废水中对硝基苯酚的性能和动力学

废水中对硝基苯酚的性能和动力学
废水中对硝基苯酚的性能和动力学

废水中对硝基苯酚的性能和动力学

随着现代化工行业的发展,含有对硝基苯酚的有机废水大量排放; 由于对硝基苯酚具有良好的生化稳定性,不易降解,从而造成了严重的水体环境污染. 目前,从废水中去除对硝基苯酚的方法主要有微生物降解法、萃取法、吸附法以及光催化氧化法[1, 2, 3, 4, 5]. 其中,吸附法由于不引入新的污染物,能耗较低,且能够从废水中分离污染物加以重新利用,备受广泛关注. 天然沸石独特的四面体结构、巨大的比表面积、稳定的化学性质,使得其具有较好的吸附性能,此外,沸石中的阳离子使其具有静电吸引力,对极性和易极化分子的吸附作用较强[6]. 针对废水中的对硝基苯酚,由于—C6H5基团是可极化基团,使得沸石能够被应用于废水中对硝基苯酚的去除[7, 8, 9, 10]. 然而,天然沸石表面硅氧结构所具有的亲水性,使得其吸附有机物的极限性能不理想,因此,为了提高沸石去除废水中有机污染物的能力,常在使用前对其进行改性处理[11, 12],例如:天然沸石经质量浓度为5 g ·L-1十六烷基三甲基溴化铵溶液浸泡后,能够提高对酚类废水的去除效果[13, 14].

本研究采用HDTMA对天然沸石进行改性,探讨改性条件对沸石吸附能力的影响,考察改性沸石吸附废水中对硝基苯酚的性能,在此基础上,研究吸附过程中的动力学和吸附等温线特征.

1 材料与方法

1.1 实验材料

实验所用天然沸石购自上海国药集团化学试剂有限公司,20-40目,经实验测得其阳离子交换量为0.36 mol ·kg-1,天然沸石样品经蒸馏水漂洗后,在105℃下烘干备用; 十六烷基三甲基溴化铵购自成都市科龙化工试剂厂(相对分子质量:364.45 g ·mol-1),分析纯.

1.2 实验方法

1.2.1 HDTMA改性沸石的制备

基于现有研究[13, 14],配制质量浓度为0.8%、 1.0%、 1.2%、 1.4%、 1.6%的不同pH值的HDTMA溶液,将天然沸石分别与配制好的HDTMA溶液以1 ∶10(质量体积比,质量单位g,体积单位mL)混合,于25℃,120 r ·min-1振荡6 h后,3 000 r ·min-1离心20 min 收集沉淀物,采用蒸馏水冲洗,相同条件下离心和冲洗4-5次,直到冲洗后的上清液中检测不到HDTMA,最后收集沉淀物于100℃下干燥12 h,获得改性沸石.

1.2.2 吸附实验

准确称取一定量的改性沸石添加至1.0 L浓度为20 mg ·L-1的对硝基苯酚溶液中,常温条件下120 r ·min-1搅拌2 h后,静沉30 min,取上清液经0.45 μm滤膜过滤后,测定其中的对硝基苯酚浓度. 废水pH采用0.1 mol ·L-1的HCl或NaOH溶液调节. 按下列公式计算对硝基苯酚吸附量qe和去除率η:

式中,c0和ce分别为废水中对硝基苯酚的初始浓度和吸附平衡时的浓度,mg ·L-1; m 为改性沸石投加量,g; V为废水样容积,L.

1.2.3 检测方法

实验过程中,对硝基苯酚溶液的浓度采用紫外分光光度法测定,最大吸收波长为317 nm; 废水pH值采用pH计(pHS-3C)检测; 废水中HDTMA浓度采用分光光度法测定,最大吸收波长为470 nm; 改性沸石的阳离子交换量采用乙酸铵法测定.

1.3 吸附动力学

基于吸附实验得到的对硝基苯酚的最佳吸附条件,保持改性沸石投加量、废水pH值等不变,通过检测吸附过程中改性沸石对废水中对硝基苯酚吸附量的变化,考察对硝基苯酚的吸附动力学特征. 一级速率方程和二级速率方程的响应目标均是描述吸附动力学过程,分别如方程(3)和(4)所示:

式中,qt为t时刻沸石对废水中对硝基苯酚的吸附量,mg ·g-1; k1为一级速率方程速率常数,min-1; k2是二级速率方程速率常数,g ·(mg ·min)-1; t为反应时间(min).

1.4 吸附等温线

一般情况下,溶质从溶液中转移到吸附剂上这一动态过程取决于固-液相之间的吸附平衡,吸附等温线正是用来描述溶质的这一吸附过程的,最为典型的是Freundlich、 Langmuir 等温线方程[15, 16]. 基于吸附实验得到的对硝基苯酚的最佳吸附条件,保持改性沸石投加量、废水pH值等不变,在不同实验温度条件下,通过检测吸附平衡状态时改性沸石的平衡吸附量与废水中对硝基苯酚的剩余量之间的关系,考察改性沸石对废水中对硝基苯酚的吸附等温线特征. Freundlich、 Langmuir等温线分别如方程(5)和(6)所示:

式中,kf和n为Freundlich常数; kL为Langmuir常数; qm为最大吸附量,mg ·g-1.

2 结果与讨论

2.1 不同改性条件对沸石去除废水中对硝基苯酚性能的影响

由图 1可知,当不调节HDTMA溶液的pH值,不同质量浓度的HDTMA溶液改性制备的沸石对废水中对硝基苯酚的平衡吸附量均高于天然沸石的0.54 mg ·g-1,按照单程楠[14]的研究,天然沸石经过HDTMA改性后,由于HDTMA结构中疏水长碳链间的相互作用,在沸石表面形成了类似胶束的一层覆盖物,使对硝基苯酚通过分配作用进入到沸石表面的HDTMA有机相中而得以去除. 实验结果显示,当HDTMA溶液质量分数为1.2%时,与天然沸石以10 ∶1比例混合制备的改性沸石对废水中的对硝基苯酚的吸附量达到最大,约为2.52 mg ·g-1,高于或低于1.2%时,对硝基苯酚的吸附量均明显降低,这与单程楠等的研究结论相似[13, 14]. HDTMA浓度低时,负载到沸石表面的量小,不能有效地在沸石表面形成疏水性的覆盖层,如此制备得到的改性沸石不能有效地结合对硝基苯酚; HDTMA浓度过高时,其“两亲性”结构会使得HDTMA以离子交换方式分布在沸石-液相界面,沸石表面过多的HDTMA也会发生解析现象,从而降低改性沸石的表面稳定性,进而使得对废水中对硝基苯酚的结合能力较弱[17, 18, 19].

