简易场效应管低频跨导gm检测电路

简易场效应管低频跨导gm检测电路
简易场效应管低频跨导gm检测电路

第一章方案提出

依据课程设计的需要,特设计思路如下图框所示:

三极管类型判别电路的功能是利用N沟道型和P沟道型电流流向相反的特性来判别。场效应管跨导测量电路的功能是利用场效应管的电压分配特性,将对gm的测量转化为对场效应管的测量,同时实现对档位的手动调节。场效应管gm测量电路的功能是利用比较器的原理实现8个档位的测量,显示电路的功能是利用发光二极管将测量结果显示出来。

第二章电路基本组成及工作原理

第一节场效应管类型判断电路

场效应管判别类型如图1所示。由于P沟道和N沟道场效应管的电流流向相反,当两种场效应管按图中电路结构链接时,则与N沟道场效应管连接的发光二极管亮,与P沟道连接的发光二极管不亮,所以根据发光二极管的亮和灭,即可以判定场效应管是N沟道还是P沟道。并且将P沟道场效应管翻转连接,电路即可正常工作。

(a)(b)

图1

第二节场效应管低频跨导测量电路

当电路接入N沟道场效应管时,如图1(a)所示,电路中的电流电压表达式为:

(IDSS VP都是已知参数)

V GS =V G-V S

由上式可以看出,除了R0可变电阻外,其余都是固定电阻,电压Vo随gm的变化而变化,同时可通过调节R0大小可以调节Vgs的大小,调节最终的gm档位值。

当电路接入P沟道场效应管时,为此可采用如图1的(b)所示,电路中的电流电压的表达式为:

(IDSS VP都是已知参数)

V GS =V G-V S

由上式可得,电压Vo将随gm的变化而变化,同时也可以通过调节R0调节gm档的位值。

第三节低频跨导档位测量电路和显示电路

图2

档位测量电路:如图2所示,gm档位测量电路的核心部分是由运算放大器构成的8个比较电路,其中虚线代表省略的5个运算放大器,所有放大器的反相端接gm测量电路的输出端Vo或Ve,而8个相同的电阻把电源电压分成八等分,分别为18、15.75、13.5、11.25、9、6.75、4.5、2.25。这样通过测量值和标准电压的比较就可以把gm的8个值分入8个档位。根据比较的结果,如果测量值大于标准电压,就输出低电平,反之输出高电平。

显示电路:如图表3虚线左侧电路所示,显示电路是通过八个发光二极管来实现的。通过运算放大器输出的高低电平,发光二极管产生亮和灭,这样就知道gm属于哪一个档位,达到显示的作用。注意运放的

输出电流要与发光二极管的驱动电流匹配。

若在显示电路的前端接入译码电路,可以减少发光二极管的数目。第四节电源电路

电源电路可以采用两种方式来实现:第一种是采用电池供电,第二种方法如图2所示,直接从电网供电,通过变压器电路,整流装置,滤波电路和稳压电路将电网中的220V交流电压转化为+18V直流电压。电路中变压器采用常规的铁心变压器,整流电路采用二极管桥式整流电路,C1,C2,C3,C4完成滤波功能,稳压电路采用三端稳压集成芯片来实现。

电源电路图

图3

第三章元件的介绍

第一节场效应管的基本类型

场效应管分结型、绝缘栅型(MOS)两大类按沟道材料:结型和绝缘栅型各分N沟道和P沟道两种.按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应晶体管又分为N沟耗型和增强型;P沟耗尽型和增强型分四大类.

第二节场效应管的原理

下面以N沟道结型场效应管介绍工作原理,对P沟道结型场效应

管可以用对偶方法得出。场效应管的漏极电流ID与沟道的宽窄有关,沟道宽时,沟道内电阻小,ID大;沟道窄时,沟道内电阻大,ID小。要改变沟道的宽窄可在栅源极间加反向电压-VGS和在漏源极间加正向电压VDS。

图3.1.2 沟道受VGS控制

当漏源电压V

DS

由零开始增大时,沟道内各点的电位由漏极d 端至源极s 端逐减小,因而PN结上各点的反压由d端至s端也逐渐降低,沟道内耗尽层上宽下窄,沟道为楔形分布,如图3.1.3(a)所示,这时沟道的截

面积变化不大,沟道内呈现的电阻可近似看成不变,I

D 随V

DS

线性增加,

如图3.1.4中V

GS

=0时的OA段。当漏源电压增大时,耗尽层增宽,沟道

截面积减小,沟道内电阻增大,I

D 随V

DS

增加减慢,

场效应管的结构及功能介绍1、结型场效应管的结构

场效应管的结构如图6.18所示,它是在一块N型半导体的两边利用杂质扩散出高浓度的P型区域,用P+表示,形成两个P+N结。N型半导体的两端引出两个电极,分别称为漏极D和源极S。把两边的P区引出电极并连在一起称为栅极G。如果在漏、源极间加上正向电压,N区中的多子(也就是电子)可以导电。它们从源极S出发,流向漏极D。电流方向由D指向S,称为漏极电流ID.。由于导电沟道是N型的,故称为N沟道结型场效应管。

2、作用:

场效应管的作用1、场效应管可应用于放大。由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。

场效应管作用2、场效应管很高的输入阻抗非常适合作阻抗变换。常用于多级放大器的输入级作阻抗变换。

场效应管的作用3、场效应管可以用作可变电阻。

场效应管作用4、场效应管可以便地用作恒流源。

场效应管的作用5、场效应管可以用作电子开关。

3、场效应管的应用

场效应管在恒流区内工作时,当GS电压变化△VGS时,D极电流相应变化△iD。若将△iD通过较大的RL,从RL上取出的△V0=△iDRL,可能比△VGS大许多倍,即△VGS得到了放大。所以场效应管和晶体管一样在电路中可起放大的作用。

第三节运放LM324的介绍

LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“V o”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端V o 的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端V o 的信号与该输入端的相位相同。

当去掉运放的反馈电阻时,或者说反馈电阻趋于无穷大时(即开环状态),理论上认为运放的开环放大倍数也为无穷大(实际上是很大,如LM324运放开环放大倍数为100dB,既10万倍)。此时运放便形成一个电压比较器,其输出如不是高电平(V+),就是低电平(V-或接地)。当正输入端电压高于负输入端电压时,运放输出低电平。

第四节LED灯的介绍

LED原理。LED是Light Emitting Diode即发光二极管的缩写,最早于1962年由GE(General Electric Company)研究人员Nick Holonyak Jr.发明。其I-V特性与普通二极管比较类似,所不同的是其内部PN结具有发光特性。发光二极管的核心部分是由P型半导体和N型半导体组成的晶片,在P型半导体和N型半导体之间有一个过渡层,即PN结。当PN 结导通时,两种不同的载流子:空穴和电子在不同的电极电压作用下从电极流向PN结。当空穴和电子相遇而产生复合,电子会跌落到较低的

