绿色荧光蛋白转入拟南芥愈伤组织

绿色荧光蛋白转入拟南芥愈伤组织
绿色荧光蛋白转入拟南芥愈伤组织

绿色荧光蛋白转入拟南芥愈伤组织

引言:

拟南芥(Arabidopsis thaliana)属于十字花科,与甘蓝、白菜和油菜同科。由于拟南芥具有植株很小(株高约15 Cllfl)、生活周期很短(42~56 d)、种子丰富(每株3000粒以上)、易于繁殖和人工诱变等优点,早在1943年它就被选为模式植物进行研究;1980年公布了它的遗传图谱;1997年公布了拟南芥线粒体基因组,这是有花植物中第1个完整的线粒体基因组分析;2000年拟南芥国际合作组织完成了其核基因组全长测定,是迄今唯一完成全部基因组序列测定的植物。拟南芥在植物进化中处于相当高的位置,在拟南芥中发现的一些重要调节基因都能在其他植物中找到它们的同源基因。因此,如果从比较容易的拟南芥人手,获得的基因研究成果可以更容易地向农作物转化,表现出可观的经济效益。

绿色荧光蛋白(GFP)最早是由Shimomura等[1]从多管水母中分离出来的一种荧光蛋白。主要存在与水母、水螅和珊瑚等腔肠动物体内。其特点在于发光无需底物或辅助因子,其发光的主要原因是因为其独特的一级结构[2]。GFP作为一种报告基因还具有无种属特异性、分子量小、容易与其他蛋白形成融合蛋白、不损害细胞、易检测、可用于活体观察等特点[3]。本实验就是利用了其荧光和活体检测的优点对转化效率进行评测。

目前有关于GFP的研究多见于其在细胞中的瞬时表达[4,5],但是它本身的发光是依赖于其特有的氨基酸序列,而且很容易和其他蛋白进行融合表达,因此可以将GFP蛋白和目的蛋白进行融合表达,通过荧光显微镜对目的蛋白在细胞或组织中的表达情况进行直接观察。这种方法相与传统的免疫荧光方法相比可以直接进行活体观察,且样品处理及观察更加简便。

一、实验原理

1.培养拟南芥愈伤组织

1.1配制培养基时,为了使用方便和用量准确,通常采用母液法进行配制,即将所选培养基配方中各试剂的用量,扩大若干倍后再准确称量,分别先配制成一系列的母液置于冰箱中保存,使用时按比例吸取母液进行稀释配制即可。

1.2愈伤组织原指植物体的局部受到创伤刺激后,在伤口表面新生的组织。它由活的薄壁细胞组成,可起源于植物体任何器官内各种组织的活细胞。在植物体的创伤部分,愈伤组织可帮助伤口愈合;在嫁接中,可促使砧木与接穗愈合,并由新生的维管组织使砧木和接穗沟通;在扦插中,从伤口愈伤组织可分化出不定根或不定芽,迸而形成完整植株。在植物器官、组织、细胞离体培养时,条件适宜也可以长出愈伤组织。其发生过程是:外植体中的活细胞经诱导,恢复其潜在的全能性,转变为分生细胞,继而其衍生的细胞分化为薄壁组织而形成愈伤组织。愈伤组织诱导的成败关键主要不是外植体的来源和种类,而是培养条件,其中激素的种类和浓度最为重要。诱导愈伤组织常用的生长素是2,4-D,IAA和NAA,常用的细胞分裂素是KT和6-BA。

愈伤组织形成的过程分为3个时期:诱导期、分裂期、分化期(形成期)。愈伤组织的生长是发生在不与琼脂培养基接触的表面。

1.3调节培养基的酸碱性至PH5.8。由于培养基的PH值直接影响到培养物对离子的吸收,因而过酸或过碱都对植物材料的生长有很大的影响。此外,PH还影响到琼脂培养基的凝固情况。所以,当培养基配制好后应立即进行PH值的调整。培养基若偏酸时用氢氧化钠(1mol/L)来调节,若过碱就用盐酸(1mol/L)来调

整。当PH值高于6.0时,培养基将会变硬;当PH值低于5.0时5.0时,琼脂不能很好地凝固。

1.4植物组织培养的优点:①研究材料来源单一,无性系遗传背景一致;②经济方便效率高;③条件可控误差小;④生长快周期短重复性强;⑤可周年试验或生产。

1.5组织培养实验室布局的总体要求:便于隔离,便于操作,便于灭菌,便于观察。

1.6组培上常用的灭菌方法有物理和化学法。常用的物理方法有:物理灭菌干热、湿热、射线处理、物理除菌、过滤、离心、沉淀等。常用的化学方法:消毒剂、抗菌素灭菌。不同物品要选用不同的灭菌方法。

2.实验室中常用仪器设备及其灭菌方法如下:

①培养基灭菌:高温高压湿热灭菌法。具体方法如下:压力9.8×104—10.8×104Pa,温度在121℃,灭菌20—30min。②玻璃器皿灭菌:蒸汽高压消毒灭菌、干热消毒灭菌③塑料器皿灭菌:多采用高压蒸汽消毒灭菌④金属用具灭菌:灼烧灭菌。具体方法是:浸入95%酒精,后置于酒精火焰上灼烧,冷却后使用。⑤接种室灭菌:紫外灯照射、空气消毒灭菌。超净工作台:紫外灯照射,70%—75%的酒精擦洗。⑥外植体灭菌:水冲洗10—20min或更长时间70%—75%酒精中浸泡

30s0.1%—0.2%氯化汞液中浸泡10min左右蒸馏水冲洗4—5次备用。

3.农杆菌转化

农杆菌对双子叶植物的创伤部位侵染广泛在某些条件下对单子叶植物也有一定的感染性。根癌农杆菌含有Ti (tumor-inducing plasmid)质粒Ti 质粒上

的 T-DNAtransferred DNA在 Vir区virulence region基因产物的介导下可以插入到植物基因组中诱导在宿主植物中瘤状物的形成。因此 将外源目的基因插入到 T-DNA 中借助 Ti质粒的功能使目的基因转移进宿主植物中并进一步整合、表达。

根癌农杆菌的Ti质粒上有一段转移DNA(T-DNA),具有向植物细胞传递外源基因的能力,而细菌本身并不进入受体细胞。农杆菌转化植物细胞涉及一系列复杂的反应,主要包括:

①受伤的植物细胞为修复创伤部位,释放一些糖类、酚类等信号分子。

②在信号分子的诱导下,农杆菌向受伤组织集中,并吸附在细胞表面。

③转移DNA上的毒粒基因被激活并表达,同时形成转移DNA的中间体。

④转移DNA进入植物细胞,并整合到植物细胞基因组中。因为单子叶植物不是农杆菌的天然寄主,况且其不能合成起诱导作用的信号分子,所以限制了农杆菌介导法在单子叶植物中的应用。不过近年来大量成功转化的实例表明,植物、真菌、哺乳动物甚至人类细胞都可以作为农杆菌的受体双元表达载体系统主要包括两个部分:一部分为卸甲Ti质粒,这类Ti质粒由于缺失了T-DNA 区域完全丧失了致瘤作用,主要是提供Vir基因功激活处于反式位置上的T-DNA的转移。另一部分是微型Ti质粒(Mini-Ti plasmid),它在T-DNA左右边界序列之间提供植株选择标记,如Hyg基因或Lac Z基因等。双元载体系统的转化原理是Ti质粒上的Vir基因可以反式激活T-DNA 的转移。