图 1 HDTMA溶液质量分数对改性沸石吸附废水中对硝基苯酚效果的影响

由图 2可知,在改性沸石制备过程中,保持HDTMA溶液质量浓度不变的情况下,随着HDTMA溶液pH值增加至10,所制备得到的改性沸石对废水中对硝基苯酚的吸附量逐渐增加,并达到2.53 mg ·g-1. 酸碱条件影响改性效果的原因在于:酸性条件下,沸石表面的部分Si—OH和Al—OH基团因质子化而带正电,不利于HDTMA的负载,如此制备得到的改性沸石不能有效结合对硝基苯酚; 相反,碱性环境更有利于HDTMA在沸石表面的负载,这是由于碱性环境使得沸石架构中的氧带负电荷[20]. 有研究表明,强碱性环境引入的NaOH也会改善沸石吸附污染物的性能[21]. 综上考虑,在下述吸附实验中,改性沸石的制备条件设置为HDTMA溶液质量浓度1.2%,pH值10.

计算流体动力学分析-CFD软件原理与应用_王福军--阅读笔记

计算流体动力学(简称CFD)是建立在经典流体动力学与数值计算方法基础之上的一门新型独立学科,通过计算机数值计算和图像显示的方法,在时间和空间上定量描述流场的数值解,从而达到对物理问题研究的目的。它兼有理论性和实践性的双重特点。 第一章节 流体流动现象大量存在于自然界及多种工程领域中,所有这些过程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。本章向读者介绍这些守恒定律的数学表达式,在此基础上提出数值求解这些基本方程的思想,阐述计算流体力学的任务及相关基础知识,最后简要介绍目前常用的计算流体动力学商用软件。 计算流体动力学((Computational Fluid Dynamics简称CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。CFD的基本思想可以归结为:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值。 CFD可以看做是在流动基本方程(质量守恒方程、动量守恒方程、能量守恒方程)控制卜对流动的数值模拟。通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。还可据此算出相关的其他物理量,如旋转式流体机械的转矩、水力损失和效率等。此外,与CAD联合,还可进行结构优化设计等。 1.1.2计算流体动力学的工作步骤 采用CFD的方法对流体流动进行数值模拟,通常包括如下步骤: (1)建立反映工程问题或物理问题本质的数学模型。具体地说就是要建立反映问题各个量之间关系的微分方程及相应的定解条件,这是数值模拟的出发点。没有正确完善的数 学模型,数值模拟就毫无意义。流体的基本控制方程通常包括质量守恒方程、动量守恒方程、能量守恒方程,以及这些方程相应的定解条件。 (2}}寻求高效率、高准确度的计算方法,即建立针对控制方程的数值离散化方法,如有限差分法、有限元法、有限体积法等。这里的计算方法不仅包括微分方程的离散化方法及求解方法,还包括贴体坐标的建立,边界条件的处理等。这些内容,可以说是c}}的核心。 (3})编制程序和进行计算。这部分工作包括计算网格划分、初始条件和边界条件的输入、控制参数的设定等。这是整个工作中花时间最多的部分。由于求解的问题比较复杂,比如Na}ier-Stakes方程就是一个讨,分复杂的非线性方程,数值求解方法在理论上不是绝对完善的,所以需要通过实验加以验证。正是从这个意义上讲.数值模拟又叫数值试验。应该指出,这部分工作不是轻而易举就可以完成的。 4})显示计算结果。计算结果一般通过图表等方式显示,这对检查和判断分析质量和结果有重要参考意义。 以上这些步骤构成了CFD数值模拟的全过程。其中数学模型的建立是理论

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性的概念; 2、掌握线性稳定性的分析方法; 3、掌握奇点的分类及判别条件; 4、理解结构稳定性及分支现象; 5、能分析简单动力系统的奇点类型及分支现象。 二、教学重点 1、线性稳定性的分析方法; 2、奇点的判别。 三、教学难点 线性稳定性的分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 学习本章内容之前,学生要复习常微分方程的内容。 六、教学过程

本章只介绍一些非常初步的动力学分析方法,但这些方法在应用上是十分有效的。 1.1相空间和稳定性 一、动力系统 在物理学中,首先根据我们面对要解决的问题划定系统,即系统由哪些要素组成。再根据研究对象和研究目的,按一定原则从众多的要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量的微分方程,这些微分方程构成的方程组通常称为动力系统。研究这些微分方程的解及其稳定性以及其他性质的学问称为动力学。 假定一个系统由n 个状态变量1x ,2x ,…n x 来描述。有时,每个状态变量不但是时间t 的函数而且也是空间位置r 的函数。如果状态变量与时空变量都有关,那么控制它们变化的方程组称为偏微分方程组。这里假定状态变量只与时间t 有关,即X i =X i (t),则控制它们的方程组为常微分方程组。 ),,,(2111 n X X X f dt dX ???=λ ),,,(2122 n X X X f dt dX ???=λ (1.1.1) … ),,,(21n n n X X X f dt dX ???=λ 其中λ代表某一控制参数。对于较复杂的问题来说,i f (i =l ,2,…n)一般是{}i X 的非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于{}i f 不明显地依赖时间t ,故称方程组(1.1.1)为自治动力系统。若{}i f 明显地依赖时间t ,则称方程组(1.1.1)为非自治动力系统。非自治动力系统可化为自治动力系统。 对于非自治动力系统,总可以化成自治动力系统。 例如:)cos(t A x x ω=+