能阶,同时以光子的方式释放出能量,即辐射发光。任何二极管都会有此发光的特性(通常非可见光且发光效率非常低),不同的是发光二极管通过使用特殊的材料、特殊的工艺,使得PN结发光的效率提高,发光的频率一致,从而得到可使用的特定频率的光。通常所说的LED是指能发出可见光的发光二极管。

第五节元件清单

第四章参数计算

由低频跨导的档位测量电路得知关于Vgs有8个档位分别是18、15.75、13.5、11.25、9、6.75、4.5、2.25。当把某一类型场效应管放入检测电路中时,测得的Vgs应为上述某两个档位之间。这两个档位较小的所连接的二极管和较小档位以前的二极管是亮的,而以后的都是灭的。

已知场效应管的Idss,Vp,由Vgs可得gm的八个档位值。

第五章总结

作为一名电气系系,电子信息工程专业大二的学生,我觉得能做类似的课程设计是十分有意义,而且是十分必要的。

已度过的大学时间里我们大多数接触的是专业基础课。我们在课堂上掌握的仅仅是专业基础课的理论面,如何把我们所学到的专业基础理论知识用到实践中去呢?我想做类似的大作业就为我们提供了良好的实践平台。为了让自己的设计更加完善,一次次翻阅设计手册是十分必要的,一切都要有据可依,有理可寻,不切实际的构想永远只能是构想,无法升级为设计。另外;小组共同设计给我们提供了团体协作的途径,让我们更能有利于进行思考和设计,一个人的力量是有限的,但是团体的力量是无穷的,在设计过程中要进行换位思考,综合大家的力量进行初步的理论设计,然后要独立的完成自己的设计思路。在学习理论知识的同时也要参加实践活动,同时,分组设计也有利于我们同学之间的团体协作。

在这次课程设计作业的过程中由于在设计方面我们没有经验,理论基础知识掌握得不牢固,在设计中难免会出现这样那样的问题,这些都暴露出了前期我在这些方面知识的欠缺和经验的不足。对于我来说,收获最大的是方法和能力;那些分析和解决问题的能力。在整个课程设计的过程中,我发现我们学生在经验方面十分缺乏,空有理论知识,没有理性的知识;有些东西可能与实际脱节。总体来说,我觉得像课程设计这种类型的作业对我们的帮助还是很大的,它需要我们将学过的相关知识系统地联系起来,从中暴露出自身的不足,以待改进!

本次的课程设计,培养了我综合应用数电和模电课程及其他课程的

理论知识和理论联系实际,应用生产实际知识解决工程实际问题的能力;在设计的过程中还培养出了我们的团队精神,同学们共同协作,解决了许多个人无法解决的问题;在今后的学习过程中我们会更加努力和团结。

但是由于水平有限,难免会有错误,还望老师批评指正。

附录附录一

电源电路总图

附录二几种常用的场效应管参数一夹断电压V P

当V

DS =10V,I

D

=50mA时的V

GS

值。

二饱和漏极电流I DSS

当V

DS =10V,V

GS

=0V时的ID值。对结型场效应管,I

DSS

是能输出的

最大漏极电流。

三最大漏源电压V(BR)DS

与V

GS 有关,V

GS

愈负,其值愈小。

四最大栅源电压V(BR)GS

为PN结的反向击穿电压

五直流输入电阻R GS

正常运用时PN结反偏,其值可达107Ω以上。六低频互导(跨导)gm

定义为

它表明了输入栅源电压v

GS 对输出漏极电流i

D

的控制能力,相当

于转移特性上Q点的斜率,如图3.1.7所示

图3.1.7

gm是表征场效应管放大能力的重要参数,单位为mA/V=ms,其值一般为十分之几~几mS(比三极管小一个数量级)。对式(3.1.3)微分,可得

(3.1.6)

式中

(3.1.7)

=0时的跨导。

为V

GS

参考文献

1. 何小艇主编, 电子系统设计, 浙江大学出版社, 2001年6月

2. 姚福安主编, 电子电路设计与实践, 山东科学技术出版社, 2001年10月

3. 王澄非主编, 电路与数字逻辑设计实践, 东南大学出版社, 1999年10月

4. 李银华主编, 电子线路设计指导, 北京航空航天大学, 2005年6月

5. 康光华主编, 电子技术基础, 高教出版社, 2003年

场效应管放大电路13912

场效应管放大电路 一、选择填空(只填①、②…字样) 1.晶体管是依靠 ⑤ 导电来工作的 ⑦ 器件;场效应管是依靠 ① 导电来工作的 ⑥ 器件(①多数载流子,②少数载流子,③电子,④空穴,⑤多数载流子和少数载流子,⑥单极型,⑦双极型,⑧无极型)。 2.晶体管是 ② ;场效应管是 ① (①电压控制器件;②电流控制器件) 3.晶体管的输入电阻比场效应管的输入电阻 ③ (①大得多;②差不多;③小得多)。 4.晶体管的集电极电流 ② ;场效应管的漏极电流 ① (①穿过一个PN 结,② 穿过两个PN 结,③不穿过PN 结) 5.放大电路中的晶体管应工作在 ② ;场效应管应工作在 ① (①饱和区,②放大区,③截止区,④夹断区,⑤可变电阻区)。 6.绝缘栅型场效应管是利用改变 栅源两极 的大小来改变 沟道电阻 的大小,从而 达到控制 漏极电流 的目的;根据 栅源两极电压为零 时,有无 漏极电流 的差别,MOS 管可分为 耗尽 型和 增强 型两种类型。 7.NMOS 管最大的优点是 输入电阻较大 ;其栅—源电压的极性 为负 ,漏—源电压的极性 为正 ;对于增强型NMOS 管,这两种电压的极性 为正 ,对增强型PMOS 管这两种电压的极性为 负 。 8.耗尽型场效应管在恒流区的转移特性方程为()D GS DS i f u u ==常数,它们都是反映 栅源两端电 压 对 漏极电流 控制特性的。 9、当场效应管的漏极直流电流I D 从2mA 变为4mA 时,它的低频跨导g m 将 。 A.增大 B.不变 C.减小 答案:A 二、解答题 2.已知场效应管的输出特性曲线如图P1.22所示,画出它在恒流区的转移特性曲线。 图P1.22 解:在场效应管的恒流区作横坐标的垂线〔如解图P1.22(a )所示〕,读出其与各条曲线交点的纵坐标值及U GS 值,建立i D =f (u GS )坐标系,描点,连线,即可得到转移特性曲线,如解图P1.22(b )所示。