根据受体材料不同分为浸花法、原生质体共培养法、叶盘法和创伤植物感染法。其中浸花法、叶盘法在许多植物上得到广泛应用。

二、实验目的

1.了解并掌握拟南芥愈伤组织的置备方法。

2. 了解并掌握制备感受态农杆菌的方法。

3. 了解并掌握重组质粒转入农杆菌的方法。

4. 了解并掌握农杆菌转入拟南芥愈伤组织的方法。

5.了解并掌握荧光显微镜的使用方法。

三、实验过程(包括实验步骤和实验材料)

1.培养拟南芥愈伤组织

1.1所需材料准备

拟南芥种子若干,70-80%酒精,无菌水,2,4-D(2mg/L),6-BA(1mg/L),MS固体培养基(琼脂糖7.2g/L),三角瓶;黑暗培养箱;培养皿;无菌滤纸;无菌镊子;保险膜等

1.2培养拟南芥愈伤组织

1.2.1.选取饱满、无霉变、成熟拟南芥种子(注意保持胚完整)

1.2.2.打开超净工作台消毒2h

1.2.3.将拟南芥种子转到50mL无菌三角瓶,加适量无菌水洗3~5次(以没过种子为准,下同)

1.2.4.倒入70~80%酒精适量,摇动搅拌,放置60秒(过程中适当轻摇动混匀)1.2.5.用无菌水洗4-5次,每次停留1分钟

1.2.6.倒去无菌水,将种子从三角瓶转到带无菌滤纸的无菌培养皿中吸干

1.2.7.无菌拟南芥种子放置在MS的固体培养基(琼脂糖7.2g/L),黑暗培养26~28度3周

2.将重组质粒转入农杆菌

2.1选用pCAMBIA1304质粒

2.2所需材料准备(注:因为农杆菌的培养周期较长,一定要保证有28度摇床可用。)

菌种:农杆菌EHA105利福平抗性,LB液体培养基3ml 50ml,LB固体培养基利福平和卡那抗性,抗生素:利福平50mg/ml和卡那抗性50mg/ml,CaCl220mmol/L,液氮,液体YEP培养基,涂布棒,枪头,滤菌膜,平板,锥形瓶,3ml液体培养及用管,1.5ml离心管,水浴锅,离心机,培养箱,摇床等

2.3 制备感受态农杆菌

2.3.1 挑取1个新鲜的单菌落到含3ml LB培养基中利福平浓度50 mg/L.

2.3.2 28℃,200 r/min 振荡培养过夜

2.3.3取0.5ml菌液加入50ml培养基中利福平浓度50mg/L ,28℃,200r/min振荡培养至培养液OD600=0.50

2.3.4取1.5ml菌液转移至预冷的1.5ml离心管中,冰浴30 min

2.3.54℃,5000 r/min 离心10 min,弃上清,重复取菌液3-4次,完成后将离心管倒置于灭菌滤纸上使其残液流尽

2.3.6 缓慢向离心管中加入20 mmol/L冰预冷的CaCl2转化溶液1ml,重悬菌液沉淀,冰浴中放置10 min,4℃,5000 r/min离心10min

2.3.7 弃上清,加入100ul 20 mmol/L的冰预冷的CaCl2转化溶液,重悬菌液沉淀。

2.4 重组质粒导入农杆菌

2.4.1 在感受态细胞中加入重组质粒,轻轻混匀,冰浴30min

2.4.2 液氮速冻1min

2.4.3 迅速移至37℃融化,加入900ul液体培养基,28℃轻摇培养4h

2.4.4 6000r/min离心2min,弃上清

2.4.5 用100ul培养基重悬菌体,重悬液体后涂布于含利福平50mg/L和50mg/L 卡那霉素的固体培养基上,28℃倒置培养2d

2.4.6 挑取单菌落,接种到液体YEP培养基上,28℃,230r/min培养48h,菌液用于保存或转化。

3.将农杆菌转入拟南芥愈伤组织

3.1. 所需材料准备

(注:诱导培养基:MS+2,4-D 2 mg·L-1+6-BA 1mg·L-1;PH =5.8-6.0

共培养培养基:MS+2,4-D 2 mg·L-1 +AS 100 uM·L-1+6-BA 1mg·L-1;PH =5.8

选择培养基:MS+2,4-D 2 mg·L-1 +羧卞青霉素250 mg·L-1+潮霉素

50mg·L-1+6-BA 1mg·L-1;PH =5.8-6.0)

LB固体培养基(利福平和卡那抗性),含100μM/L乙酰丁香酮的AAM培养基,无菌培养瓶,羧卞青霉素(100 mg/mL),潮霉素,无菌滤纸,无菌水,AAM培养基,共培养基:MS培养基;选择培养基

3.2.将农杆菌转入拟南芥愈伤组织

3.2.1. 处理农杆菌

从低温(-20℃) 冻存管中取少量菌液于附加Kan 50 mg/L和Rif 50 mg/L LB固体培养基,然后在26-28℃暗培养两天。

3.2.2. 农杆菌感染拟南芥

农杆菌在27℃固体LB培养基上暗培养2天后,用适量添加有100μM/L乙酰丁香酮的AAM培养基,将农杆菌洗脱,悬浮于添加有100μM/L乙酰丁香酮20 ml AAM培养基中,剧烈摇动,调整菌液浓度至OD600nm=0.1-1.0,静置1h,以便让农杆菌形成悬浮液。取经预培养的愈伤组织于灭菌的培养瓶中,加入上述处理的农杆菌菌液,略微摇动后静置30min,于无菌滤纸上晾干愈伤后接种于共培养基,28℃中暗培养2天。

3.2.3.洗脱农杆菌

两天后,挑取共培养后的愈伤于广口培养瓶中,用无菌水冲洗3-5次,每次摇动数次,直至水中不见丝状菌体。最后一次用含250 mg/L羧卞青霉素的无菌水静置1h,然后置于无菌滤纸上晾干。第二天转移至选择培养基(添加250 mg/L羧卞青霉素,以及50 mg/L潮霉素)筛选抗性愈伤。

4.荧光显微镜观察结果

取转化后的愈伤组织制片,放在荧光显微镜下观察实验结果。

四、实验结果与讨论

1.实验结果

在培养愈伤组织的过程中多次出现杂菌,且没有生成愈伤组织。并且在后来的多次诱导过程时向诱导培养基中加入了适量的抗生素,虽然解决了杂菌生长的问题,但是仍然没有愈伤组织生成。愈伤组织培育失败,实验不能继续完成。2.讨论

愈伤组织培养时引入杂菌的可能有:实验操作的不熟练导致实验过程中没有

严格的维持无菌条件;使用无菌工作台之前没有进行彻底的消毒操作。

愈伤组织诱导失败可能的原因可能有:次氯酸钠处理后没有用无菌水洗净,抑制了脱分化过程;2-4 D在培养基中由于高温或其他原因导致其终浓度不对或者2-4 D已经失效。

五、参考文献

[1] Shimomm 0 et al. A Bioluminescent protein from the luminous Hydromedusan. Aequorea[J].J Cell Comp physiol,1962,59(2):223~229.

[2]Chalife et al. Green fluorescent protein as a maker for gene expression. Science,1994,263(5148):802~805

[3]王爱民,高霞莉. 根癌农杆菌介导的绿色荧光蛋白基因在水稻植株中的表达[J]. 徐州师范大学学报(自然科学版),2009,02:91-94.

[4]王泽宙,邱全胜. 绿色荧光蛋白基因mgfp4 在水稻愈伤组织中的瞬时表达[J]. 北京师范大学学报(自然科学版),2000,03:385-389.