非线性动力学和混沌理论

非线性动力学和混沌理论 非线性动力学 随着科学技术的发展,非线性问题出现在许多学科之中,传统的线性化方法已不能满足解决非线性问题的要求,非线性动力学也就由此产生。 非线性动力学联系到许多学科,如力学、数学、物理学、化学,甚至某些社会科学等。非线性动力学的三个主要方面:分叉、混沌和孤立子。事实上,这不是三个孤立的方面。混沌是一种分叉过程,孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象。 经过多年的发展,非线性动力学已发展出了许多分支。如分叉、混沌、孤立子和符号动力学等。然而,不同的分支之间又不是完全孤立的。非线性动力学问题的解析解是很难求出的。因此,直接分析非线性动力学问题解的行为(尤其是长时期行为)成为研究非线性动力学问题的一种必然手段。 混沌理论是谁提出的? 混沌理论,是系统从有序突然变为无序状态的一种演化理论,是对确定性系统中出现的内在“随机过程”形成的途径、机制的研讨。 美国数学家约克与他的研究生李天岩在1975年的论文“周期3则乱七八糟(Chaos)”中首先引入了“混沌”这个名称。 美国气象学家洛伦茨在2O世纪 6O年代初研究天气预报中大气流动问题时,揭示出混沌现象具有不可预言性和对初始条件的极端敏感依赖性这两个基本特点,同时他还发现表面上看起来杂乱无章的混沌,仍然有某种条理性。 1971年法国科学家罗尔和托根斯从数学观点提出纳维-斯托克司方程出现湍流解的机制,揭示了准周期进入湍流的道路,首次揭示了相空间中存在奇异吸引子,这是现代科学最有力的发现之一。 1976年美国生物学家梅在对季节性繁殖的昆虫的年虫口的模拟研究中首次揭示了通过倍周期分岔达到混沌这一途径。 1978年,美国物理学家费根鲍姆重新对梅的虫口模型进行计算机数值实验时,发现了称之为费根鲍姆常数的两个常数。这就引起了数学物理界的广泛关注。 与此同时,曼德尔布罗特用分形几何来描述一大类复杂无规则的几何对象,使奇异吸引子具有分数维,推进了混沌理论的研究。20世纪70年代后期科学家们在许多确定性系统中发现混沌现象。作为一门学科的混沌学目前正处在研讨之中,未形成一个完整的成熟理论。混沌的理论 要弄明白不可预言性如何可以与确定论相调和,可以来看看一个比整个宇宙次要得多的系统——水龙头滴下的水滴。这是一个确定性系统,原则上流入水龙头中的水的流量是平稳、均匀的,水流出时发生的情况完全由流体运动定律规定。但一个简单而有效的实验证明,这一显然确定性的系统可以产生不可预言的行为。这使我们产生某种数学的“横向思维”,它向我们解释了为什么此种怪事是可能的。 假如你很小心地打开水龙头,等上几秒钟,待流速稳定下来,通常会产生一系列规则的水滴,这些水滴以规则的节律、相同的时间间隔落下。很难找到比这更可预言的东西了。但假如你缓缓打开水龙头,使水流量增大,并调节水龙头,使一连串水滴以很不规则的方式滴落,这种滴落方式似乎是随机的。只要做几次实验就会成功。实验时均匀地转动水龙头,别把龙头开大到让水成了不间断的水流,你需要的是中速滴流。如果你调节得合适,就可以在好多分钟内听不出任何明显的模式出现。 1978年,加利福尼亚大学圣克鲁斯分校的一群年青的研究生组成了一个研究动力学系统的小组。他们开始考虑水滴系统的时候,就认识到它并不像表现出来的那样毫无规则。他们用话筒记录水滴的声音,分析每一滴水与下一滴水之间的间隔序列。他们所发现的是短期的可预言性。要是我告诉你3个相继水滴的滴落时刻,你会预言下一滴水何时落下。例如,假如水滴之间最近3个间隔是0.63秒、1.17秒和0.44秒,则你可以肯定下一滴水将在0.82秒后落下这些数只是为了便于说明问题。事实上,如果你精确地知道头3滴水的滴落时刻,你就可以预言系统的全部未来。 那么,拉普拉斯为什么错了? 问题在于,我们永远不能精确地测量系统的初始状态。我们在任何物理系统中所作出的最精确的测量,对大约10位或12位小数来说是正确的。 但拉普拉斯的陈述只有在我们使测量达到无限精度即无限多位小数,当然那是办不到的时才正确。 在拉普拉斯时代,人们就已知道这一测量误差问题,但一般认为,只要作出初始测量,比如小数点后10位,所有相继的预言也将精确到小数点后10位。误差既不消失,也不放大。 不幸的是,误差确实放大,这使我们不能把一系列短期预言串在一起,得到一个长期有效的预言。例如,假设我知道精确到小数点后10位的头3滴水的滴落时刻,那么我可以精确到小数点后9位预言下一滴的滴落时刻,再下一滴精确到8位,以此类推。 误差在每一步将近放大10倍,于是我对进一步的小数位丧失信心。所以,向未来走10步,我对下一滴水的滴落时刻就一无所知

《计算流体动力学分析》学习报告

《计算流体动力学分析》学习报告 计算流体力学基础: 本章主要讲解流体动力学的核心思想以及流体动力学的控制方程。 1、计算流体动力学(Computational Fluid Dynamic )基本思想:把原来在时间和空间上的连续的物理量,用一系列离散点上的变量值来代替,通过一定的原则和方式建立变量之间的代数方程式,求解之后获得变量的近似值。 2、CFD 控制方程: 质量守恒方程 0)·=?+??u t ρρ( 动量守恒方程(Navier-Stokes 方程) Fz z y x z u w div t w F z y x y u v div t v F z y x x u u div t u zz zx zx y zy yy xy x zx yx xx +??+??+??+??-=+??+??+??+??+??-=+??+??+??+??+??-=+??τττρρρτττρρρτττρρρ)()()()()()( 能量守恒方程 T p S gradT c k div T u div t +=+??)()(T ( ρρ) S T 为粘性耗散项。 方程含有u ,v ,w ,p ,T 和ρ六个未知量,所以还需要一个方程组,才能使其封闭,而这个方程组就是联系P 和ρ的状态方程组:P=(ρ,T )。 组分质量守恒方程(在一个系统中,可能存在质的交换,或者存在化学组分时使用。) ()s s s s S c grad D div c u div t +=+??)()(c (s ρρρ ) 为便于对控制方程进行计算和分析,对CFD 控制方程写成通用格式: ()S z z y y x x z w y v x u t S grad div u div t +??Γ??+??Γ??+??Γ??=??+??+??+??+Γ=+??)()()()()()())()(φφφφρφρφρρφφφρρφ 依次为瞬态项,对流项,扩散项和源项。 3、湍流控制方程 三维的N-S 方程无论对于层流还是湍流都是是使用的,但由于直接求解三维瞬态的控制方程,对计算机的内存和速度要求很高,因此在工程上广为采用的方法是对瞬态的N-S 方程进行实践平均处理,同时补充反应湍流特性的其他方程,例如湍动能方程以及湍流耗散率方程