场效应管放大器实验报告

实验六场效应管放大器 一、实验目的 1、了解结型场效应管的性能和特点 2、进一步熟悉放大器动态参数的测试方法 二、实验仪器 1、双踪示波器 2、万用表 3、信号发生器 三、实验原理 实验电路如下图所示:

图6-1 场效应管是一种电压控制型器件。按结构可分为结型和绝缘栅型两种类型。由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。 1、结型场效应管的特性和参数 场效应管的特性主要有输出特性和转移特性。图6-2所示为N 沟道结 图6-2 3DJ6F 的输出特性和转移特性曲线 型场效应管3DJ6F 的输出特性和转移特性曲线。 其直流参数主要有饱和漏极电流I DSS ,夹断电压U P 等;交流参数主要有低频跨导 常数U △U △I g DS GS D m == 表6-1列出了3DJ6F 的典型参数值及测试条件。

表6-1 2、场效应管放大器性能分析 图6-1为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 3、输入电阻的测量方法 场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验二中晶体管放大器的测量方法相同。其输入电阻的测量, S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

场效应管放大电路习题答案

第3章场效应管放大电路 3-1判断下列说法是否正确,用“√”和“×”表示判断结果填入空内。 (1)结型场效应管外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证其R GS 大的特点。(?) (2)若耗尽型N沟道MOS管的U GS大于零,则其输入电阻会明显变小。(?) 3-2选择正确答案填入空内。 (1)U GS=0V时,不能够工作在恒流区的场效应管有 B 。 A. 结型管 B. 增强型MOS管 C. 耗尽型MOS管 (2)当场效应管的漏极直流电流I D从2mA变为4mA时,它的低频跨导g m将 A 。 A.增大 B.不变 C.减小 3-3改正图P3-3所示各电路中的错误,使它们有可能放大正弦波电压。要求保留电路的共源接法。 图P3-3 解:(a)源极加电阻R S。 (b)漏极加电阻R D。 (c)输入端加耦合电容。 (d)在R g支路加-V G G,+V D D改为-V D D 改正电路如解图P3-3所示。

解图P3-3 3-4已知图P3-4(a)所示电路中场效应管的转移特性和输出特性分别如图(b)(c)所示。 A 、R i和R o。(1)利用图解法求解Q点;(2)利用等效电路法求解 u 图P3-4

解:(1)在转移特性中作直线u G S =-i D R S ,与转移特性的交点即为Q 点;读出坐标值,得出I D Q =1mA ,U G S Q =-2V 。如解图P3-4(a )所示。 解图P3-4 在输出特性中作直流负载线u D S =V D D -i D (R D +R S ),与U G S Q =-2V 的那条输出特性曲线的交点为Q 点,U D S Q ≈3V 。如解图P3-4(b )所示。 (2)首先画出交流等效电路(图略),然后进行动态分析。 mA/V 12DQ DSS GS(off)GS D m DS =-=??=I I U u i g U Ω ==Ω==-=-=k 5 M 1 5D o i D m R R R R R g A g u & 3-5 已知图P3-5(a )所示电路中场效应管的转移特性如图(b )所示。求解 电路的Q 点和u A &。 图P3-5 解:(1)求Q 点: 根据电路图可知, U G S Q =V G G =3V 。 从转移特性查得,当U G S Q =3V 时的漏极电流 I D Q =1mA

负反馈放大电路实验报告

负反馈放大电路实验报告

3)闭环电压放大倍数为10s o sf -≈=U U A u 。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。 图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。 图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。 3.3k ?

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) ? b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, 4.2 s R k ≈Ω,使得静态工作点满足:I DQ约为2mA,U GDQ < - 4V。记录并计算电路参数及静态工作点的相关数据(I DQ,U GSQ,U A,U S、U GDQ)。 实验中,静态工作点调整,实际4 s R k =Ω

第二级电路:通过调节R b2,2 40b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。 实验中,静态工作点调整,实际2 41b R k =Ω c. 动态参数的调试 输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数 s o11U U A u = 、s o U U A u =、输入电阻R i 和输出电阻R o 。 电压放大倍数:(直接用示波器测量输入输出电压幅值) o1 U s U o U 1 u A 输入电阻: 测试电路:

场效应管及其放大电路例题解析

第3章 场效应管及其放大电路例题解析 例3.1 试将场效应管栅极和漏极电压对电流的控制机理,与双极型晶体管基极和集电极电压对电流的控制机理作一比较。 场效应管栅极电压是通过改变场效应管导电沟道的几何尺寸来控制电流。漏极电压则改变导电沟道几何尺寸和加速载流子运动。双极型三极管基极电压是通过改变发射结势垒高度来控制电流,集电极电压(在放大区)是通过改变基区宽度,从而改变基区少子密度梯度来控制电流。 例3.2 N 沟道JFET 的转移特性如图3.1所示。试确定其饱和漏电流I DSS 和夹断电压V P 。 解 由图3.1可至知,此JFET 的饱和漏电流I DSS ≈4mA ,夹断电压V P ≈-4V 。 例3.3 N 沟道JFET 的输出特性如图3.2所示。漏源电压的V DS =15V ,试确定其饱和漏电流I DSS 和夹断电压V P 。并计算V GS =-2V 时的跨导g m 。 解 由图3.2可得:饱和漏电流I DSS ≈4mA ,夹断电压V P ≈-4V ,V GS =-2V 时,用作图法求得跨导近似为:ms g m 2.1) 2(14.16.2=----≈ 例3.4 在图3.3所示的放大电路中,已知V DD =20V ,R D =10k Ω,R S =10k Ω,R 1=200k Ω,R 2=51k Ω,R G =1M Ω,并将其输出端接一负载电阻R L =10 k Ω。所用的场效应管为N 沟道耗尽型,其参数I DSS =0.9mA ,V P =—4V ,g m =1.5mA /V 。试求:(1)静态值; (2)电压放大倍数。 解 (1) 画出其微变等效电路,如图3.4所示。其中考虑到rGS很大,可认为rGS开路,由电路图可知, V V V R R R V DD G 42010 )51200(105133 212=??+?=+= 并可列出 D D S G G S I I R V V 310104?-=-= 图3.1 图3. 2