[5]熊玲媛,陈亮,沈明山,黄胤怡,陈睦传. GFP-mut2 植物表达载体的构建及在甜菊愈伤组织中的表达[J]. 厦门大学学报(自然科学版),2002,05:546-550.

绿色荧光蛋白的应用及发展前景汇总

学士学位论文文献综述题目绿色荧光蛋白的应用及发展前景 姓名周紫嫣学 号014010110349 专业生物工程 指导教师周小萍职 称教师 中国·武汉二○一二年四月

目录 摘要······················································································ II 关键词 ···················································································· II Abstract ··················································································· II Key words ················································································ II 1 GPF的发现 (1) 2 GFP的结构及发光原理 (1) 2.1 GFP的结构 (1) 2.2 GFP的发光原理 (2) 3 GFP在生物技术中的应用 (2) 3.1 GFP作为报告基因 (2) 3.2 GFP用于研究病毒与宿主的关系 (3) 3.3 GFP用于药物筛选 (3) 3.4 GFP作为生物传感器 (3) 3.5 GFP用于融合抗体 (4) 3.6 GFP用于计算细胞生长速度 (4) 3.7 GFP用于基因表达调控 (4) 4 GFP存在问题及发展前景 (4) 参考文献 (5) 致谢 (5)

拟南芥植物组织培养

拟南芥植物组织培养 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

拟南芥组织培养 一、种子消毒: 方法一:将拟南芥种子置于1 .5 ml eppendorf 管(微量离心管)中,加入1 ml 蒸 馏水,4C春化3 d,70 %(v/v )乙醇1mi n、7 %(v/v )次氯酸钠10 mi n 浸泡消毒,并用无菌水冲洗5 次。 方法二:在超净工作台内,用无菌蒸馏水浸泡1 min,然后用80%乙醇消毒90s,最后用无菌蒸馏水冲洗3~5次备用。 消毒完毕的种子可以用200ul的tips吸去洗涤液,然后在超净工作台上挥发掉残余水分、洗涤液。 方法三、取野生型拟南芥种子放人离心管内,75%乙醇清洗后,无菌蒸馏水清洗1—2次,转入无菌离心管;5%次氯酸钠溶液浸泡5—6 min,用无菌蒸馏水清洗3~4次,加入1 ml无菌水,用移液枪接种。 二、选用的培养基 选用1/2MS培养基对种子进行培养。(MS和1/2MS都可以,1/2MS就是大量元素减半,其他东西和ms培养基是一样的量。糖可以加,会长得比较好,但是也很容易污染。如果在平板上要生长时间比较长,需要做一些实验的,比如根的发育,最好不要加。)也可以用MS+30 g/L蔗糖的固体培养基。(我想两种培养基都接种上,比作对比确定好坏)。 MS培养基配料表: 三:接种方法 拟南芥种子消毒后,用移液枪吸取拟南芥种子和水的混合物,均匀地在MS 生长培养基的培养皿平板上滴落,并使之形成两条平行的直线。(如不行,可适当添加琼

脂)。 四、培养得无菌苗 接种后置于光照培养箱(型号:GXZ.500C;培养光照条件为16小时光照,8小时黑暗,培养温度为22℃中竖直培养。3天后即可取材用于器官离体再生实验。萌发5天后,在超净工作台中,用镊子将苗移栽到装有1/2 MS培养基的50ml三角瓶中(每瓶4--6棵,视情况而定),于短日照条件下培养30天左右获得无菌苗。(短日照光照条件8小时光照,16小时黑暗,长日照光照条件为16小时光照,8小时黑暗,培养温度均为22℃。)此处获得无菌苗的时间有异议,应该为2--3周? 五、外植体的选取 B5 + 5 mg/L2 ,4-D+ 0 .5 mg/L KT 培养基上诱导愈伤组织,莲座叶作外植体出愈慢,出愈率低,愈伤组织质量较差;叶柄、下胚轴和根作外植体出愈快,且愈伤组织质量好,后期易分化。 由于叶柄、下胚轴相对较短,难于收集,为了便于操作,减少污染,试验中采用根作为外植体诱导愈伤组织和诱导分化试验。 所取外植体的大小为5mm左右,不宜过大或过小。 滴落种子形成的两条直线位于平皿的上半部,可以避免伸长的根被培养基中渗出的水分所淹。无菌苗的苗龄太短不易得到足够多的外植体,苗龄太长则外植体脱分化的时间明显延长,最适苗龄以2 --3 周为宜。 六、胚性和非胚性愈伤组织的诱导 1、以MS 为诱导培养基, 附加2, 4一D 2mg/L,KT、NAA各L,水解酪蛋白300mg/L,6%蔗糖,琼脂, 2、接种幼穗长度为1--2cm 左右, 置于2 8 ℃恒温箱内暗培养。

实验绿色荧光蛋白

生物技术实验报告 姓名:张龙龙 学号:2011506066 班级:11级生技02班

前言:绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水 母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。当受到紫外或蓝光激发时,GFP 发射绿色荧光。它产生荧光无需底物或辅因子发色团是其蛋白质一级序列固有的。GFP 由3 个外显子组成,长2.6kb;GFP 是由238 个氨基酸所组成的单体蛋白,相对分子质量为27. 0kMr,其蛋白性质十分稳定,能耐受60℃处理。1996 年GFP 的晶体结构被解出,蛋白质中央是一个圆柱形水桶样结构,长420 nm,宽240 nm,由11 个围绕中心α螺旋的反平行β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由 3 个短的垂直片段覆盖,底部由一个短的垂直片段覆盖,对荧光活性很重要的生色团则位于大空腔内。发色团是由其蛋白质内部第65-67位的Ser-Tyr-Gly自身环化和氧化形成. 一.实验目的 1、了解表达用基因克隆引物设计的原理和方法。 2、了解利用原核表达系统表达外源基因的原理、流程及方法。 3、掌握PCR、DNA片段的酶切与连接、细菌转化、阳性克隆筛选、质粒提取、DNA样品的纯化、核酸电泳等分子生物学基本技术。 二.实验原理 基因工程一般包括四个步骤:一是取得符合人们要求的DNA片段,这种DNA片段被称为“目的基因”;二是将目的基因与质粒或病毒DNA连接成重组DNA;三是把重组DNA引入某种细胞;四是把目的基因能表达的受体细胞挑选出来。 本实验根据绿色荧光蛋白(GFP)的基因序列设计一对引物,用该引物将GFP基因从含GFP基因的质粒中扩增出来。再利用双酶切切开表达载体pET23b 和目的基因的两端接头,通过T4连接酶GFP基因与表达载体重组。将含GFP 基因的重组表达载体导入宿主菌BL21(DE3),在IPTG的诱导下,使GFP基因表达 三.实验材料及仪器 1、实验材料:含有GFP的质粒;DNA Marker;DH5α;BL21; 2、仪器:恒温培养箱、超净工作台、恒温摇床、制冰机、台式离心机、涡旋振荡器、冰箱、电泳仪、透射仪、PCR仪、PCR管、刀片、玻璃涂棒、酒精灯、无菌牙签、吸水纸、微型离心管、台式冷冻离心机、塑料手套、1.5ml离心管。 四.实验内容 4.1 质粒的提取、酶切及电泳鉴定: 1)实验试剂:LB培养基;溶液Ⅰ;Tris-HCl(pH=8);溶液Ⅱ;溶液Ⅲ; 酚/氯仿抽提液;无水乙醇;电泳缓冲液;加样缓冲液;GoldView核酸 DNA 染色剂;1%的琼脂糖凝胶;XhoⅠ(10U/μl);NdeⅠ(10U/μl);T 4 lisase。 2)实验步骤: 质粒的提取与鉴定