非线性动力学数据分析

时间序列分析读书报告与数据分析 刘愉 200921210001 时间序列分析是利用观测数据建模,揭示系统规律,预测系统演化的方法。根据系统是否线性,时间序列分析的方法可分为线性时间序列分析和非线性时间序列分析。 一、 时间序列分析涉及的基本概念 1、 测量 对于一个动力系统,我们可以用方程表示其对应的模型,如有限差分方程、微分方程等。如果用t X 或)(t X 表示所关心系统变量的列向量,则系统的变化规律可表示成 )(1t t X f X =+或)(X F dt dX = 其中X 可以是单变量,也可以是向量,F 是函数向量。通过这类方程,我们可以研究系统的演化,如固定点、周期、混沌等。 在实际研究中,很多时候并不确定研究对象数据何种模型,我们得到的是某类模型(用t X 或)(t X 表示)的若干观测值(用t D 或)(t D 表示),构成观测的某个时间序列,我们要做的是根据一系列观测的数据,探索系统的演化规律,预测未来时间的数据或系统状态。 2、 噪声 测量值和系统真实值之间不可避免的存在一些误差,称为测量误差。其来源主要有三个方面:系统偏差(测量过程中的偏差,如指标定义是否准确反映了关心的变量)、测量误差(测量过程中数据的随机波动)和动态噪音(外界的干扰等)。 高斯白噪声是一类非常常见且经典的噪声。所谓白噪声是指任意时刻的噪声水平完全独立于其他时刻噪声。高斯白噪声即分布服从高斯分布的白噪声。这类噪声实际体现了观测数据在理论值(或真实值)周围的随机游走,它可以被如下概率分布刻画: dx M x dx x p 2222)(exp 21 )(σπσ--= (1) 其中M 和σ均为常数,分别代表均值和标准差。 3、 均值和标准差 最简单常用的描述时间序列的方法是用均值和标准差表示序列的整体水平和波动情况。 (1)均值 如果M 是系统真实的平均水平,我们用观测的时间序列估计M 的真实水平方法是:认为N 个采样值的水平是系统水平的真实反映,那么最能代表这些观测值(离所有观测值最近)的est M 即可作为M 的估计。于是定义t D 与est M 的偏离为2 )(est t M D -,所以,使下面E 最小的M 的估计值即为所求: 21)(∑=-=N t est t M D E (2)

分数阶非线性系统动力学特性及其图像处理应用研究

分数阶非线性系统动力学特性及其图像处理应用研究 非线性动力学在自然学科、社会学科、工程技术等诸多领域有着广泛的应用。而将非线性动力学理论引入图像处理领域,是非线性动力学理论应用的新思路,也是图像处理的新手段。 本文以分数阶非线性动力学和同步控制为理论基础,研究分析了新的非线性动力学特性,探索其与图像处理领域的契合点,在此基础上构建基于非线性动力学特性的图像处理模型。新模型的构建拓宽了非线性理论的应用领域,可为人脑感知系统的内部机制提供新的解释和预测,在图像处理领域和神经动力学方面都具有较好的理论意义和应用前景。 本文的主要工作及创新点包括以下几个方面:(1)基于分数阶蔡氏系统和变形蔡氏系统,构建了复分数阶(时滞)蔡氏系统和分数阶复变形蔡氏系统,利用相图、分岔图、最大Lyapunov指数等定性和定量的手段对两类复系统的动力学行为进行了分析讨论。首先将分数阶微积分定义扩展到复数阶,得到复数阶微积分定义的计算方法,并将其用于复分数阶(时滞)蔡氏系统的仿真。 对于分数阶复变形蔡氏电路系统的研究是将复系统转化为6变量的实系统实现的。在对两类系统的动力学行为分析中,通过改变系统阶次,观察到不同周期窗口、分岔、单涡卷等丰富的动力学行为。 最后讨论了两类复系统动力学行为的异同点及分数阶系统的动力学行为与构建图像处理模型之间的关系。(2)基于分数阶系统稳定性分析理论,研究了分数阶Relaxation振子对于不同外部刺激的稳定域和振荡域,结合相图、分岔图分析得到其产生的振荡为节律振荡;利用节律振荡特性构建图像增强模型,并用实验验证了新模型在图像增强方面的有效性。

首先利用分数阶稳定性理论分析分数阶Relaxation振子在不同外部刺激时其平衡点的稳定性,进而分析其对应的相图、分岔图,确定使分数阶Relaxation 振子产生节律振荡的外部刺激的范围。根据不同外部刺激使系统产生节律振荡的特性,构建了类Gamma曲线(QGC)。 将QGC和其相近模型进行比较,量化指标和直观效果均验证了我们所提模型在图像增强方面有较好的性能。另外,此模型模拟的增强机制也可能是人类视觉系统实现自动适应外界光线条件的机制。 (3)基于分数阶混沌系统的主动控制方法和分时同步策略,实现了单个分数 阶系统与多个分数阶复杂子网络的分时相同步。利用该方案构建了含中枢单元的两层图像目标选择模型,并用实验验证了该模型的可行性。 引入分数阶主动控制策略和分时同步思想,通过线性关系将子网络转化为混合系统,实现了单个混沌系统与子网络(混合系统)间的分时相同步。然后利用该方案构建包括中枢单元和分割单元两层的目标选择模型。 分割层是由相互耦合的分数阶神经元组成,通过相同步实现不同目标物的分割。中枢单元由一个振子构成,通过分时主动控制策略在不同时段与代表不同目标物的混合系统达到相同步,实现目标的选择与转移。 另外,此模型也是对人类视觉系统中目标物选择和转移机制一个很好的解释。 (4)基于分数阶系统的稳定性理论,实现了1+N分数阶复变量节点的复杂网络不 同系数的函数投影同步方案。 将此函数投影同步方案用于构建图像分形特征的识别模型,仿真结果验证了该模型的可行性。首先,构建了1+N节点(复混沌系统)驱动响应复杂网络模型。 根据分数阶系统稳定性理论,设计合理的控制器,实现了分数阶1+N节点复