(实验六)结型场效应管放大电路

实验六 结型场效应管放大电路 一.实验摘要 通过对实验箱上结型场效应管的测试,认识N 沟道JFET 场效应管的电压放大特性和开关特性。给MOS 管放大电路加输入信号为:正弦波,Vpp=200mV-500mV ,f=2Khz 。测量输入电阻时,输入端的参考电阻Rs=680K 。 二.实验主要仪器 三极管,万用表,示波器,信号源及其他电子元件。 三.实验原理 场效应管放大器性能分析 图6-1为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 输入电阻的测量方法 场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验二中晶体管放大器的测量方法相同。其输入电阻的测量,从原理上讲,也可采 S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

用实验二中所述方法,但由于场效应管的R i 比较大,如直接测输入电压U S 和U i ,则限于测量仪器的输入电阻有限,必然会带来较大的误差。因此为了减小误差,常利用被测放大器的隔离作用,通过测量输出电压U O 来计算输入电阻。测量电路如图所示。 输入电阻测量电路 在放大器的输入端串入电阻R ,把开关K 掷向位置1(即使R =0),测量放大器的输出电压U 01=A V U S ;保持U S 不变,再把K 掷向2(即接入R ),测量放大器的输出电压U 02。由于两次测量中A V 和U S 保持不变,故 V S i i i V 02A U R R R U A U += = 由此可以求出 R U U U R 02 O102 i -=

负反馈放大电路实验报告

实验二由分立元件构成的负反馈放大电路 一、实验目的 1?了解N沟道结型场效应管的特性和工作原理; 2?熟悉两级放大电路的设计和调试方法; 3?理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N沟道结型场效应管和NPN型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1.基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流I DQ和I CQ均约为2mA结型场效应管的管压降U G DQ< - 4V ,晶体管的管压降U C EQ= 2?3V; 2)开环时,两级放大电路的输入电阻要大于90k Q,以反馈电阻作为负载时的电压放大倍数的数值 >120 ; 3)闭环电压放大倍数为A usf二U°,.U s、-10。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R模拟信号源的内阻;R为反馈电阻, 取值为100 k Q o Rt 图1电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中%选择910k Q, R1、R2应大于100k Q; G?G容量为10疔,C e容量为47犷。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R,见图2,理由详见五附录一2”。 i㈡ R T 井肘成大电谿 图2两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, R^^4.2kQ ,使得静态工作点满足:I D 哟为2mA U G DQ < -4V 。记录并计算电路参数及静态工作点的相关数据( I DQ , U G SQ LA ,U S 、U G D Q 。 实验中,静态工作点调整,实际 -4k '1 第二级电路:通过调节 氐,&2 : 40^ 1 ,使得静态工作点满足:I CQ 约为2mA U C EQ = 2? 3V 。记录电路参数及静态工作点的相关数据( | CQ L C EQ )。 实验中,静态工作点调整,实际 R b ^41k 11 c. 动态参数的调试 输入正弦信号 U S ,幅度为 10mV 频率为10kHz ,测量并记录电路的电压放大倍数 A1 =U °1 -U s 、A =U o.. U s 、输入电阻R 和输出电阻R °o XSC1 Rf1 100k| ?

场效应晶体管及其电路分析课后答案汇编

场效应晶体管及其电路分析 题1.3.1绝缘栅场效应管漏极特性曲线如图题1.3.1(a)~(d)所示。 (1)说明图(a)~(d)曲线对应何种类型的场效应管。 (2)根据图中曲线粗略地估计:开启电压V T、夹断电压V P和饱和漏极电流I DSS或I DO 的数值。 图题1.3.1 解:图(a):增强型N沟道MOS管,V GS(th)≈3V,I DO≈3mA; 图(b):增强型P沟道MOS管,V GS(th)≈-2V,I DO≈2mA; 图(c):耗尽型型P沟道MOS管,V GS(off)≈2V,I DSS≈2mA; 图(d):耗尽型型N沟道MOS管,V GS(off)≈-3V,I DSS≈3mA。 题1.3.2 场效应管漏极特性曲线同图题1.3.1(a)~(d)所示。分别画出各种管子对应的转移特性曲线i D=f(v GS)。 解:在漏极特性上某一V DS下作一直线,该直线与每条输出特性的交点决定了V GS和I D的大小,逐点作出,连接成曲线,就是管子的转移特性了,分别如图1.3.2所示。 图1.3.2 题1.3.3 图题1.3.3所示为场效应管的转移特性曲线。试问:

图题1.3.3 (1) I DSS 、V P 值为多大? (2) 根据给定曲线,估算当i D =1.5mA 和i D =3.9mA 时,g m 约为多少? (3) 根据g m 的定义:GS D m dv di g ,计算v GS = -1V 和v GS = -3V 时相对应的g m 值。 解: (1) I DSS =5.5mA ,V GS(off)=-5V ; (2) I D =1.5mA 时,g m ≈0.88ms ,I D =3.9mA 时,g m ≈1.76ms ; (3) v GS =-1V 时,g m ≈0.88ms ,v GS =-3V 时,g m ≈1.76ms 。 题1.3.4 由晶体管特性图示仪测得场效应管T 1和T 2各具有图题1.3.4的(a )和(b )所示的输出 特性曲线,试判断它们的类型,并粗略地估计V P 或V T 值,以及v DS =5V 时的I DSS 或 I DO 值。 图题1.3.4 解: 图(a):耗尽型PMOS 管,V GS(off)=3V ;当V DS =5V 时,I DSS =2mA ; 图(b):增强型PMOS 管,V GS(th)=-4V ;当V DS =5V 时,I DO ≈1.8mA 。 题1.3.5 某MOS 场效应的漏极特性如图题1.3.5所示。试画出v DS =9V 时的转移特性曲线,并定性分析跨导g m 与I D 的关系。 图题1.3.5

第四章 场效应管(FET)及基本放大电路要点

第四章 场效应管(FET )及基本放大电路 §4.1 知识点归纳 一、场效应管(FET )原理 ·FET 分别为JFET 和MOSFET 两大类。每类都有两种沟道类型,而MOSFET 又分为增强型和耗尽型(JFET 属耗尽型),故共有6种类型FET (图4-1)。 ·JFET 和MOSFET 内部结构有较大差别,但内部的沟道电流都是多子漂移电流。一般情况下,该电流与GS v 、DS v 都有关。 ·沟道未夹断时,FET 的D-S 口等效为一个压控电阻(GS v 控制电阻的大小),沟道全夹断时,沟道电流D i 为零;沟道在靠近漏端局部断时称部分夹断,此时D i 主要受控于GS v ,而DS v 影响较小。这就是FET 放大偏置状态;部分夹断与未夹断的临界点为预夹断。 ·在预夹断点,GS v 与DS v 满足预夹断方程: 耗尽型FET 的预夹断方程:P GS DS V v v -=(P V ——夹断电压) 增强型FET 的预夹断方程:T GS DS V v v -=(T V ——开启电压) ·各种类型的FET ,偏置在放大区(沟道部分夹断)的条件由表4-4总结。 表4-4 FET 放大偏置时GS v 与DS v 应满足的关系 ·偏置在放大区的FET ,GS v ~D i 满足平方律关系: 耗尽型: 2 ) 1(P GS DSS D V v I i - =(DSS I ——零偏饱和漏电流) 增强型:2 )(T GS D V v k i -=*

