问题是在b?已知的条件下检验假设://>1600 的否定域为u < -u a/2,其中

X-1600 r-r 1580-1600 c , “ 11 = ------------ V26 = ------------------- x 5.1 = —1.02. 100 100 一叫05 =—1.64. 因为// =-1.02>-1.64 =-M005,所以接受H(>,即可以认为这批产品的指标的期望值“不低于1600. 4. 一种元件,要求其使用寿命不低于1000小时,现在从这批元件中任取25件,测得其寿命平均值为950小时,已知该元件寿命服从标准差为o-=100 小时的正态分布,问这批元件是否合格(<7=0.05) 解设元件寿命为X,则X~N(“,IO。?),问题是检验假设H0://>1000.仏的否定域为w < -H0 05 ,貝中 X-1000 /— 950-1000 「 u = -------------- (25 = ------------------ x5 = -2.5 cr 100 w o.o5 = 1 64 因为 u = -2.5 < -1.64 = z/005 所以否泄Ho,即元件不合格. 5. 某批矿砂的5个样品中镰含量经测左为X(%): 3.25, 3.27, 3.24, 3.26, 3.24 设测泄值服从正态分布,问能否认为这批矿砂的银含量为3.25(a = 0.01)解问题是在P未知的条件下检验假设H. : // = 3.25 H o的否泄域为 lfl>也⑷ _ 1 5 _ X =3.252, s'=_(工X” -5X X2)=O.OOO17, 5=0.013 4 r-l /().oo5 ⑷=4.6041 X-3.25 ,7 3.252-3.25 … t = ------------- >/5 = ----------------- x 2.24 = 0.345 S0.013 因为 1/1= 0.345 < 4.6041 = Z0005(4) 所以接受Ho,即可以认为这批矿砂的银含虽:为. 6. 糖厂用自动打包机打包,每包标准重量为100公斤,每天开工后要检验一次打包机工作是否正常,某日开工后测得9包重量(单位:公斤)如下:

概率论与数理统计(经管类)第七章课后习题答案word

习题7.1 1.设总体X服从指数分布 试求的极大似然估计.若某电子元件的使用寿命服从该指数分布,现随机抽取18个电子元件,测得寿命数据如下(单位:小时): 16, 19, 50, 68, 100, 130, 140, 270, 280, 340, 410, 450, 520, 620, 190, 210, 800, 1100. 求的估计值. 解: 似然函数为 令 得 2.设总体X的概率密度为 其他 试求(1)的矩估计的极大似然估计 解: (1) 的矩估计 (2) 似然函数为

令 解得 3.设总体X服从参数为的泊松分布试求的矩估计和极大似然估计(可参考例7-8) 解:由服从参数为的泊松分布 由矩法,应有 似然函数为 解得的极大似然估计为 习题7.2 1.证明样本均值是总体均值的相合估计 证: 由定理知是的相合估计 2.证明样本的k阶矩是总体阶矩的相合估计量 证: 是的相合估计 3.设总体为其样品试证下述三个估计量 (1) (2)

(3) 都是的无偏估计,并求出每一估计量的方差,问哪个方差最小? 证: 都是的无偏估计 故的方差最小. 4.设总体其中是未知参数又为取自该总体的样品为样品均值 (1)证明是参数的无偏估计和相合估计 (2)求的极大似然估计 (1)证: 是参数的无偏估计 又 是参数的相合估计 (2)故其分布密度为 其他 似然函数 其他 因对所有有

习题7.3 1.土木结构实验室对一批建筑材料进行抗断强度试验.已知这批材料的抗断强度.现从中 抽取容量为6的样本测得样本观测值并算的求的置信度的置信区间 解: 置信度为的置信区间是 2.设轮胎的寿命X服从正态分布,为估计某种轮胎的平均寿命,随机地抽取12只轮胎试用,测得它们的 寿命(单位:万千米)如下: 4.68 4.85 4.32 4.85 4.61 5.02 5.20 4.60 4.58 4.72 4.38 4.7 试求平均寿命的的置信区间(例7-21,未知时的置信区间) 解:查分布表知 平均寿命的的置信区间为 3.两台车床生产同一种型号的滚珠,已知两车床生产的滚珠直径X,Y分别服从 其中未知现由甲,乙两车床的产品中分别抽出25个和15个,测得 求两总体方差比的置信度0.90的置信区间. 解:此处 的置信度0.90的置信区间为: 4.某工厂生产滚珠,从某日生产的产品中随机抽取9个,测得直径(单位:毫米)如下: 14.6 14.7 15.1 14.9 14.8 15.0 15.1 15.2 14.8 设滚珠直径服从正态分布,若 (1)已知滚珠直径的标准差毫米; (2)未知标准差