《从非线性动力学到复杂系统》

《从非线性动力学到复杂系统》 段法兵 系统理论博士生课程

第一讲动态系统的发展 系统是一些相互关联的客体组成的集合,动态(动力dynamical)系统是系统状态变量,比如温度、位移、价格、信号幅值等,随着时间变化的。它的描述可以用微分方程或者离散方程。 微分方程历史悠久,可追溯到牛顿、伽利略、欧拉、雅克比等人,用以描述行星的运动轨迹。研究中发现即使满足牛顿引力定律的三体运动也非常复杂,其微分方程是非线性的,非线性是指不满足叠加定律的方程,解无法利用已知函数进行描述,如果能够描述的我们称为显式解。因此,庞加莱在1880年-1910年期间,试图利用解的拓扑几何性质来解释动态系统的运动规律,发现即使确定性系统,其运动规律也会出现随机性态,非常复杂(确定性系统是指其外力是确定的不随机,只要知道初始条件和演化方程,其运动是可预先确定的)。 非线性系统运动的复杂性:李雅普诺夫研究了系统平衡点?的稳定性?问题,随后本迪尔松等发现系统的解包含(1)平衡态(静止不动);(2)周期运动(比如行星)(3)拟周期,就是几个频率不可公约周期之和。 接着1975年Li和Yorke提出了混沌的概念,即系统的解是非周期的一种类似随机运动的现象,这其中就包含了洛伦兹提出的“蝴蝶效应”,根源在于这类非线性动力系统对于初始条件的极其敏感性,初始条件的微小变化导致了系统状态的巨大改变,从此有关非线性科学的发展异常迅速,形成了现代动力学理论,其最重要的贡献是揭示了一个简单的模型可能蕴含了无比复杂的动力学性态。 例子:Van der Pol(范德波尔)方程 1920年Van der Pol利用电子震荡管研究心脏的跳动问题,比如人工心脏起

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性得概念; 2、掌握线性稳定性得分析方法; ?3、掌握奇点得分类及判别条件; ?4、理解结构稳定性及分支现象; 5、能分析简单动力系统得奇点类型及分支现象. 二、教学重点 1、线性稳定性得分析方法; ?2、奇点得判别。 三、教学难点 ?线性稳定性得分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 ?学习本章内容之前,学生要复习常微分方程得内容。 六、教学过程 本章只介绍一些非常初步得动力学分析方法,但这些方法在应用上就是十分有效得。 1、1相空间与稳定性 ?一、动力系统 在物理学中,首先根据我们面对要解决得问题划定系统,即系统由哪些要素组成。再根据研究对象与研究目得,按一定原则从众多得要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量得微分方程,这些微分方程构成得方程组通常称为动力系统。研究这些微分方程得解及其稳定性以及其她性质得学问称为动力学. 假定一个系统由n个状态变量,,…来描述。有时,每个状态变量不但就是时间t得函数而且也就是空间位置得函数。如果状态变量与时空变量都有关,那么控制它们变化得方

程组称为偏微分方程组.这里假定状态变量只与时间t有关,即X =X i(t),则控制它们 i 得方程组为常微分方程组。 ?????(1。1.1) … 其中代表某一控制参数.对于较复杂得问题来说,(i=l,2,…n)一般就是得非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于不明显地依赖时间t,故称方程组(1。1.1)为自治动力系统。若明显地依赖时间t,则称方程组(1、1、1)为非自治动力系统.非自治动力系统可化为自治动力系统. 对于非自治动力系统,总可以化成自治动力系统。 例如: 令,,上式化为 上式则就是一个三维自治动力系统。 又如: 令,则化为 它就就是三微自治动力系统、 对于常微分方程来说,只要给定初始条件方程就能求解。对于偏微分方程,不但要给定初始条件而且还要给定边界条件方程才能求解。 能严格求出解析解得非线性微分方程组就是极少得,大多数只能求数值解或近似解析解。 二、相空间 ,X2,…Xn)描述得系统,可以用这n个状态变量为坐标轴支由n个状态变量=(X 1 起一个n维空间,这个n维空间就称为系统得相空间。在t时刻,每个状态变量都有一个确定得值,这些值决定了相空间得一个点,这个点称为系统状态得代表点(相点),即它代表了系统t时刻得状态。随着时间得流逝,代表点在相空间划出一条曲线,这样曲线称为相轨道或轨线.它代表了系统状态得演化过程。 三、稳定性 把方程组(1。1.1)简写如下

CFD—计算流体动力学软件介绍

CFD 流体动力学软件介绍 CFD—计算流体动力学,因历史原因,国一直称之为计算流体力学。其结构为: 提出问题—流动性质(流、外流;层流、湍流;单相流、多相流;可压、不可压等等),流体属性(牛顿流体:液体、单组分气体、多组分气体、化学反应气体;非牛顿流体) 分析问题—建模—N-S方程(连续性假设),Boltzmann方程(稀薄气体流动),各类本构方程与封闭模型。 解决问题—差分格式的构造/选择,程序的具体编写/软件的选用,后处理的完成。 成果说明—形成文字,提交报告,赚取应得的回报。 CFD实现过程: 1.建模——物理空间到计算空间的映射。 主要软件: 二维: AutoCAD: 大家不要小看它,非常有用。一般的网格生成软件建模都是它这个思路,很少有参数化建模的。相比之下AutoCAD的优点在于精度高,草图处理灵活。可以这样说,任何一个网格生成软件自带的建模工具都是非参数化的,而对于非参数化建模来说,AutoCAD应该说是最好的,毕竟它发展了很多很多年! 三维: CATIA:航空航天界CAD的老大,法国人的东西,NB,实体建模厉害,曲面建模独步武林。本身可以生成有限元网格,前几天又发布了支持ICEM-CFD的插件ICEM-CFD CAA V5。有了它和ICEM-CFD,可以做任何建模与网格划分! UG:总觉得EDS脑袋进水了,收了I-deas这么久了,也才发布个几百M的UG NX 2.0,还被大家争论来争论去说它如何的不好用!其实,软件本身不错,大公司用得也多,可是就这么打市场,早晚是走下坡路。按CAD建模的功能来说它排不上第一,也不能屈居第二,尤其是加上了I-DEAS更是如虎添翼。现