植物组织培养实验室 组培室 规划设计

植物组织培养实验室组培室规划设计 一、实验室要求理想的组织培养实验室应该建立在安静、清洁、远离污染 源的地方,最好在常年主风向的上风方向,尽量减少污染。规模化生产的组织 培养实验室最好建在交通方便的地方,便于培养产品的运送。实验室的建设均 需考虑两个方面的问题:一是所从事的实验的性质,即是生产性的还是研究性的,是基本层次的还是较高层次的;二是实验室的规模,规模主要取决于经费 和实验性质。无论实验室的性质和规模如何,实验室设置的基本原则是:科学、高效、经济和实用。一个组织培养实验室必须满足3个基本的需要:实验准备(培养基制备、器皿洗涤、培养基和培养器皿灭菌)、无菌操作和控制培养。此外,还可根据从事的实验要求来考虑辅助实验室及其各种附加设施,使实验室 更加完善。在进行植物组织培养工作之前,首先应对工作中需要哪些最基本的 设备条件有个全面的了解,以便因地制宜地利用现有房屋,或新建、改建实验室。实验室的大小取决于工作的目的和规模。以工厂化生产为目的,实验室规 模太小,则会限制生产,影响效率。在设计组织培养实验室时,应按组织培养 程序来没计,避免某些环节倒排,引起日后工作混乱。植物组织培养是在严格 无菌的条件下进行的。要做到无菌的条件,需要一定的设备、器材和用具,同 时还需要人工控制温度、光照、湿度等培养条件。二、实验室组成(一)基本实 验室基本实验室包括准备室、洗涤灭菌室、无菌操作室、培养室、缓冲间,是 组织培养实验所必须具备的基本条件。如进行工厂化生产,年产4万-20万, 需3-4间实验用房,总面积60平方米。1、准备室(化学实验室)功能:又叫化 学实验室,进行一切与实验有关的准备工作:完成所使用的各种药品的贮备、 称量、溶解、器皿洗涤、培养基配制与分装、培养基和培养器皿的灭菌、培养 材料的预处理等。要求:最好有20平方米左右。要求宽敞明亮、以便于放置多个实验台和相关设备,方便多人同时工作;同时要求通风条件好,便于气体交换;实验室地面应便于清洁,并应进行防滑处理。分类:分体式-研究性质实验室,分开的若干房间将准备室分解为药品贮藏室、培养基配制与洗涤室和灭菌 室等,功能明确,便于管理,但不适于大规模生产。通间式-规模化实验室,准备室一般设计成大的通间,使试验操作的各个环节在同一房间内按程序完成。 准备试验的过程在同一空间进行,便于程序化操作与管理,试验中减少各环节 间的衔接时间,从而提高工作效率。此外还便于培养基配制、分装和灭菌的自

绿色荧光蛋白

绿色荧光蛋白(GFP)原核表达情况分析 姓名:韩吉梅学号:2013107001 专业:作物栽培学与耕作学 摘要:将含有绿色荧光基因的重组载体导入大肠杆菌中,经IPTG诱导产生大量融合蛋白,用SDS-PAGE来确定目的蛋白的可溶性及其分子量。考马斯亮蓝染色4小时再过夜脱色,观察目的蛋白的分子量大约为31.9kD,与预期值相符。 关键字:绿色荧光蛋白SDS-PAGE 原核表达 1 前言 绿色荧光蛋白(green fluorescent protein GFP) 是源于多管水母属等海洋无脊椎动物的发光蛋白,其在蓝光或紫外光下可发出明亮的绿色荧光,可以作为报告基因检测蛋白的特异性表达或进行细胞定位研究。绿色荧光蛋白还在监测目的基因表达、研究细胞内物质代谢及追踪细胞系的分化等方面有着广泛应用。由于GFP检测具有高灵敏度,操作简单,无需使用同位素等优点,近年来广泛用于基因的表达与调控、蛋白质的定位、转移以及相互作用、信号传递、转染与转化,以及细胞的分离与纯化等研究领域[1-2]。采用GFP作为标记基因,可直接收集转化细胞供实验,缩短了筛选时间、减少对细胞活性的影响并可作为活体标记,为研究发育的基因调控和分子机制提供了一种简洁有

效的手段[3-4]。同时也正因为其荧光反应不是酶反应,所以当细胞本身还存在一些可以受蓝光激发和产生绿色荧光的物质,或者GFP表达频率不高的情况下,GFP的检测可能会产生一些假相,不易对荧光进行定量的测定。我们利用基因工程手段在大肠杆菌中高效的表达了GFP,制备出GFP抗体,利用抗原与抗体之间的特异性,在体外对GFP进行检测,可在一定程度上弥补上述GFP检测中可能出现的问题,可以作为一种重要的辅助手段用以提高GFP检测的灵敏度和准确度[5]。 原核表达是将克隆基因插入合适载体后导入大肠杆菌,用于表达大量蛋白质的方法。选用原核表达系统的原因是易于生长和控制、用于细菌培养的材料不及哺乳动物细胞培养的材料昂贵、有各种各样的大肠杆菌菌株及与之匹配的具各种特性的质粒可供选择。但是在大肠杆菌中表达的蛋白由于缺少修饰和糖基化、磷酸化等翻译后加工,常形成包涵体而影响表达蛋白的生物学活性及构象。包涵体是在某些生长条件下,大肠杆菌能积累某种特殊的生物大分子,它们致密地集聚在细胞内,形成被膜包裹的结构,具有水不溶性的特点。本实验主要是通过SDS-PAGE来检测绿色荧光的原核表达情况。 2 材料与方法 2.1 材料 30%分离胶贮液分离胶缓冲液(Tris-HC l缓冲液pH8.9)浓缩胶贮液浓缩胶缓冲液10%SDS 20%过硫酸铵(AP)染色液脱色液1×SDS上样缓冲液1×Tris-甘氨酸电泳缓冲液四甲基乙二

南方医科大学分生实验-绿色荧光蛋白(EGFP)的基因克隆

绿色荧光蛋白(EGFP)的基因克隆 南方医科大学学院 摘要 本实验旨在学习基因克隆并检验,绿色荧光蛋白基因转化入宿主细胞后很稳定,对多数宿主的生理无影响,是常用的报道基因,便于实验。本实验通过将含有目的基因GFP的pEGFP-N1质粒和pMD18-T载体进行酶切、电泳、回收、连接、转入、筛选之后,把GFP基因成功导入到大肠杆菌DH5α(克隆菌)中,从而实现荧光蛋白基因的克隆和表达。 关键词:绿色荧光蛋白克隆表达 实验名称绿色荧光蛋白的基因克隆 2015- ~ 实验日期 实验地点 2015- 合作者指导老师 评分教师签名批改日期 一、实验目的 1.学习使用限制性内切酶进行DNA酶切的原理和方法。 2.学习掌握琼脂糖凝胶电泳的基本原理和操作方法。 3.掌握PCR技术原理和PCR仪的操作方法。 4.学习PCR产物的TA克隆的基本原理和操作步骤。 5.了解和掌握大肠杆菌的制备方法的基本原理和操作要点以及DNA转化大肠杆菌的原理和方 法。

6.掌握双酶切法鉴定重组DNA的基本原理和操作步骤,以及菌落PCR鉴定重组DNA的基本原 理和方法。 7.掌握IPTG诱导GFP基因表达的基本原理和操作步骤 二、实验原理 1.pEGFP-N1质粒 2.T载体