· FET 输出特性曲线反映关系 参变量 G S V DS D v f i )(=,该曲线将伏安平面分为可变电阻区 (沟道未夹断),放大区(沟道部分夹断)和截止区(沟道全夹断);FET 转移特性曲线反映在放大区的关系)(GS D v f i =(此时参变量DS V 影响很小),图4-17画出以漏极流向源极的沟道电流为参考方向的6种FET 的转移特性曲线,这组曲线对表4-4是一个很好映证。 二、FET 放大偏置电路 ·源极自给偏压电路(图4-18)。该电路仅适用于耗尽型FET 。有一定稳Q 的能力,求解该电路工作点的方法是解方程组: 22() [FET ()]GS D DSS d GS T P GS S D v i I v i k v V V v R i ? =-=-?? ?=-?对于增强型,用关系式 ·混合偏压电路(图4-20)。该电路能用于任何FET ,在兼顾较大的工作电流时,稳Q 的效果更好。求解该电路工作点的方法是解方程组: ??? ??-+=D s CC GS i R R R R V v 212平方律关系式 以上两个偏置电路都不可能使FET 全夹断,故应舍去方程解中使沟道全夹断的根。 三、FET 小信号参数及模型 ·迭加在放大偏置工作点上的小信号间关系满足一个近似的线性模型(图4-22低频模 型,图4-23高频模型)。 ·小信号模型中的跨导 Q GS D m v i g ??= m g 反映信号gs v 对信号电流d i 的控制。m g 等于FET 转移特性曲线上Q 点的斜率。 m g 的估算:耗尽管 D DSS P m I I V g ||2 = 增强管D m kI g 2= ·小信号模型中的漏极内阻 Ds ds D Q v r i ?= ? ds r 是FET “沟道长度调效应”的反映,ds r 等于FET 输出特性曲线Q 点处的斜率的倒 数。 四、基本组态FET 小信号放大器指标 1.基本知识 ·FET 有共源(CS )共漏(CD )和共栅(CG )三组放大组态。 ·CS 和CD 组态从栅极输入信号,其输入电阻i R 由外电路偏置电阻决定,i R 可以很大。 ·CS 放大器在其工作点电流和负载电阻与一个CE 放大器相同时,因其m g 较小,|| V A

实验6 结型场效应管共源放大电路实验

实验6 JFET-CS 放大电路测试报告 班级: _______ 姓名: ________________ 实验目的: 学习了解场效应晶体管放大电路的基本结构、原理、测试过程。通过实验、 仿 真,了解JFET 主要参数的获取、电路的静态工作点、增益等参数的计算和测 试方法。 实验设备及器件: 笔记本电脑(软件环境: Multisim13.0、WaveForms201) AD2 口袋仪器 电容:0.1卩F (独石或瓷片等无极性电容) 10卩F (电解电容) 电阻:300 Q 、1k Q 、10k Q 、100k Q FET: 2SK30A (或其他 JFET ,封装为 TO-92) 面包板、杜邦线 实验内容: 电路如图6.1所示。 1. 测量FET 的主要参数(V off 、I DSS ) 鉴于FET 参数非常分散,例如2SK30A 其后缀为GR (2SK30AG 漏极饱和电流 R 3 o +5V 图6.1实验电路

I DSS 的范围是2.6 — 6.5mA 截止电压 V 的范围为-0.4 ? -5V (具体手册参数见附 件)。因此本实验需要先行测试元件的主要参数,所实际测得的参数用于计算电 路静态工作点及增益等,也用于修改仿真软件模型参数,以便获得相对准确的仿 真结果。 在面包板上搭建图6.2( a )电路(栅源为0偏压,即:V GS =0),测试此时源 极电阻的电压,进而得到源极(也是漏极)电流,该电流就是漏极饱和电流I DS ? 再通过图6.2 (b )电路(静态自给偏压偏置电路)测源极电阻两端电压,从而 得到此时的栅源电压及漏极电流,也就是得到一个栅源的负偏压值 Ma s 及漏极电 流I D ,利用这两个值并通过漏极电流公式计算出 V off 。填入表6-1 0 图6.2 FET 参数测试电路 公式: 表6-1 实测FET 主要参数 参数 1 DSS (测试得出) V Off (计算得出) 数值 3.3mA -2.527v 2. 用得到的参数I DSS V f 修改仿真模型:在仿真软件中结型场效应晶体管的模 型是Shichman-Hodges 模型,需要根据测得的参数修改Multisim 模型中的两 个参数:截止电压 VT0及跨导系数BETA ( B )。修改后的模型用于仿真(注 意:跨导系数不是理论教学中的跨导 g m )o 3. 3. 搭建图6.1电路,计算、仿真及测试静态工作点,并填入表 6-2 : (1)通过理论计算计算I DQ Va se 并填入表6-2 0 (2) 使用新建的模型仿真静态工作点并填入表 6-2 0 (3) 通过测试源极电阻直流电压,获取静态工作点并填入表 6-2 2SK30A +5V (b)

场效应管放大电路

第四章场效应管放大电路 本章内容简介 场效应管是利用改变外加电压产生的电场强度来控制其导电能力的半导体器件。它具有双极型三极管的体积小、重量轻、耗电少、寿命长等优点,还具有输入电阻高、热稳定性好、抗辐射能力强、噪声低、制造工艺简单、便于集成等特点。在大规模及超大规模集成电路中得到了广泛的应用。场效应管的分类根据结构和工作原理的不同,场效应管可分为两大类:结型场效应管(JFET)和绝缘栅型场效应管(IGFET)。 4.1 结型场效应管 4.1.1 JFET的结构和工作原理 1. 结构 在一块N型半导体材料的两边各扩散 一个高杂质浓度的P+ 区,就形成两个不对 称的PN结,即耗尽层。把两个P+区并联在 一起,引出一个电极g,称为栅极,在N 型半导体的两端各引出一个电极,分别称 为源极s和漏极d。 场效应管的与三极管的三个电极的对应关系: 栅极g—基极b;源极s—发射极e;漏极d—集电极c夹在两个PN结中间的区域称为导电沟道(简称沟道)。 如果在一块P型半导体的两边各扩散一 个高杂质浓度的N+区,就可以制成一个P沟 道的结型场效应管。P沟道结型场效应管的