单摆非线性动力学

单摆的非线性动力学分析 亚兵 (交通大学车辆工程专业,,730070) 摘要:研究单摆的运动,从是否有无阻尼和驱动力方面来分析它们对单摆运动的影响。对于小角度单摆的运动,从单摆的动力学方程入手,借助雅普诺夫一次近似理论,推导出单摆的运动稳定性情况。再借助绘图工具matlab,对小角度和大角度单摆的运动进行仿真,通过改变参数,如阻尼大小、驱动力大小等绘出单摆运动的不同相图,对相图进行分析比较,从验证单摆运动的稳定性情况。关键词:单摆;振动;阻尼;驱动力 Abstract:The vibration of simple pendulum is studied by analyzing whether or not damp and drive force its influence of the simple pendulum. For small angle pendulum motion, pendulum dynamic equation from the start, with an approximate Lyapunov theory of stability of motion is derived pendulum situation. Drawing tools with help from matlab, small angle and wide-angle pendulum motion simulation, by changing the parameters, such as damping size, drive size draw simple pendulum of different phase diagram, analysis and comparison of the phase diagram, from the verification the stability of the situation pendulum movement. Key words: simple pendulum; vibration; damp; drive force 1 引言 单摆是一种理想的物理模型[1],单摆作简谐振动(摆角小于5°)时其运动微分方程为线性方程,可以求出其解析解,而当单摆做大幅度摆角运动时,其运动微分方程为非线性方程,我们很难用解析的方法讨论其运动,这个时候可以用MATLAB软件对单摆的运动进行数值求解,并可以模拟不同情况下单摆的运动。 θ=时, 随着摆角的减小,摆球的运动速率将越来越大,而加速度将单调下降,至0 加速度取极小值。本文从动力学的角度详细考察了这一过程中摆球的非线性运,得出了在运动过程中.,t θθθ --的关系。

海洋生态系统非线性动力学研究

海洋技术 第28卷 1引言 自从上世纪90年代以来,海洋生态方面的研究日趋活跃,海洋生态系统动力学模型的研究成为本领域内的一个重要方向。本文通过参阅国内外大量相关学术资料,建立了新的海洋生态经济系统动力学模型,并运用非线性动力学理论分析了此模型。 2主要内容 2.1 模型介绍 考虑营养盐、自养浮游植物和食植鱼类相互作用关系,并添加人为经济因素对该体系的影响,建立了三者的新模型。 参考NPZ 模型[1],将浮游动物换为食植鱼类;在营养盐方程中,忽略浮游植物和食植鱼类的死亡以及食植鱼类取食浮游植物过程中非同化的浮游植物部分向营养盐的转化,加入外界污染对其的影响;在食植鱼类方程中加入捕捞项,建立模型如下: (1 )式中:N 为营养盐浓度;P 为浮游植物浓度;Z 为食植鱼类浓度;a 为浮游植物生长率;k N 为吸收营养盐的半饱和参 数;e 为污染强度;R m 为食植鱼类的最大摄食率;λZ 为食植鱼类摄食半饱和系数;εP 为浮游植物死亡率;εZ 为食植鱼类死亡率;γ为食植鱼类的营养转化率;h 为人类对食植鱼类的捕捞率。 模型中浮游动物对浮游植物的摄食采用Ivlev 公式[2]:参数 h 是本文着重讨论的分岔参数。并且其它各参数的默认取值如表1所示: 表1 参数意义及其取值范围[3~4] 2.2系统稳定性及分岔分析 根据模型方程的基本特征,注意到食物链模型中各元素的物理意义及在实际发生过程中相互影响、耦合。我们考虑运用Lyapunov 运动稳定性理论[5]来判断变量各状态的稳定 性。 首先求所建模型方程的平衡点,令方程(1)的左端为零,即: (2) 海洋生态系统非线性动力学研究 王洪礼,董占琢 (天津大学机械工程学院,天津300072) 摘 要:海洋生态经济系统非线性动力学模型的建立及分析,对我国海洋生态经济发展乃至社会经济的发展都具 有重要意义。建立了新的海洋生态经济系统动力学模型,研究了模型的稳定性和分岔现象,揭示了该系统的非线性动力学特性。 关键词:海洋生态经济系统;非线性;稳定性;分岔中图分类号:X82 文献标识码:A 文章编号:1003-2029(2009)01-0050-05 第28卷第1期2009年3月海洋技术OCEAN TECHNOLOGY Vol.28,No.1Mar ,2009收稿日期:2008-09-22 基金项目:国家自然科学基金资助项目(10772132);博士点基金资 助项目(20070056063) 作者简介:王洪礼(1945-),女,河北沧县人,天津大学教授,博生导 师。 符号 意义 默认取值 a 浮游植物的生长率 0.2k N 吸收营养盐的半饱和参数0.05Rm 食植鱼类的最大摄食率0.6γ 食植鱼类的营养转化率0.9λZ 食植鱼类摄食的半饱和系数 0.035εP 藻类的死亡率0.005εZ 食植鱼类死亡率 0.005

第六章废水生物处理的基本概念和生化反应动力学

第六章废水生物处理的基本概念和生化反应动力学207、微生物新陈代谢的本质是什么?它包括了哪些内容? 208、什么是生物酶及其酶促反应? 209、在生化反应过程中酶所起的作用是什么?酶具有哪些特征? 210、微生物的呼吸作用有哪几种类型?各有什么特点? 211、试述好氧呼吸和厌氧呼吸的本质。 212、微生物生长曲线的研究在废水生物处理中的指导意义是什么? 213、微生物内源呼吸的本质是什么? 214、影响微生物生长的环境因素有哪些?各如何影响? 215、ATP在生物反应过程中所起的作用是什么? 216、试推导M-M方程式。 217、证明当μ=μm/2时,Ks=[S]0。 218、试根据能量代谢作用解释为何厌氧生物处理过程中所产生的剩余污泥量要比好氧生物处理少? 219、试推导一级反应、二级反应的速率常数表达式。 220、何谓反应的半衰期?写出一级反应和二级反应的半衰期公式并对它们进行比较说明。 221、试分别推导完全混合间歇反应器、连续流完全混合反应器、串联运行的连续流完全混合反应器和推流式反应器的反应时间与出水中基质浓度间的关系表达式。 222、某城市污水日流量为5000 m3/d,进水BOD5为200 mg/L,要求经处理后出水中的BOD5浓度≤20 mg/l。假定反应为一级反应,速率常数为K=0.75d-1 。试比较下列反应器系统所需的总容积。 (1)单个完全混合反应器(CSTR); (2)两个串联运行的完全混合反应器(CSTR); (3)四个串联运行的完全混合反应器(CSTR); (4)推流式反应器(PF)。 223、测定反应器中液体质点停留时间的方法有哪些?试举例说明之。 224、何谓反应器的停留时间分布函数? 225、反应器中的水流扩散度可用什么指标加以描述?理想的推流式反应器和理想法的