三、材料与方法: 1.实验材料: 质粒:pEGFP-N1 T载体:pUCm-T 菌种:DH5(克隆菌) PCR引物: F——GGCATATGGTGAGCAAGGGCGA R——CGGGATCCCTTGTACAGCTCGTC Tm=56 实验试剂: 即用型蓝白T载体(pMD18-T vector cloning kit) 快速DNA连接试剂盒 限制性内切酶:EcoR I(Fermentas) Axygen质粒提取试剂盒 抗生素:氨苄青霉素(Amp)、卡那霉素(Kan) X-gal、IPTG等 实验仪器: 超净工作台,恒温摇床,高压灭菌锅,恒温培养箱,台式高速离心机,大容量冷冻离心机,PCR仪,紫外分光光度计,水平电泳槽,垂直电泳槽,电泳仪,凝胶成像系统,制冰机、超低温冰箱等 2.方法 分离目的基因→限制酶切割目的基因与载体→连接重组体→转入受体细胞→筛选重组体、转化子 四、实验具体流程 1.获取外源基因 1)碱裂解法提取质粒 使用Axygen质粒提取试剂盒

绿色荧光蛋白(GFP)基因的克隆、表达和粗提取之欧阳歌谷创作

绿色荧光蛋白(GFP)基因的克隆、表 达和粗提取 欧阳歌谷(2021.02.01) 南方医科大学 2011预防医学(卫生检验检疫) 摘要 目的:研究绿色荧光蛋白(green fluorescent protein,GFP)基因在大肠杆菌中的基因克隆与重组表达,以及对其进行粗提取。方法:从 E.coli DH5ɑ中用碱提取质粒的方法提取质粒pEGFP-N3和质粒pET-28a。然后用质粒DNA的琼脂糖凝胶电泳对已经提取的产物进行电泳,确定从大肠杆菌中成功提取了质粒。再用限制性内切酶BamHI和NotI对成功提取的质粒进行酶切,并对酶切后的质粒进行琼脂糖凝胶电泳,用以确定已经提取了GFP基因。将含有GFP基因的质粒转化到感受态细胞 E.coli BL-21中,用LB培养基对转化后的E.coli进行扩大培养。用IPTG诱导GFP基因表达可以看到浅绿色菌落。最后对绿色荧光蛋白进行粗提取。结论:本实验有助于学生掌握最基本的分子生物学实验技术,为进一步的实验奠定基础。 关键词:绿色荧光蛋白基因克隆重组表达转化粗提取

目录 1 前言3 2 实验目的4 3 实验设备4 4 材料及试剂5 5 实验操作步骤5 5.1操作流程5 5.2质粒DNA的分离与纯化6 5.2.1 质粒的培养6 5.2.2 质粒的DNA的碱提取法6 5.2.3 质粒DNA的鉴定与纯化7 5.3酶切及连接8 5.3.1 双酶切8 5.3.2 回收酶切产物(采用DNA回收试剂盒进行回收)8 5.3.3 连接9 5.4大肠杆菌感受态细胞的制备及转化9 5.4.1 LB(Luria-Bertain)液体和固体培养基的配制(参考附 录)9

拟南芥原生质体制备转化方法整理

溶液配制 1、纤维素酶解液:

2、PEG4000溶液(一次配置可以保存五天,但是最好现用现配,每个样品需100μl PEG4000溶液,可根据实验样品量调整溶液配置总量)

3、W5 溶液 4、MM G溶液

5、WI溶液 拟南芥原生质体制备转化方法整理 一、土培室播种种植的拟南芥。 二、生长良好情况下在未开花前用于取材叶片制备原生质体。 三、剪取中部生长良好的叶片用刀片切成0.5 -1 mm宽的叶条。 四、将切好叶条掷入预先配置好的酶解液中(每5-10 ml酶解液大约需10-20片叶子)。并用镊子帮助使叶子完全浸入酶解液。

五、用真空泵于黑暗中抽30分钟。(此时可配制PEG4000溶液,200和1000 ul 枪头去尖使操作时吸打缓和。) 六、在室温中无须摇动继续黑暗条件下酶解至少3个小时。当酶解液变绿时轻轻摇晃培养皿促使原生质体释放出来。(此时预冷一定量W5溶液) 七、显微镜下检查溶液中的原生质体,拟南芥叶肉原生质体大小大约30-50 um。 八、在过滤除去未溶解的叶片前用等量的W5溶液稀释含有原生质体的酶液。 九、先用W5溶液润湿35-75 um的尼龙膜或60-100目筛子,然后用它过滤含有原生质体的酶解液。 十、用30毫升的圆底离心管100g,1-2分钟离心沉淀原生质体。尽量去除上清然后用10ml 冰上预冷的W5溶液轻柔重悬原生质体。 十一、在冰上静至原生质体30分钟。 以下操作在室温23℃下进行

十二、100g离心八至十分钟使原生质体沉淀在管底。在不碰触原生质体沉淀的情况下尽量去除W5溶液。然后用适量MMG溶液(1m)重悬原生质体,使之最终浓度在2X105个/ml。 十三、加入10 ul DNA(10-20微克约5-10kb的质粒DNA)至2ml离心管中。 十四、加入100 ul原生质体(2x104个),轻柔混合。 十五、加入110 ul PEG溶液,轻柔拍打离心管完全混合(每次大约可以转化6-10个样品)。 十六、诱导转化混合物5-15分钟(转化时间视实验情况而定,要表达量更高也许需要更高转化时间)。 十七、室温下用400-440 ul W5溶液稀释转化混合液,然后轻柔颠倒摇动离心管使之混合完好以终止转化反应。 十八、室温下用台式离心机100g离心2分钟然后去除上清。再加入1ml W5溶液悬浮清洗一次,100g离心两分钟去上清。

植物组织培养实验室(组培室)规划设计

植物组织培养实验室 (组培室规划设计 2009年 05月 31日星期日 10:18一、实验室要求 理想的组织培养实验室应该建立在安静、清洁、远离污染源的地方, 最好在常年主风向的上风方向, 尽量减少污染。规模化生产的组织培养实验室最好建在交通方便的地方, 便于培养产品的运送。 实验室的建设均需考虑两个方面的问题:一是所从事的实验的性质, 即是生产性的还是研究性的, 是基本层次的还是较高层次的; 二是实验室的规模, 规模主要取决于经费和实验性质。 无论实验室的性质和规模如何,实验室设置的基本原则是:科学、高效、经济和实用。一个组织培养实验室必须满足 3个基本的需要:实验准备 (培养基制备、器皿洗涤、培养基和培养器皿灭菌、无菌操作和控制培养。此外,还可根据从事的实验要求来考虑辅助实验室及其各种附加设施,使实验室更加完善。 在进行植物组织培养工作之前,首先应对工作中需要哪些最基本的设备条件有个全面的了解, 以便因地制宜地利用现有房屋, 或新建、改建实验室。实验室的大小取决于工作的目的和规模。以工厂化生产为目的,实验室规模太小,则会限制生产,影响效率。在设计组织培养实验室时, 应按组织培养程序来没计, 避免某些环节倒排, 引起日后工作混乱。植物组织培养是在严格无菌的条件下进行的。要做到无菌的条件, 需要一定的设备、器材和用具, 同时还需要人工控制温度、光照、湿度等培养条件。 二、实验室组成 (一基本实验室 基本实验室包括准备室、洗涤灭菌室、无菌操作室、培养室、缓冲间,是组织培养实验所必须具备的基本条件。如进行工厂化生产,年产 4万 -20万, 需 3-4间实验用房,总面积 60平方米。