结构示意图和它在电路中的代表符号

如图所示。 2. 工作原理 v GS对i D的控制作用 为便于讨论,先假设漏-源极间所加的电压v DS=0。 (a) 当v GS=0时,沟道较宽,其电阻较小。 (b) 当v GS<0,且其大小增加时,在这个反偏电压的作用下,两个PN结耗尽层将加宽。由于N 区掺杂浓度小于P+区,因此,随着|v GS| 的增加,耗尽层将主要向N沟道中扩展,使沟道变窄,沟道电阻增大。当|v GS| 进一步增大到一定值|V P| 时,两侧的耗尽层将在沟道中央合拢,沟道全部被夹断。由于耗尽层中没有载流子,因此这时漏-源极间的电阻将趋于无穷大,即使加上一定的电压v DS,漏极电流i D也将为零。这时的栅-源电压v GS称为夹断电压,用V P表示。在预夹断处:V GD=V GS-V DS =V P 上述分析表明: (a)改变栅源电压v GS的大小,可以有效地控制沟道电阻的大小。 (b)若同时在漏源-极间加上固定的正向电压v DS,则漏极电流i D将受v GS的控制,|v GS|增大时,沟道电阻增大,i D减小。 (c)上述效应也可以看作是栅-源极间的偏置电压在沟道两边建立了电场,电场强度的大小控制了沟道的宽度,即控制了沟道电阻的大小,从而控制了漏极电流i D的大小。 v DS对i D的影响 设v GS值固定,且V P

实验4场效应管放大器资料

实验四场效应管放大器 一、实验目的 1、了解结型场效应管的性能和特点 2、进一步熟悉放大器动态参数的测试方法 二、实验仪器 1、双踪示波器 2、万用表 3、信号发生器 三、实验原理 实验电路如下图所示: 图4-1

场效应管是一种电压控制型器件。按结构可分为结型和绝缘栅型两种类型。由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。 1、结型场效应管的特性和参数 场效应管的特性主要有输出特性和转移特性。图6-2所示为N沟道结 图4-2 3DJ6F的输出特性和转移特性曲线 型场效应管3DJ6F的输出特性和转移特性曲线。其直流参数主要有饱和漏极电 流I DSS ,夹断电压U P 等;交流参数主要有低频跨导 常数 U △U △I g DS GS D m = = 表6-1列出了3DJ6F的典型参数值及测试条件。 表4-1 参数名称饱和漏极电流 I DSS (mA) 夹断电压 U P (V) 跨导 g m (μA/V) 测试条件U DS =10V U GS =0V U DS =10V I DS =50μA U DS =10V I DS =3mA f=1KHz 参数值1~3.5 <|-9|>100

2、场效应管放大器性能分析 图4-1为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 3、输入电阻的测量方法 场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验二中晶体管放大器的测量方法相同。其输入电阻的测量,从原理上讲,也可采用实验二中所述方法,但由于场效应管的R i 比较大,如直接测输入电压U S 和U i ,则限于测量仪器的输入电阻有限,必然会带来较大的误差。因此为了减小误差,常利用被测放大器的隔离作用,通过测量输出电压U O 来计算输入电阻。测量电路如图3-3所示。 图4-3 输入电阻测量电路 在放大器的输入端串入电阻R ,把开关K 掷向位置1(即使R =0),测量放大器的输出电压U 01=A V U S ;保持U S 不变,再把K 掷向2(即接入R ),测量放大器的输出电压U 02。由于两次测量中A V 和U S 保持不变,故 S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

场效应管放大电路设计

* 课程设计报告 题目:场效应管放大电路设计 学生姓名: *** 学生学号: ******** 系别:电气信息工程院 专业:通信工程 届别: 2014届 指导教师: ** 电气信息工程学院制 2013年3月

场效应管放大电路设计 学生:** 指导教师:** 电气信息工程学院通信工程专业 1、课程设计任务和要求: 1.1 场效应管电路模型、工作点、参数调整、行为特征观察方法 1.2 研究场效应放大电路的放大特性及元件参数的计算 1.3 进一步熟悉放大器性能指标的测量方法 2、课程设计的研究基础: 2.1 场效应管的特点 场效应管与双极型晶体管比较有如下特点: (1)场效应管为电压控制型元件; (2)输入阻抗高(尤其是MOS场效应管); (3)噪声系数小; (4)温度稳定性好,抗辐射能力强; (5)结型管的源极(S)和漏极(D)可以互换使用,但切勿将栅(G)源(S)极电压的极性接反,以免PN结因正偏过流而烧坏。对于耗尽型MOS管,其栅源偏压可正可负,使用较灵活。 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。场效应管,FET 是一种电压控制电流器件。其特点是输入电阻高,噪声系数低,受温度和辐射影响小。因而特别使用于高灵敏度、低噪声电路中。场效应管的种类很多,按结构可分为两大类:结型场效应管、JFET和绝缘栅型场效应管IGFET。结型场效应管又分为N沟道和P 沟道两种。绝缘栅场效应管主要指金属一氧化物—半导体MOS场效应管。MOS管又分为“耗尽型”和“增强型”两种,而每一种又分为N沟道和P沟道。结型场效应管是利用导电沟道之间耗尽区的宽窄来控制电流的输入电阻105---1015 之间,绝缘栅型是利感应电荷的多少来控制导点沟道的宽窄从而控制电流的大小、其输入阻抗很高(其栅极与其他电极互相绝缘)以及它在硅片上的集成度高,因此在大规模集成电路中占有极其重要的地位。由多数载流子参与导电,也称为单机型晶体管。它属于电压控制型

场效应管放大电路.(DOC)

第三章场效应管放大电路 本章内容简介 场效应管是利用改变外加电压产生的电场强度来控制其导电能力的半导体器件。它具有双极型三极管的体积小、重量轻、耗电少、寿命长等优点,还具有输入电阻高、热稳定性好、抗辐射能力强、噪声低、制造工艺简单、便于集成等特点。在大规模及超大规模集成电路中得到了广泛的应用。场效应管的分类根据结构和工作原理的不同,场效应管可分为两大类:结型场效应管(JFET)和绝缘栅型场效应管(IGFET)。 (一)主要内容: ?结型场效应管的结构及工作原理 ?金属-氧化物-半导体场效应管的结构及工作原理 ?场效应管放大电路的静态及动态性能分析 (二)教学要点: ?了解结型场效应管和MOS管的工作原理、特性曲线及主要参数 ?掌握用公式法和小信号模型分析法分析其放大电路的静态及动态性能 ?了解三极管及场效应管放大电路的特点 (三)基本要求: 介绍结型场效应管和MOS管的工作原理、特性曲线,重点介绍用公式法和小信号模型分析法分析其放大电路静态及动态性能。

