多因子定价模型检验,波动和投资组合Tests of Multi-Factor Pricing Models, Volatility, and Portfolio Pe

多因子定价模型检验,波动和投资组合Tests of Multi-Factor Pricing Models, Volatility, and Portfolio Pe
多因子定价模型检验,波动和投资组合Tests of Multi-Factor Pricing Models, Volatility, and Portfolio Pe

NBER WORKING PAPER SERIES

TESTS OF MUTLIFACTOR PRICIN G MODELS,

VOLATILITY BOUNDS AND

PORTFOLIO PERFORMANCE

Wayne E. Ferson

Working Paper9441

https://www.360docs.net/doc/606505256.html,/papers/w9441

NATIONAL BUREAU OF ECONOMIC RESEARCH

1050 Massachusetts Avenue

Cambridge, MA 02138

January 2003

The author acknowledges financial support from the Collins Chair in Finance at Boston College and the Pigott-PACCAR professorship at the University of Washington. He is also grateful to George Constantinides and Ludan Liu for helpful comments and suggestions. The views expressed herein are those of the authors and not necessarily those of the National Bureau of Economic Research.

?2003 by Wayne E. Ferson. All rights reserved. Short sections of text not to exceed two paragraphs, may be quoted without explicit permission provided that full credit including . notice, is given to the source.

Tests of Multifactor Pricing Models, Volatility Bounds and Portfolio Performance

Wayne E. Ferson

NBER Working Paper No. 9441

January 2003

JEL No. G000, G110, G120, G140

ABSTRACT

Three concepts: stochastic discount factors, multi-beta pricing and mean variance efficiency, are at the core of modern empirical asset pricing. This paper reviews these paradigms and the relations among them, concentrating on conditional asset pricing models where lagged variables serve as instruments for publicly available information. The different paradigms are associated with different empirical methods. We review the variance bounds of Hansen and Jagannathan (1991), concentrating on extensions for conditioning information. Hansen's (1982) Generalized Method of Moments (GMM) is briefly reviewed as an organizing principle. Then, cross-sectional regression approaches as developed by Fama and MacBeth (1973) are reviewed and used to interpret empirical factors, such as those advocated by Fama and French (1993, 1996). Finally, we review the multivariate regression approach, popularized in the finance literature by Gibbons (1982) and others. A regression approach, with a beta pricing formulation, and a GMM approach with a stochastic discount factor formulation, may be considered competing paradigms for empirical work in asset pricing. This discussion clarifies the relations between the various approaches. Finally, we bring the models and methods together, with a review of the recent conditional performance evaluation literature, concentrating on mutual funds and pension funds.

Wayne E. Ferson

Boston College

Carroll School of Management

140 Commonwealth Avenue, 330B

Chestnut Hill, MA 02467

and NBER

wayne.ferson@https://www.360docs.net/doc/606505256.html,

CONTENTS

I. Introduction

2. Multi-factor Asset Pricing Models: Review and Integration

2.1 The Stochastic Discount Factor Representation

Expected Risk Premiums

Return Predictability

2.2 Consumption-based Asset Pricing Models

2.3 Multi-beta pricing Models

Relation to the Stochastic Discount Factor

Relation to Mean variance efficiency

A "Large Markets" Interpretation

2.4 Mean variance efficiency with conditioning information

Conditional versus Unconditional Efficiency

Implications for Tests

2.5 Choosing the factors

3. Modern Variance Bounds

3.1 The Hansen Jagannathan Bounds

3.2 Variance bounds with conditioning information

Efficient-portfolio bounds

Optimal bounds

Discussion

3.3 The Hansen Jagannathan Distance

4. Methodology and Tests of Multifactor Asset Pricing Models

4.1 The Generalized Method of Moments Approach

4.2 Cross-sectional Regression Methods

The Fama-MacBeth approach

Interpreting the estimates

A Caveat

Errors in Betas

4.3 Multivariate Regression and beta pricing models

Comparing the Beta Pricing and stochastic discount factor approaches

3

5. Conditional Performance Evaluation

5.1 Stochastic Discount Factor formulation

Invariance to the number of funds

5.2 Beta pricing formulation

5.3 Using portfolio weights

Conditional Performance Attribution

Interim Trading Bias

5.4 Conditional market timing models

5.5 Empirical Evidence on Conditional Performance

6. Conclusions

I. Introduction

The asset pricing models of modern finance describe the prices or expected rates of return of financial assets, which are claims traded in financial markets. Examples of financial assets are common stocks, bonds, options, futures and other "derivatives," so named because they derive their values from other, underlying assets. Asset pricing models are based on two central concepts. The first is the no arbitrage principle, which states that market forces tend to align prices so as to eliminate arbitrage opportunities. An arbitrage opportunity arises when assets can be combined in a portfolio with zero cost, no chance of a loss and positive probability of a gain. The second central concept in asset pricing is financial market equilibrium. Investors' desired holdings of financial assets derive from an optimization problem. In equilibrium the first order conditions of the optimization problem must be satisfied, and asset pricing models follow from these conditions. When the agent considers the consequences of the investment decision for more than a single period in the future, intertemporal asset pricing models result.