绿色荧光蛋白基因重组与鉴定

分子生物学综合性实验结题报告 绿色荧光蛋白基因 左xx1 学 10110902014 10110904007 班 10G20 专生物制药 学生物医药

摘要 绿色荧光蛋白(green fluorescent protein)基因是一种重要的报告基因,将其和另外一种基因融合在一起,能检测到融合蛋白的表达情况。本实验中我们使用BamH Ⅰ和Not Ⅰ从pEGFP-N3质粒上得到EGFP基因,再把它重组到pET-28a表达载体上,将重组体转化入DH5a菌种中进行培养,采取酶切发法鉴定的方法对转化的重组子进行鉴定。 关键词:绿色荧光蛋白;酶切;载体;

Green fluorescent protein gene is a kind of important report gene, its and another gene fusion together, can detect the fusion protein expression. In this experiment we use BamH Ⅰand Not Ⅰfrom pEGFP - N3 plasmid get EGFP gene, again it restructuring to pET - 28 a expression vector and recombinant into DH5a strains in training and take enzyme cut hair method appraisal method to transform the restructuring of the child for identification. Keywords:Green fluorescent protein gene;enzyme cut;

拟南芥原生质体的制备及转化

拟南芥原生质体制备转化操作流程 主要试剂 1. 纤维素酶解液: 试剂 15ml酶液体系 1.1-1.5﹪Cellulase R10 (YaKult Honsha)0.225g干粉 2.0.2-0.4﹪Mecerozyme R10 (YaKult Honsha)0.045g干粉 3.0.4M mannitol1.09g干粉 4.20mM KCl1 ml 0.3 M KCl母液 5.20mM MES,pH5.7,1 ml 0.3 M MES,pH5.7母液 6.加入10ml 水 7.55℃水浴加热10分钟(钝化酶,提高酶的可溶性),冷却至室温后加入以下试剂8.10mM CaCl,1 ml 0.15M CaCl2 9.5 mM β-Mercaptoethanol(可选用)1ml 75mM β-Mercaptoethanol母液(Sigma A-6793) 10.0.1﹪BSA,1 ml 1.5﹪BSA(4℃保存) 11.用0.45μm滤膜过滤后使用,酶液是淡棕色的澄清溶液。 2. PEG溶液(40%, v/v)(一次配置可以保存五天,但是最好现用现配,每个样品需100ul PEG4000溶液,可根据实验样品量调整溶液配置总量) PEG4000( Fluka, #81240)……………1g………………………………….4g 水…………………………………………………0.75ml…………………………..3g 0.8 M Mannitol…………………………..0.625ml…………………………2.5ml 1 M CaCl2或Ca(NO3)2………………..0.25ml………………………….1ml 约1.2ml 3. W5 溶液(1000ml) 154mM NaCl, NaCl9g 125mM CaCl2, CaCl2.H2O18.4g 5mM KCl, KCl0.37g 2mM MES(PH 5.7),MES0.39g pH to 5.8 with KOH,高温高压灭菌20分钟,室温保存。 4. MMG溶液 MaMg溶液(500ml) 15mM MgCl2,MgCl0.71g 4 mM MES(PH5.7)MES0.39g 0.4 M mannitol,Mannitol36.5g 用KOH调pH 5.7,高温高压灭菌20分钟,室温保存。 5. WI溶液 WI(200ml) 0.5M mannitol,mannitol18.217g 4mM MES,pH5.7,MES0.156g

对绿色荧光蛋白(GFP)的了解及应用

对绿色荧光蛋白的了解及应用 学院:生命科学学院 姓名:马宗英 年级:2011 学号:2011012923

前言 绿色荧光蛋白(green fluorescent protein),简称GFP,是一种具有奇妙特性的“光学蛋白质”。这种蛋白质从成分和结构上来说,没有丝毫的特殊性,它的组成单元是20种常见的氨基酸,二级结构也是普通的α螺旋和β片层。但是,这种蛋白质却具有一个非常特别的性质——发出绿色荧光。 【关键词】绿色荧光蛋白生命科学应用 一、绿色荧光蛋白 绿色荧光蛋白最早是由下村修等人于1962年在一种学名Aequorea victoria的水母中发现的。其基因所产生的蛋白质,在蓝色波长范围的光线激发下,吸收蓝光的部分能量,发出绿色荧光。 野生型水母GFP的一级序列已由其cDNA序列推导出来[1],它至少存在4种同源GFP,但这些突变并不影响GFP的基本功能,只是使突变的GFP具有了新的性质。 生色团是GFP发出荧光的物质基础,也是GFP结构中的一个重要组成部分。GFP的生色团位于氨基酸序列64~69位的六肽内,65~67位的丝氨酸、脱氢酪氨酸、甘氨酸通过共价键形成的对羟基苯甲基咪唑环酮是一个独特的、相当稳定的环状三肽结构,构成了GFP生色团的核心[2],见图1。图2为生色团的形成机制。 图1 多管水母中GFP生色团的化学结构和附近序列 图2生色团的形成机制 目前人们对GFP的荧光发光机制并不十分清楚,大家只是认为,GFP是生物发光过程中的能量受体,并且是最终的发光体,不同的生物发光机制各不相同,不同的突变体发光机

制也有很大差异。 二、GFP在生命科学中的应用 1、作为蛋白质标签(protein tagging) 利用绿色荧光蛋白独特的发光机制,可将GFP作为蛋白质标签(protein tagging),即利用DNA重组技术,将目的基因与GFP基因构成融合基因,转染到合适的细胞中进行表达,然后借助荧光显微镜便可对标记的蛋白质进行细胞内的活体观察。由于GFP只有238个氨基酸,相对较小,所以将其与其它蛋白质融合后并不影响自身的发光功能。利用GFP来检测目标蛋白的定位已为我们提供了一种对细胞内的一些基本的生理过程进行更为详尽的观察的新方法。如细胞分裂、染色体复制和分裂、发育和信号转导等过程的研究均是借助绿色荧光蛋白进行标记。 GFP作为蛋白质标签除用于特定蛋白质的标记定位外,还大量用于各种细胞成分的标记如细胞骨架、质膜、细胞核等等。曾经有人将GFP融合到大肠杆菌细胞膜表面用作标记蛋白,这将有助于提高多肽库的筛选效率、疫苗的研制、构建细胞生物传感器用作环境监测以及探测信号转导过程等等,以上都可以为传统生物学研究提供新思路和新方法。 2、药物筛选 利用细胞表面标记,通过流体细胞分光光度计或荧光活化细胞筛选仪,可以分离与纯化特殊类型的细胞;同时还可利用不同颜色GFP衍生物标记相关蛋白质,来观察在单细胞内相互作用的靶细胞,再借助于荧光激活细胞分离器、等聚焦显微镜分离出目的细胞,从而可方便地用于大规模筛选新的药物。 另一方面,利用GFP来进行药物筛选由于必须与迁移的信号分子相偶联的限制,其筛选容量相对较低,但是由于GFP在细胞内的穿透性强及独特的发光机制,因而在药物筛选中具有相当大的应用潜力。 3、用于免疫学 可采用基因工程的方法生产GFP标记抗体,以取代传统的免疫学标记方法,建立一种简便、快速的免疫诊断新技术。相比于一般的标记物,GFP对光稳定、对抗体的标记率可达100%,而且因为GFP是直接与抗体结合,所以无需添加任何底物,可以避免非抗原抗体结合的背景干扰等。 线粒体中表达的GFP是研究比较成功的一种小分子抗体,因为它可以在宿主细胞内大量表达,易于基因工程操作,尤其易于构架抗体融合蛋白。因融合抗体具有与抗原结合及发射荧光两种特性,故这一人工分子可用做免疫染色的检测试剂,直接应用于流式细胞仪和免疫荧光的标记及肿瘤的检测等等。 在制备抗体时,为便于表达蛋白的分离纯化,一般在单链抗体的N端或C端插入一6×His 序列,便于用Ni-NTA亲和层析柱纯化目标蛋白。但这一技术也存在一些问题,由于抗体分子内存在二硫键,而在原核表达系统内由于抗体不能正确折叠,容易形成包涵体,表达出来的目标蛋白无活性,需要在氧化还原体系中进行复性。但近来也有报道在动物细胞细胞质中成功表达出具有抗原结合活性的单链抗体,若能成功解决融合抗体的表达问题,则在免疫染色及肿瘤检测这一领域融合抗体将扮演极为重要的角色。 除了以上应用之外,绿色荧光蛋白还普遍应用于跟踪观察微生物、发育机理研究、细胞筛选以及生物传感器等许多生命科学研究中。 三、GFP的突变及其应用 GFP作为一种新型标记物,正受到科学界的广泛关注,而且野生型的GFP也不断地在被改造,著名的生物学家钱永健所完成的单点突变(S65T) 显著提高了GFP的光谱性质,其荧