3.1 结型场效应管 3.1.1 JFET的结构和工作原理 1. 结构 在一块N型半导体材料的两边各扩散 一个高杂质浓度的P+ 区,就形成两个不对 称的PN结,即耗尽层。把两个P+区并联在 一起,引出一个电极g,称为栅极,在N 型半导体的两端各引出一个电极,分别称 为源极s和漏极d。 场效应管的与三极管的三个电极的对 应关系: 栅极g—基极b;源极s—发射极e;漏极d —集电极c 夹在两个PN结中间的区域称为导电沟道(简称沟道)。 如果在一块P型半导体的两边各扩散一 个高杂质浓度的N+区,就可以制成一个P沟 道的结型场效应管。P沟道结型场效应管的 结构示意图和它在电路中的代表符号 如图所示。 2. 工作原理 v GS对i D的控制作用 为便于讨论,先假设漏-源极间所加的电压v DS=0。 (a) 当v GS=0时,沟道较宽,其电阻较小。 (b) 当v GS<0,且其大小增加时,在这个反偏电压的作用下,两个PN结耗尽层将加宽。由于N区掺杂浓度小于P+区,因此,随着|v GS| 的增加,耗尽层将主要向N沟道中扩展,使沟道变窄,沟道电阻增大。当|v GS| 进一步增大到一定值|V P| 时,两侧的耗尽层将在沟道中央合拢,沟道全部被夹断。由于耗尽层中没有载流子,因此这时漏-源极间的电阻将趋于无穷大,即使加上一定的电压v DS,漏极电流i D也将为零。这时的栅-源电压v GS称为夹断电压,用V P表示。在预夹断处:V GD=V GS -V DS =V P 上述分析表明: (a)改变栅源电压v GS的大小,可以有效地控制沟道电阻的大小。

场效应管放大电路设计

* 课程设计报告题目:场效应管放大电路设计 学生姓名:学生学号: *** ******** 系专届别: 业: 别: 电气信息工程院 通信工程 2014届 指导教师:** 电气信息工程学院制 2013年3月

**师范学院电气信息工程学院2014届通信工程专业课程设计报告 场效应管放大电路设计 学生:** 指导教师:** 电气信息工程学院通信工程专业 1、课程设计任务和要求: 1.1 1.2 1.3场效应管电路模型、工作点、参数调整、行为特征观察方法研究场效应放大电路的放大特性及元件参数的计算 进一步熟悉放大器性能指标的测量方法 2、课程设计的研究基础: 2.1场效应管的特点 场效应管与双极型晶体管比较有如下特点: (1)场效应管为电压控制型元件; (2)输入阻抗高(尤其是MOS场效应管); (3)噪声系数小; (4)温度稳定性好,抗辐射能力强; (5)结型管的源极(S)和漏极(D)可以互换使用,但切勿将栅(G)源(S)极电压的极性接反,以免P N结因正偏过流而烧坏。对于耗尽型MOS管,其栅源偏压可正可负,使用较灵活。 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。场效应管,FET是一种电压控制电流器件。其特点是输入电阻高,噪声系数低,受温度和辐射影响小。因而特别使用于高灵敏度、低噪声电路中。场效应管的种类很多,按结构可 分为两大类:结型场效应管、JFET和绝缘栅型场效应管IGFET。结型场效应管又分为N沟道和P沟道两种。绝缘栅场效应管主要指金属一氧化物—半导体M OS场效应管。MOS管又分为“耗尽型”和“增强型”两种,而每一种又分为N沟道和P沟道。结型场效应管是利用导电沟道之间耗尽区的宽窄来控制电流的输入电阻105---1015之间,绝缘栅型是利感应电荷的多少来控制导点沟道的宽窄从而控制电流的大小、其输入 阻抗很高(其栅极与其他电极互相绝缘)以及它在硅片上的集成度高,因此在大规模 集成电路中占有极其重要的地位。由多数载流子参与导电,也称为单机型晶体管。

实验十三基于Multisim的场效应管放大器电路设计

南昌大学实验报告 学生姓名:学号:专业班级:生医091 实验类型:□验证□综合□设计□创新实验日期:20110615 实验成绩:实验十三基于Multisim的场效应管放大器电路设计 一、实验目的: 1、场效应管电路模型、工作点、参数调整、行为特征观察方法 2、研究场效应放大电路的放大特性及元件参数的计算 3、进一步熟悉放大器性能指标的测量方法 二、实验原理: 1.场效应管的特点 场效应管与双极型晶体管比较有如下特点: (1)场效应管为电压控制型元件; (2)输入阻抗高(尤其是MOS场效应管); (3)噪声系数小; (4)温度稳定性好,抗辐射能力强; (5)结型管的源极(S)和漏极(D)可以互换使用,但切勿将栅(G)源(S)极电压的极性接反,以免PN结因正偏过流而烧坏。对于耗尽型MOS管,其栅源偏压可正可负,使用较灵活。 和双极型晶体管相比场效应管的不足之处是共源跨导gm。值较低(只有ms级),MOS管的绝缘层很薄,极容易被感应电荷所击穿。因此,在用仪器测量其参数或用烙铁进行焊接时,都必须使仪器、烙铁或电路本身具有良好的接地。焊接时,一般先焊S极,再焊其他极。不用时应将所有电极短接。 2.偏置电路和静态工作点的确定 与双极型晶体管放大器一样,为使场效应管放大器正常工作,也需选择恰当的直流偏置电路以建立合适的静态工作点。 场效应管放大器的偏置电路形式主要有自偏压电路和分压器式自偏压电路(增强型MOS管不能采用自偏压电路)两种。 三、实验内容及步骤 1.场效应管共源放大器的调试 (1)连接电路。按图2.4.1在模拟电路实验板上插接好电路,场效应管选用N沟道结型管