同济大学版概率论与数理统计——修改版答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第一章 随机事件及其概率(一) 一.选择题 1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ] (A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件 2.下面各组事件中,互为对立事件的有 [ B ] (A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品} (B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品} (C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个} (D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品} 3.下列事件与事件A B -不等价的是 [ C ] (A )A A B - (B )()A B B ?- (C )A B (D )A B 4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ?表示 [ C] (A )二人都没射中 (B )二人都射中 (C )二人没有都射着 (D )至少一个射中 5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D] (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销 6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则A B 表示 [ A] (A ){|01}x x ≤< (B ){|01}x x << (C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<

同济大学概率统计试卷

概率统计试卷二 一、(10分)已知随机变量X 服从参数为1的泊松分布,记事件{}2,X A =≥ {}1,X B =<求()()() ,,.P P P A B A -B B A 二、(10分)对以往数据分析结果表明,当机器运转正常时,产品的合格率为90%;而当机器发生故障时其合格率为30%,机器开动时,机器运转正常的概率为75%,试求已知某日首件产品是合格品时,机器运转正常的概率。 三、(12分)设(X ,Y )为二维离散型随机变量,X ,Y 的边缘概率函数分别为 且()01,P XY ==试求: (1)(X ,Y )的联合概率函数;(2)X ,Y 是否相互独立?为什么? (3)X ,Y 是否相关?为什么? 四、(14分)设(X ,Y )的联合密度函数为()()22,0,0,0, x y e x y f x y -+?>>?=???其余, 试求:(1)()X 1,Y 2;P <> (2)()X Y 1.P +< 五、(12分)假设一条生产流水线在一天内发生故障的概率为0.1,流水线发生故障时全天停止工作,若一周5个工作日无故障这条流水线可产生利润20万元,一周内发生一次故障时,仍可获利润6万元,发生二次或二次以上故障就要亏损2万元,求一周内这条流水线所产生利润的期望值。 六、(12分)假设生产线上组装每件成品花费的时间服从指数分布。统计资料表明:该生产线每件成品的平均组装时间10分钟。假设各件产品的组装时间相互独立。试求在15小时至20小时之间在该生产线组装完成100件成品的概率。(要用中心极限定理) 七、(16分)设()1n X ,,X 是取自总体X 的一个样本,X 服从区间[],1θ上的均匀分布, 其中1,θθ<未知,求(1)*θθ的矩估计; (2)θθ的极大似然估计; (3)试问:θ是否为θ的无偏估计?若不是,试将θ修正成θ的一个无偏估计。 八、(14分)已知某种食品的袋重(单位:千克)服从正态分布() 2N μσ,,其中