绿色荧光蛋白

知识介绍 绿色荧光蛋白 马金石 (中国科学院化学研究所 北京 100190) 摘 要 绿色荧光蛋白是46多年前从多管水母体内发现的,它可以在蓝光或紫外光激发下发射绿光。 由于它稳定的结构和光物理性质,又易于在细胞内表达,近些年作为标记物已经被广泛地应用于生命科学领 域。本文简要介绍了水母发光蛋白与绿色荧光蛋白的关系、绿色荧光蛋白的结构、发色团的形成、发光机制、变异体以及它的特点和应用。 关键词 绿色荧光蛋白 基因表达 结构 发色团 生物发光 Green Fluorescent Protein Ma Jinshi (Insti tute of Chemistry,Chinese Academy of Sciences,Beijing100190) Abstract Green fluorescent protein(GFP)was discovered46years ago from A equorea V ictoria,it can emit green light under exci tation of blue or UV irradiation.GFP as a marker for gene expression and localization of gene products has been widely used in life sciences for the past years because of its stable structure and photophysical property and easy expression in cells.A brief introduction on the relationship of aequorin and GFP,GFP structure,chromophore formation,and the mechanism of bioluminescence,also the variants,characteri stic and application are presented in this paper. Keywords Green fluorescent protein,Gene expression,Structure,Chromophore,Bioluminescence 由于对绿色荧光蛋白(Green Fluorescent Protein,GFP)的发现、机理研究以及利用做出的特殊贡献,瑞典皇家科学院诺贝尔奖委员会将2008年度诺贝尔化学奖授予美国科学家下村修(Osamu Shimomura)、马丁 沙尔菲(Martin Chalfie)和美籍华裔化学家钱永健(Roger Y Tsien)。 化学奖评选委员会主席贡纳尔 冯 海伊内和评委莫恩斯 艾伦贝里对绿色荧光蛋白的评价指出,这是当代生物学的重要工具,借助这一 指路标 ,科学家们已经研究出监控脑神经细胞生长过程的方法,这在以前是不可能实现的。他们说,下村修1962年在北美西海岸的水母中首次发现了一种在紫外线下发出绿色荧光的蛋白质,即GFP。随后,马丁 沙尔菲在利用GFP做生物示踪分子方面做出了贡献;钱永健让科学界更全面地理解GFP的发光机理,对GFP作了改造,通过改变其氨基酸排序合成出了能吸收、发射不同颜色(蓝色、蓝绿色和黄色)光的荧光蛋白,为同时追踪多种生物细胞变化的研究奠定了基础。 我国在生命科学领域已经广泛应用GFP,对它的介绍和应用的文章也有很多[1~6]。国外的综述可阅读钱永健和Zimmer的文章,最新的是Shaner等的文章[7~9]。化学界对它的了解可能较少,在此做个简单介绍。 1 生物发光与水母 先从生物发光说起,生物体的发光现象称为生物发光。植物界有细菌植物门的发光细菌和真菌植物门的发光蘑菇,动物界从原生动物到脊椎动物都有,脊椎动物中主要是鱼类。从发光生物的分布来 2008 10 25收稿,2008 11 04接受

GFP转基因拟南芥的培养及荧光观察

GFP转基因拟南芥的培养及荧光观察 实验原理: 1.GFP报告基因 全称为绿色荧光蛋白(Green fluorescent protein,GFP),简称GFP,20世纪60年代在水母中发现的发光蛋白。由238氨基酸组成的单链多肽,在蓝光或紫外光激发下发出绿色荧光,用于蛋白质在活细胞中的准确定位及动态变化观察(分泌蛋白的分选、亚细胞定位) 2.目的基因 MAP65-1,是一种微管结合蛋白,可以根据拟南芥叶片表皮细胞、保卫细胞,下胚轴和根部细胞中微管骨架的分布情况来推断目的基因是否存在。 3.表达载体: ?植物表达载体的构建→导入农杆菌自我复制→浸染花粉转入拟南芥; ?卡那霉素抗性培养基筛选, ?卡那霉素: 抗生素 影响植物细胞叶绿体和线粒体的蛋白合成,引起植株黄化死亡. ?卡那霉素能对转基因植物进行筛选实质上是通过卡那霉素抗性基因起作 用的。转基因植物由于含有卡那霉素抗性基因而抑制了卡那霉素的作用,所以通过卡那霉素,转化体就很容易从非转化体中筛选出来。 GFP转基因植株野生型植株GFP转基因植株转基因植株 1/2MS培养基1/2MS卡那抗性培养基 实验材料:

GFP转基因拟南芥种子及野生型种子;1/2MS培养基;1/2MS卡那抗性培养基; 75%乙醇;10%NaClO;无菌水。 实验步骤: 1.种子春化(加蒸馏水放入4℃冰箱中过夜); 2.75%乙醇消毒1min(混匀,尽量将液体吸净,动作要快); 3.10%NaClO消毒10min (混匀,尽量将液体吸净,动作要快); 4. 无菌水洗三遍,用牙签将种子点在培养基表面(每皿4-5颗种子尽量均 匀); 5.封膜,做好标记,平放于培养架上培养。 实验结果: 黄化 正常 拟南芥下胚轴的叶绿体从数量和 正常黄化苗在叶肉细胞和保卫细胞中,转基因拟南芥观察到绿色荧光标记,但在野生型中未观测到该 少等长势不优良的现象,是因为野生型不存在卡那抗性基因,而转基因植株存在卡那抗性基因,所以可以将转基因植株在卡那抗性培养基中筛选出来;在转基因拟南芥中,荧光标记在不同位置亮度效果不同,我们认为可能是与不同位置微管分布情况和微管结合蛋白对不同位置的结合效果不同有关。 注意事项: 严格无菌操作. 消毒过程动作要快. 枪头不要重复使用,物品不要拿出超净台. 点种时每个位置尽量只点一颗子. 操作时尽量避免说话和人员走动. 注意小组内的配合和小组间的协调.