3DJ6D,静态工作点的设置方式为自偏压式。直流稳压电源调至18V并接好(注意:共地) (2)测量静态工作点 调节电阻R使V D为2.43V左右,并测量此时的Vg、Vs ,填入表2.4.1,并计算。 表2.4.1静态工作点 将函数发生器的输出端接到电路的输入端。使函数发生器输出正弦波并调=2mV,f=lkHz。用示波器观察输出波形,(若有失真,应重调静态工作点,使波形不失真),并用示波器测量输出电压Vo,计算Av (4)测量输入及输出阻抗 用换算法测量放大器的输入电阻,在输入回路串接已知阻值的电阻R,但必须注意,由于场效应管放大器的输入阻抗很高,若仍用直接测量电阻R两端对地电Vs 和Vi进行换算的方法,将会产生两个问题: (1)由于场效应管放大器Ri高,测量时会引人干扰; (2)测量所用的电压表的内阻必须远大于放大器的输入电阻Ri,否则将会产生较大的测量误差。为了消除上述干扰和误差,可以利用被测放大器的隔离作用,通过测量放大器输出电压来进行换算得到Ri。图为测量高输入阻抗的原理图。方法是:先闭合开关S(R=0),输入信号电压Vs,测出相应的输出电压V01,然后断开S,测出相应的输出电压V02,因为两次测量中和是基本不变的,所以 R i=V O2/(V O1-V O2)R 输出电阻测量:在放大器输入端加入一个固定信号电压Vs ,分别测量当已知负载R L断开和接上的输出电压V0和V0L。则 R0=(V0 / V0L -1)R L

实验四 场效应管放大器

实验四 场效应管放大器 一、实验目的 1、了解结型场效应管的性能和特点 2、进一步熟悉放大器动态参数的测试方法 二、实验原理 场效应管是一种电压控制型器件。按结构可分为结型和绝缘栅型两种类型。由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。 1、结型场效应管的特性和参数 场效应管的特性主要有输出特性和转移特性。图4-1所示为N 沟道结型场效应管3DJ6F 的输出特性和转移特性曲线。 其直流参数主要有饱和漏极电流IDSS ,夹断电压UP 等;交流参数主要有低频跨导: 常数U △U △I g DS GS D m == 3DJ6F 的输出特性和转移特性曲线: 3DJ6F 的典型参数值及测试条件: 2、场效应管放大器性能分析 下图为结型场效应管组成的共源级放大电路:

(1)其静态工作点 (2)电压放大倍数 A V =-gmRL' =-gmRD // RL (3)输入电阻 Ri =RG +R1 // Rw1 (4)输出电阻 RO≈RD=R3+Rw2 式中跨导gm 可由特性曲线用作图法求得,或用以下公式计算。 )U U (1U 2I g P GS P DSS m -- = 但要注意,计算时UGS 要用静态工作点处之数值。 3、输入电阻的测量方法 场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验四中晶体管放大器的测量方法相同。其输入电阻的测量,从原理上讲,也可采用实验四中所述方法,但由于场效应管的Ri 比较大,如直接测输入电压US 和Ui ,则限于测量仪器的输入电阻有限,必然会带来较大的误差。因此为了减小误差,常利用被测放大器的隔离作用,通过测量输出电压UO 来计算输入电阻。测量电路如图所示:

场效应管及其放大电路

3. 场效应管及其放大电路 (文字材料) 本章概要 本章首先介绍结型场效应管和绝缘栅型场效应管的结构、放大原理、伏安特性以及主要电参数,然后讨论了场效应管的微变等效电路,分析了场效应管和晶体管的特点,并讨论了场效应管组成的共源极、共漏极和共栅极三种基本放大电路的工作原理、特性分析及参数计算。 本章内容的组成及结构 结型场效应管 绝缘栅型场效应管 结构、类型(N 沟道、P 沟道)、符号 结型 工作原理 伏安特性、主要参数 按工作方式:增强型、耗尽型 按导电沟道:N 沟道、P 沟道 工作原理 伏安特性、主要参数 场效应管的小信号模型(微变等效电路) 场效应管与晶体管的比较 场效应管的偏置及静态分析 共源极放大电路 三种基本放大电路的动态分析 共漏极放大电路 共栅极放大电路 学习目标 (1)熟练掌握场效应管的伏安特性; (2)熟练掌握场效应管的微变等效电路; (3)熟练掌握场效应管组成的三种基本放大电路的组成、工作原理及静态和动态分析; (4)了解三种放大电路的各自特点及应用场合; (5)了解场效应管与双极型三极管的异同点。 重难点指导 重点: (1)结型及MOS 型场效应管的工作原理及伏安特性; 场效应管 及 其放 大 电路 类型 绝缘栅型 结构、类型 场效应管基本放大电路 场效应管 (FET )

(2)共源极和共漏极放大电路的静态及动态参数计算; 难点: (1)场效应管跨导的概念以及微变等效电路; (2)场效应管放大电路的静态与动态主要指标计算。 本章导学 1. 场效应管 1.场效应管(FET)有结型场效应管(JFET)和绝缘栅型场效应管(IGFET)两大类型。它们都有N沟道和P沟道两类。IGFET又分为增强型和耗尽型;JFET只有耗尽型。IGFET大多制成金属—氧化物—半导体结构,简称为MOSFET。 2.场效应管与半导体三极管的区别 1.半导体三极管(晶体管)是一种电流控制器件,有两种载流子参与导电,属于双极型器件,因此又常称半导体三极管为双极型晶体管;场效应管只靠一种载流子(多数载流子)导电,属于单极型器件,因此又常称场效应管为单极型晶体管,它是一种电压控制器件,i G≈0,具有输入电阻高的特点。 3.场效应管的工作原理 a.控制漏极电流的基本原理:通过控制电压的变化改变场效应管导电沟道的宽度,以改变其电阻的大小来控制漏极电流。 b.JFET和MOSFET在控制漏极电流方式上的区别:JFET通过控制电压的变化改变耗尽层的宽度来控制漏极电流;MOSFET利用半导体表面的电场效应,直接改变作为导电沟道的反型层宽度,以达到控制漏极电流的目的。 4.场效应管的伏安特性 由于FET的i G≈0,所以只给出输出特性和由它派生的转移特性。各类FET的输出特性曲线如表3.1中所示。 a.输出特性i D = f (u DS) | u GS一定由输出特性曲线可见,FET有三个工作区: 可变电阻区——沟道尚未出现予夹断,管子可看作是一个由电压控制的可变电阻。在不同的u GS下,曲线上升的斜率不同,电阻值也不同。 恒流区——沟道出现予夹断,i D只受u GS控制,几乎不随u DS的改变而变化,输出特性曲线几乎成为水平的直线。恒流区又称饱和区或放大区。 夹断区——管子处于沟道完全夹断的情况,i D≈0,夹断区也称为截止区。 b.转移特性:i D = f (u GS) | u DS一定它描述了场效应管的u GS对i D的控制能力。 5.场效应管的主要参数 a.直流参数:开启电压U GS(th)(适用于增强型MOSFET);夹断电压U GS(off)、零偏漏极电流I DSS(适用于耗尽型FET)。 b.交流参数:极间电容C gs、C ds、C gd;跨导g m(也称互导),它是管子在保持U DS一定时,漏极电流微变量d i D与栅源极间电压微变量d u GS的比值,即:

相关文档
最新文档