《概率论与数理统计》习题及答案 第八章

·110 · 《概率论与数理统计》习题及答案 第 八 章 1.设12,,,n X X X 是从总体X 中抽出的样本,假设X 服从参数为λ的指数分布,λ未知,给定00λ>和显著性水平(01)αα<<,试求假设 :H λλ≥的2 χ检验统计量及否定域. 解 00:H λλ≥ 选统计量 2 01 22n i i X n X χλλ===∑ 记 2 1 2n i i X χ λ==∑ 则22~(2)n χχ ,对于给定的显著性水平α,查2 χ分布表求出临界值2(2)n αχ, 使 22 ((2))P n αχ χα≥= 因 22 χ χ> ,所以222 2 ((2))((2)) n n ααχχχχ≥?≥ ,从而 22 2 2 {(2)}{(2)}P n P n αααχ χχχ=≥≥≥ 可见00:H λλ≥的否定域为2 2 (2)n αχ χ≥. 2.某种零件的尺寸方差为2 1.21σ=,对一批这类零件检查6件得尺寸数 据(毫米):32.56, 29.66, 31.64, 30.00, 21.87, 31.03。设零件尺寸服从正态分布,问这批零件的平均尺寸能否认为是32.50毫米(0.05α=). 解 问题是在2 σ已知的条件下检验假设0:32.50H μ= 0H 的否定域为/2||u u α≥ 其中 29.4632.50 2.45 6.771.1 u -= = ?=- 0.025 1.96 u =,因|| 6.77 1.96 u =>,所以否定0H ,即不能认为平均尺寸是32.5 毫米。 3.设某产品的指标服从正态分布,它的标准差为100σ=,今抽了一个容量为26的样本,计算平均值1580,问在显著性水平0.05α=下,能否认为这批 产品的指标的期望值μ不低于1600。

概率论与数理统计复旦大学出版社第一章课后答案

第一章 1.见教材习题参考答案. 2.设A ,B ,C 为三个事件,试用A ,B ,C (1) A 发生,B ,C 都不发生; (2) A ,B ,C 都发生; (3) A ,B ,C (4) A ,B ,C 都不发生; (5) A ,B ,C (6) A ,B ,C 至多有1个不发生; 【解】(1) ABC (2) ABC (3)A B C (4) ABC =A B C (5) ABC (6) ABC ∪ABC ∪ABC ∪ABC =AB BC AC 3. . 4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.6 5.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7, (1) 在什么条件下P (AB (2) 在什么条件下P (AB 【解】(1) 当AB =A 时,()()0.6P AB P A ==,()P AB 取到最大值为0.6. (2) 当A ∪B =Ω时,()()()()0.3P AB P A P B P A B =+-=,()P AB 取到最小值为0.3. 6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率. 【解】 因为P (AB )=P (BC )=0,所以P (ABC )=0, 由加法公式可得 ()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ = 14+14+13-112=34

概率论与数理统计第八章习题答案

第八章 假设检验部分习题解答 2 ~(32.05,1.1)6cm 32.5629.6631.6430.0031.8731.03 32.050.050.01. N ξαα==已知某种零件的长度,现从中抽查件,测得它们的长度(单位:)为: , , , , , 试问这批零件的平均长度是否就是厘米?检查使用两个不同的显著性水平:,0011:32.05. ~(0,1)1,. 6,31.03)31.127.H N n U u μμξα======<=作出判断。当时,因而时,拒绝当时,因而时,接受。 0(,1)100 5.32:50.01N H μξμα===从正态总体中抽取个样品,计算得,试检验是否成立(显著性水平)? 00/2/201/20.01: 5.(2)(3),(||)1. (4) 5.32.3.250.01H u P U u U u u u αααμμξαμα==<=?=== ====解:( )提出假设,使求观察值。已知将以上数据代入得观察值()作出判断。当时,0510 2.58,|| 2.58,0.01u H α=>=因而时,拒绝。 26.~(100,1.2)999.3 98.7 100.5 101.2 98.3 99.7 102.1 100.5 99.5.0.05(1)2N g ξα=某公司用自动灌装机灌装营养液,设自动灌装机的正常灌装量 ,现测量支灌装样品的灌装量(单位:)为 ,,,,,,,,问在显著性水平下,灌装量是否符合标准?()灌装精度是否在标准范围内?