绿色荧光蛋白

绿色荧光蛋白(GFP)的转化表达及免疫印迹检测 王媛0811142 南开大学生命科学学院生物技术08级 一、摘要: 本实验利用酶切方法检测载体中所含GFP片段后,通过转化的方法把绿色荧光蛋白(GFP)外源基因转入大肠杆菌进行表达,通过免疫印记杂交方法(western blotting)分析GFP在大肠杆菌中的表达,在分离检测的全过程中(转化平板,细胞裂解,电泳,电转移),均可通过紫外灯清晰地检测到颜色亮丽的绿色荧光蛋白。 关键词:绿色荧光蛋白免疫印记杂交 二、引言: 绿色荧光蛋白是一种源于水母(Aequorea Victoria)等海洋无脊椎动物的蛋白,分子量为26.9KD。GFP的开放阅读框架长度约为740bp,编码238个氨基酸残基。GFP表达后折叠环化,在氧存在下,由65~67位的氨基酸残基环化,形成发色基团,无需添加任何酶和底物,在长紫外或蓝光激发下就能发荧光,荧光性质稳定,可保持10分钟。GFP能在不同的细胞内稳定表达,无种属、组织和位置特异性,对细胞无毒性且检测方法简单,将其作为报告基因已广泛应用于细胞生物学和分子生物学领域。 免疫印记又称蛋白质印记,是在凝胶电泳技术和固相免疫测定技术基础上发展起来的一种免疫检测技术。其原理是将膜与胶放在中间,上下加滤纸数层,做成“Sandwich”样的转移单位,并且保证带负电的蛋白质向阳极转移,即膜侧连接阳极或面向阳极,从而将电泳分离的蛋白从凝胶转移至固相载体上。 三、实验材料、仪器及方法: 3.1 实验材料 3.1.1 菌种 E.coli DH5α(pETH)菌株 E.coli DH5α(pETH-GFP)菌株 E.coli BL21菌株 E.coli BL21 (pETH)菌株E.coli BL21 (pETH-GFP))菌株 3.1.2 试剂与材料 LB培养基(自己配置灭菌)Amp(100mg/ml)IPTG(10mg/ml) CaCl2(1M) 50*TAE Acry/Bis 贮存液分离胶缓冲液浓缩胶缓冲液泳动缓冲液(5*)上扬缓冲液(5*)转移缓冲液PBS 1.5% A.P.S 质粒小量提取试剂盒Eco RI限制性内切酶DNA Maker Protein Maker pH试纸 3.1.3 仪器 紫外检测仪、超声波细胞粉碎机、垂直板式电泳系统、半干式蛋白质印迹电转移系统等。3.2 实验方法 1、配置LB培养基,包括液体、固体培养基后灭菌;分别接种pETH-GFP/DH 5α(LA 4ml)一支,pETH/DH 5α(LA 4ml)一支,BL21(LB 4ml)四支 2、按照protocal,利用tiangen质粒提取试剂盒分别提取pETH-GFP/DH 5α、pETH/DH 5α质粒后,按照酶切体系混匀后,至于37℃温箱酶切2h。 3、制备0.8%琼脂糖凝胶,20ml每块,加入适量EB,按照点样顺序点样后,60V恒压电泳,约0.5~1h.后,凝胶自显影拍照(胶图见后面实验结果) 4、取40μlBL21菌液接种于4mlLB,37℃,200rpm,约2.5h,此时OD600=0.3~0.5,利用氯化钙法制备感受态细胞,制备完成至于冰上备用。 5、铺制平板,1块LB,4块LA,冷却凝固后于37℃倒置烘干备用。其中两块LA平板上面涂布IPTG(100μl+100μl水),正置备用。 6、按照阴性对照、空白对照、GFP基因转化表达、GFP基因的转化四组分别进行转化,涂板,37℃倒置过夜培养,紫外灯下观察,呈绿色荧光的单菌落即为转化子。记录各板菌落数

绿色荧光蛋白转入拟南芥愈伤组织

绿色荧光蛋白转入拟南芥愈伤组织 引言: 拟南芥(Arabidopsis thaliana)属于十字花科,与甘蓝、白菜和油菜同科。由于拟南芥具有植株很小(株高约15 Cllfl)、生活周期很短(42~56 d)、种子丰富(每株3000粒以上)、易于繁殖和人工诱变等优点,早在1943年它就被选为模式植物进行研究;1980年公布了它的遗传图谱;1997年公布了拟南芥线粒体基因组,这是有花植物中第1个完整的线粒体基因组分析;2000年拟南芥国际合作组织完成了其核基因组全长测定,是迄今唯一完成全部基因组序列测定的植物。拟南芥在植物进化中处于相当高的位置,在拟南芥中发现的一些重要调节基因都能在其他植物中找到它们的同源基因。因此,如果从比较容易的拟南芥人手,获得的基因研究成果可以更容易地向农作物转化,表现出可观的经济效益。 绿色荧光蛋白(GFP)最早是由Shimomura等[1]从多管水母中分离出来的一种荧光蛋白。主要存在与水母、水螅和珊瑚等腔肠动物体内。其特点在于发光无需底物或辅助因子,其发光的主要原因是因为其独特的一级结构[2]。GFP作为一种报告基因还具有无种属特异性、分子量小、容易与其他蛋白形成融合蛋白、不损害细胞、易检测、可用于活体观察等特点[3]。本实验就是利用了其荧光和活体检测的优点对转化效率进行评测。 目前有关于GFP的研究多见于其在细胞中的瞬时表达[4,5],但是它本身的发光是依赖于其特有的氨基酸序列,而且很容易和其他蛋白进行融合表达,因此可以将GFP蛋白和目的蛋白进行融合表达,通过荧光显微镜对目的蛋白在细胞或组织中的表达情况进行直接观察。这种方法相与传统的免疫荧光方法相比可以直接进行活体观察,且样品处理及观察更加简便。 一、实验原理 1.培养拟南芥愈伤组织 1.1配制培养基时,为了使用方便和用量准确,通常采用母液法进行配制,即将所选培养基配方中各试剂的用量,扩大若干倍后再准确称量,分别先配制成一系列的母液置于冰箱中保存,使用时按比例吸取母液进行稀释配制即可。 1.2愈伤组织原指植物体的局部受到创伤刺激后,在伤口表面新生的组织。它由活的薄壁细胞组成,可起源于植物体任何器官内各种组织的活细胞。在植物体的创伤部分,愈伤组织可帮助伤口愈合;在嫁接中,可促使砧木与接穗愈合,并由新生的维管组织使砧木和接穗沟通;在扦插中,从伤口愈伤组织可分化出不定根或不定芽,迸而形成完整植株。在植物器官、组织、细胞离体培养时,条件适宜也可以长出愈伤组织。其发生过程是:外植体中的活细胞经诱导,恢复其潜在的全能性,转变为分生细胞,继而其衍生的细胞分化为薄壁组织而形成愈伤组织。愈伤组织诱导的成败关键主要不是外植体的来源和种类,而是培养条件,其中激素的种类和浓度最为重要。诱导愈伤组织常用的生长素是2,4-D,IAA和NAA,常用的细胞分裂素是KT和6-BA。 愈伤组织形成的过程分为3个时期:诱导期、分裂期、分化期(形成期)。愈伤组织的生长是发生在不与琼脂培养基接触的表面。 1.3调节培养基的酸碱性至PH5.8。由于培养基的PH值直接影响到培养物对离子的吸收,因而过酸或过碱都对植物材料的生长有很大的影响。此外,PH还影响到琼脂培养基的凝固情况。所以,当培养基配制好后应立即进行PH值的调整。培养基若偏酸时用氢氧化钠(1mol/L)来调节,若过碱就用盐酸(1mol/L)来调

相关文档
最新文档