计算流体力学课后题作业

课后习题 第一章 1.计算流体动力学的基本任务是什么 计算流体动力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。 2.什么叫控制方程?常用的控制方程有哪几个?各用在什么场合? 流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。如果流动包含有不同组分的混合或相互作用,系统还要遵守组分守恒定律。如果流动处于湍流状态,系统还要遵守附加的湍流输运方程。控制方程是这些守恒定律的数学描述。 常用的控制方程有质量守恒方程、动量守恒方程、能量守恒方程、组分质量守恒方程。质量守恒方程和动量守恒方程任何流动问题都必须满足,能量守恒定律是包含有热交换的流动系统必须满足的基本定律。组分质量守恒方程,在一个特定的系统中,可能存在质的交换,或者存在多种化学组分,每种组分都需要遵守组分质量守恒定律。 4.研究控制方程通用形式的意义何在?请分析控制方程通用形式中各项的意义。 建立控制方程通用形式是为了便于对各控制方程进行分析,并用同一程序对各控制方程进行求解。

各项依次为瞬态项、对流项、扩散项、源项。 6.CFD商用软件与用户自行设计的CFD程序相比,各有何优势?常用的商用CFD软件有哪些?特点如何? 由于CFD的复杂性及计算机软硬件条件的多样性,用户各自的应用程序往往缺乏通用性。 CFD商用软件的特点是 功能比较全面、适用性强。 具有比较易用的前后处理系统和其他CAD及CFD软件的接口能力,便于用户快速完成造型、网格划分等工作。 具有比较完备的容错机制和操作界面,稳定性高。 可在多种计算机、多种操作系统,包括并行环境下运行。 常用的商用CFD软件有PHOENICS、CFX、SRAR-CD、FIDAP、FLUENT。PHOENICS除了通用CFD软件应该拥有的功能外,PHOENICS软件有自己独特的功能:开放性、CAD接口、运动物体功能、多种模型选择、双重算法选择、多模块选择。 CFX除了可以使用有限体积法外,还采用基于有限元的有限体积法。用于模拟流体流动、传热、多相流、化学反应、燃烧问题。其优势在于处理流动物理现象简单而几何形状复杂的问题。 SRAR-CD基于有限体积法,适用于不可压流体和可压流的计算、热力学的计算及非牛顿流的计算。它具有前处理器、求解器、后处理器三大模块,以良好的可视化用户界面把建模、求解及后处理与全部的物理模型和算法结合在一个软件包中。

CFD计算流体动力学入门教程选择

非流体、热动专业CFD新手入门 首先掌握流体力学基本原理,丁祖荣主编的流体力学这本教材,仔细看两天,这样就会知道gambit中为什么会有边界层设置,边界层厚度如何设置;雷诺系数如何确定来判断层流与湍流;马赫数如何确定来判断流体是可压还是不可压,这样就能解决Fluent,是基于压力还是基于密度求解。能够对实际中一些看似简单的流体现象有深刻的认识,能够准确判断是定常流还是非定常流。 CFD网格划分 网格划分对于初学者所接触案例,其实非常简单。但实际工程中,大项目,特别涉及到整套工程,如环保,飞机,网格质量与数量都要求非常高,往往服务器类的PC才能解决问题,所谓的内存128G,CPU四核主频3.0以上。初学者,简单的管道,一般的机器还是没问题。有机械三维软件基础的,对于gambit建模就非常容易了。往往大项目,复杂的结构gambit 建模显得力不从心,所以对于流体工作者来说,学习三维软件对于建模有莫大的帮助,如Proe。 1.1Gambit介绍 网格的划分使用Gambit软件,首先要启动Gambit,在Dos下输入Gambit,文件名如果已经存在,要加上参数-old。 一.Gambit的操作界面 图1 Gambit操作界面 如图1所示,Gambit用户界面可分为7个部分,分别为:菜单栏、视图、命令面板、命令显示窗、命令解释窗、命令输入窗和视图控制面板。 文件栏 文件栏位于操作界面的上方,其最常用的功能就是File命令下的New、Open、Save、Save as和Export等命令。这些命令的使用和一般的软件一样。Gambit可识别的文件后缀为.dbs,而要将Gambit中建立的网格模型调入Fluent使用,则需要将其输出为.msh文件

工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案

工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案

工程流体力学闻德课后习题答案 第五章 实际流体动力学基础 5—1设在流场中的速度分布为u x =2ax ,u y =-2ay ,a 为实数,且a >0。试求切应力τxy 、τyx 和附加压应力p ′x 、p ′y 以及压应力p x 、p y 。 解:0y x xy yx u u x y ττμ??? ?==+= ????? 24x x u p a x μ μ?'=-=-?,24y y u p a y μμ ?'=-=?, 4x x p p p p a μ '=+=-,4y y p p p p a μ'=+=+ 5-2 设例5-1中的下平板固定不动,上平板以速度v 沿x 轴方向作等速运动(如图所示),由于上平板运动而 引起的这种流动,称柯埃梯(Couette )流动。试求在这种流动情况下,两平板间的速度分布。 (请将d 0d p x =时的这一流动与在第一章中讨论流体粘性时的流动相比较) 解:将坐标系ox 轴移至下平板,则边界条件为 y =0,0X u u ==;y h =,u v =。 由例5-1中的(11)式可得 2 d (1)2d h y p y y u v h x h h μ=-- (1) 当d 0d p x =时,y u v h =,速度u为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切 流动。它只是由于平板运动,由于流体的粘滞性

带动流体发生的流动。 当d 0d p x ≠时,即为一般的柯埃梯流动,它是由简单柯埃梯流动和泊萧叶流动叠加而成,速度分布为 (1)u y y y p v h h h =-- (2) 式 中 2d () 2d h p p v x μ=- (3) 当p >0时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p <0时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p <-1的情况. 5-3 设明渠二维均匀(层流)流动,如图所示。若忽略空气阻力,试用纳维—斯托克斯方程和连续性方程,证明过流断面上的速度分布为 2sin (2) 2x g u zh z r q m =-,单宽流量 3 sin 3gh q r q m =。