概率论第一章答案

.1. 解:(正, 正), (正, 反), (反, 正), (反, 反) A (正 ,正) , (正, 反) .B (正,正),(反,反) C (正 ,正) , (正, 反) ,(反,正) 2.解:(1,1),(1,2), ,(1,6),(2,1),(2,2), ,(2,6), ,(6,1),(6,2), ,(6,6);AB (1,1),(1,3),(2,2),(3,1); A B (1,1),(1,3),(1,5), ,(6,2),(6,4),(6,6),(1,2),(2,1); AC - BC (1,1),(2,2). A B C D (1,5), (2,4), (2,6), (4,2), (4,6), (5,1), (6,2), (6,4) 3. 解:(1) ABC ;(2) ABC ;(3) ABC ABC ABC ; (4) ABC ABC ABC ;( 5) A B C ; (6) ABC ;(7) ABC ABC ABC ABC 或AB AC BC (8) ABC ;(9) ABC 4. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中; 甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中c 5. 解:如图: 第一章概率论的基本概念习题答案

每次拿一件,取后放回,拿3次: ABC ABC; AB C ABC C; B A C ABC ABC ABC BA ABC BC ABC 6. 解:不 疋成立 。例如: A 3,4,5 B 那么 A C B C 但A B 0 7. 解:不 疋成立 。例如: A 3,4,5 B 那么 A (B C) 3 , 但是 (A B) C 3,6,7 ABC ABC A B 4,5,6 o 8.解: C ABC ABC ABC 3 C 4,5 6,7 P( BA) P(B AB) P(B) P(AB) (1) 2 ; (2) P( BA) P(B A) P(B) 1 P(A) 6 ; (3) P( BA) P(B AB) P(B) 1 P(AB)- 2 9. 解: P(ABC) P A B C 1 P(A B C)= 1 1 8 P (1 ) 2 982 1003 0.0576 ; 1旦 1003 0.0588 ; 1 P(A) 1 P(B) 1 P(C) 1 P(AB) 1 P(AC) 3 P(BC) P(ABC) 16 16 g 八牛 A)n .(.( (C p( B P (1) C ;8C ; C 100 0.0588 ; P (2) 3 100 1 98 0.0594 ; D P 3 2 2 P c ;c

同济大学概率论与数理统计 复习试卷

同济大学概率论与数理统计 复习试卷 1、对于任意二个随机事件B A ,,其中1)(,0)(≠≠A P A P ,则下列选项中必定成立的是( ) (A ) ()()A B P A B P = 是B A ,独立的充分必要条件; (B) ()()A B P A B P = 是B A ,独立的充分条件非必要条件; (C) ()()A B P A B P = 是B A ,独立的必要条件非充分条件; (D) ()()A B P A B P = 是B A ,独立的既非充分条件也非必要条件. 2、 设一批产品中一、二、三等品各占60%、30%、10%,现从中随机地取出一件,结果发现取到的这件不是三等品,在此条件下取到的这件产品是一等品的概率为 ,在此条件下取到的这件产品是二等品的概率为 . 3、 对任意常数)(,,b a b a <,已知随机变量X 满足 (),()P X a P X b αβ≤=≥=. 记()b X a P p ≤<=,则下列选项中必定成立的是 ( ) (A))(1βα+-=p ; (B) )(1βα+-≥p ; (C) )(1βα+-≠p ; (D) )(1βα+-≤p . 4、 设随机变量X 的概率密度为 ???<<=其它,010,5)(4x x x f ,则使得)()(a X P a X P <=>成立的常数=a ,X Y ln 2-=的密度函数

为=)(y f Y . 5、如果22,,EY EX ∞<<∞且X 与Y 满足()(),D X Y D X Y +=-则必有 ( ) ()A X 与Y 独立; ()B X 与Y 不相关; ()()0C D Y =; ()()()0.D D X D Y = 6、 设12,,n X X X 相互独立且服从相同的分布, ∑====n i i X n X X D X E 1 111,3)(,1)(,则由切比雪夫不等式可得() ≤≥-11X P ,∑=n i i X n 121依概率收敛于 . 7、 设521,X X X 独立且服从相同的分布, ()1,0~1N X .()()2 542321X X X X X c Y +++=.当常数c = 时,Y 服从自由度为 的F 分布. 8、一个男子在某城市的一条街道遭到背后袭击和抢劫,他断言凶犯是黑人。然而,当调查这一案件的警察在可比较的光照条件下多次重新展现现场情况时,发现受害者正确识别袭击者肤色的概率只有80%,假定凶犯是本地人,而在这个城市人口中90%是白人,10%是黑人,且假定白人和黑人的犯罪率相同,

相关文档
最新文档