非线性动力学与混沌理论

非线性动力学 随着科学技术的发展,非线性问题出现在许多学科之中,传统的线性化方法已不能满足解决非线性问题的要求,非线性动力学也就由此产生。 非线性动力学联系到许多学科,如力学、数学、物理学、化学,甚至某些社会科学等。非线性动力学的三个主要方面:分叉、混沌和孤立子。事实上,这不是三个孤立的方面。混沌是一种分叉过程,孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象。 经过多年的发展,非线性动力学已发展出了许多分支。如分叉、混沌、孤立子和符号动力学等。然而,不同的分支之间又不是完全孤立的。非线性动力学问题的解析解是很难求出的。因此,直接分析非线性动力学问题解的行为(尤其是长时期行为)成为研究非线性动力学问题的一种必然手段。 *混沌理论是谁提出的? 混沌理论,是系统从有序突然变为无序状态的一种演化理论,是对确定性系统中出现的内在“随机过程”形成的途径、机制的研讨。 美国数学家约克与他的研究生李天岩在1975年的论文“周期3则乱七八糟(Chaos)”中首先引入了“混沌”这个名称。 美国气象学家洛伦茨在2O世纪6O年代初研究天气预报中大气流动问题时,揭示出混沌现象具有不可预言性和对初始条件的极端敏感依赖性这两个基本特点,同时他还发现表面上看起来杂乱无章的混沌,仍然有某种条理性。 1971年法国科学家罗尔和托根斯从数学观点提出纳维-斯托克司方程出现湍流解的机制,揭示了准周期进入湍流的道路,首次揭示了相空间中存在奇异吸引子,这是现代科学最有力的发现之一。 1976年美国生物学家梅在对季节性繁殖的昆虫的年虫口的模拟研究中首次揭示了通过倍周期分岔达到混沌这一途径。 1978年,美国物理学家费根鲍姆重新对梅的虫口模型进行计算机数值实验时,发现了称之为费根鲍姆常数的两个常数。这就引起了数学物理界的广泛关注。 与此同时,曼德尔布罗特用分形几何来描述一大类复杂无规则的几何对象,使奇异吸引子具有分数维,推进了混沌理论的研究。20世纪70年代后期科学家们在许多确定性系统中发现混沌现象。作为一门学科的混沌学目前正处在研讨之中,未形成一个完整的成熟理论。 *混沌的理论 要弄明白不可预言性如何可以与确定论相调和,可以来看看一个比整个宇宙次要得多的系统——水龙头滴下的水滴。这是一个确定性系统,原则上流入水龙头中的水的流量是平稳、均匀的,水流出时发生的情况完全由流体运动定律规定。但一个简单而有效的实验证明,这一显然确定性的系统可以产生不可预言的行为。这使我们产生某种数学的“横向思维”,它向我们解释了为什么此种怪事是可能的。 假如你很小心地打开水龙头,等上几秒钟,待流速稳定下来,通常会产生一系列规则的水滴,这些水滴以规则的节律、相同的时间间隔落下。很难找到比这更可预言的东西了。但假如你缓缓打开水龙头,使水流量增大,并调节水龙头,使一连串水滴以很不规则的方式滴落,这种滴落方式似乎是随机的。只要做几次实验就会成功。实验时均匀地转动水龙头,别把龙头开大到让水成了不间断的水流,你需要的是中速滴流。如果你调节得合适,就可以在好多分钟内听不出任何明显的模式出现。 1978年,加利福尼亚大学圣克鲁斯分校的一群年青的研究生组成了一个研究动力学系统的小组。他们开始考虑水滴系统的时候,就认识到它并不像表现出来的那样毫无规则。他们用话筒记录水滴的声音,分析每一滴水与下一滴水之间的间隔序列。他们所发现的是短期的可预言性。要是我告诉你3个相继水滴的滴落时刻,你会预言下一滴水何时落下。例如,假如水滴之间最近3个间隔是0.63秒、1.17秒和0.44秒,则你可以肯定下一滴水将在0.82秒后落下这些数只是为了便于说明问题。事实上,如果你精确地知道头3滴水的滴落时刻,你就可以预言系统的全部未来。 # 那么,拉普拉斯为什么错了? 问题在于,我们永远不能精确地测量系统的初始状态。我们在任何

非线性转子 动力学

航空发动机非线性转子碰磨研究 XXX (XXXX 机械工程上海200072) 摘要:综述了国内外非线性转子动力学的研究现状,讨论了非线性转子动力学研究中的7个主要问题,并引述了大量相应的国内外文献,包括:非线性转子动力学研究的一般方法;求解非线性转子动力学问题的数值积分方法;大型转子-轴承系统高维非线性动力学问题的降维求解;基于微分流形的动力系统理论方法;转子非线性动力学行为的机理研究和实验研究;高速转子-轴承系统的非线性动力学设计,最后讨论了非线性转子动力学研究中存在的问题及展望。 关键词:非线性;高速转子;数值积分法 The research for Aeroengine nonlinear rotor WANG Qing-long (Shanghai university mechainal engineering 20072 shanghai) Abstract: Reviewed the research status of nonlinear rotor dynamics both at home and abroad, discusses the seven main in the study of nonlinear rotor dynamics. To questions, and cited a large number of relevant literature both at home and abroad, include: common methods of nonlinear rotor dynamics; To solve the non-linear. Rotor dynamics problems of numerical integral method; Rotor - bearing system of large dimension reduction solution for high dimensional nonlinear dynamics; In the theory of differential dynamic system of the manifold method; Rotor nonlinear dynamics behavior of mechanism research and experiment research; High speed rotor shaft. Bearing system of the nonlinear dynamics design, and finally discusses the problems of nonlinear rotor dynamics research and prospects. Key words: nonlinear; High speed rotor; The numerical integral method. 由于旋转机械系统中各种异常振动的存在,常常引发灾难性的事故。过去研究转子-轴承-基础系统大多采用基于线性转子动力学理论。例如传统转子动力学对转子-轴承系统稳定性问题的研究,一般采用8个线性化的刚度与阻尼特性系数的油膜力模型。对于大型旋转机械中存在的油膜力、密封力、不均匀蒸汽间隙力等严重的非线性激励源,由于数学模型不够完善,以致系统中存在的许多由非线性因素引起的多种复杂动力学行为尚没有彻底搞清,不能满足现代工程设计的需要,迫切需要建立转子-轴承系统的非线性动力学理论,揭示系统存在的各种非线性动力学行为,提出转子-轴承系统的非线性动力学设计方法,研究旋转机械中存在的各种实际问题,这对提高旋转机械运行的稳定性、安全性、可靠性具有重要的现实意义和实际工程背景。 随着非线性动力学理论的发展,非线性转子动力学理论和方法也受到了关注,大量的研究成果使转子动力学面貌一新。但现有的非线性动力学理论和方法在解决高维动力系统方面还存在困难,而工程实际中的转子-轴承-基础系统是一个复杂的高维系统,从而吸引了更多的研究者从事这方面的研究,特别是现代非线性动力学理论在转子动力学中的应用,已成为当今国

相关文档
最新文档