The present paper reviews multi-factor asset pricing models from an empiricists' perspective. Multi-factor models can be motivated by either the no arbitrage principle or by an equilibrium model. Their distinguishing feature is that expected asset returns are determined by a linear combination of their covariances with variables representing the risk factors. This paper has two main objectives. The first is to integrate the various empirical models and their tests in a self contained discussion. The second is to review the application to the problem of measuring investment performance.

This paper concentrates heavily on the role of conditioning information, in the form of lagged variables that serve as instruments for publicly available information. I think that developments in this area, conditional asset pricing, represent some of the most significant advances in empirical asset pricing research in recent years.

The models described in this paper are set in the classical world of perfectly efficient financial

markets, and perfectly rational economic agents. Of course, a great deal of research is devoted to understanding asset prices under market imperfections like information and transactions costs. The perfect markets models reviewed here represent a baseline, and a starting point for understanding these more complex issues.

Work in empirical asset pricing over the last few years has provided a markedly improved understanding of the relations among the various asset-pricing models. Bits and pieces of this are scattered across a number of published papers, and some is "common" knowledge, shared by aficionados. This paper provides an integrative discussion, refining the earlier review in Ferson (1995) to reflect what I hope is an improved understanding.

Much of our understanding of how asset pricing models' empirical predictions are related flows from representing the models as stochastic discount factors. Section 2 presents the stochastic discount factor approach, briefly illustrates a few examples of stochastic discount factors, and then relates the representation to beta pricing and to mean variance efficiency. These three concepts: stochastic discount factors, beta pricing and mean variance efficiency, are at the core of modern empirical asset pricing. We show the relation among these three concepts, and a "large-markets" interpretation of these relations. The discussion then proceeds to refinements of these issues in the presence of conditioning information. Section 2 ends with a brief discussion of how the risk factors have been identified in the empirical literature, and what the empirical evidence has to say about the selection of factors.

Section 3 begins with a fundamental empirical application of the stochastic discount factor approach - the variance bounds originally developed by Hansen and Jagannathan (1991). Unlike the case where a model identifies a particular stochastic discount factor, the question in the Hansen-Jagannathan bounds is: Given a set of asset returns, and some conditioning information, what can be

said about the set of stochastic discount factors that could properly "price" the assets? By now, a number of reviews of the original Hansen-Jagannathan bounds are available in the literature. The discussion here is brief, quickly moving on to focus on less well-known refinements of the bounds to incorporate conditioning information.

Section 4 discusses empirical methods, starting with Hansen's (1982) Generalized Method of Moments (GMM). This important approach has also been the subject of several review articles and textbook chapters. We briefly review the use of the GMM to estimate stochastic discount factor models. This section is included only to make the latter parts of the paper accessible to a reader who is not already familiar with the GMM. Section 4 then discusses two special cases that remain important in empirical asset pricing. The first is the cross-sectional regression approach, as developed by Fama and MacBeth (1973), and the second is the multivariate regression approach, popularized in the finance literature following Gibbons (1982).

Once the mainstay of empirical work on asset pricing, cross-sectional regression continues to be used and useful. Our main focus is on the economic interpretation of the estimates. The discussion attempts to shed light on recent studies that employ the empirical factors advocated by Fama and French (1993, 1996), or generalizations of that approach. The multivariate regression approach to testing portfolio efficiency can be motivated by its immunity to the errors-in-variables problem that plagues the two step, cross-sectional regression approach. The multivariate approach is also elegant, and provides a nice intuition for the statistical tests.

A regression approach, with a beta pricing formulation, and a GMM approach with a stochastic discount factor formulation, may be considered as competing paradigms for empirical work in asset pricing. However, under the same distributional assumptions, and when the same moments are estimated, the two approaches are essentially equivalent. The present discussion attempts to clarify

these points, and suggests how to think about the choice of empirical method.

Section 5 brings the models and methods together, in a review of the relatively recent literature on conditional performance evaluation. The problem of measuring the performance of managed portfolios has been the subject of research for more than 30 years. Traditional measures use unconditional expected returns, estimated by sample averages, as the baseline. However, if expected returns and risks vary over time, this may confuse common time-variation in fund risk and market risk premiums with average performance. In this way, traditional methods can ascribe abnormal performance to an investment strategy that trades mechanically, based only on public information. Conditional performance evaluation attempts to control these biases, while delivering potentially more powerful performance measures, by using lagged instruments to control for time-varying expectations. Section 5 reviews the main models for conditional performance evaluation, and includes a summary of the empirical evidence. Finally, Section 6 of this paper offers concluding remarks.

2. Multifactor Asset Pricing Models: Review and Integration

2.1 The Stochastic Discount Factor Representation

Virtually all asset pricing models are special cases of the fundamental equation:

P t = E t {m t+1 (P t+1 + D t+1)}, (1)

where P t is the price of the asset at time t and D t+1 is the amount of any dividends, interest or other payments received at time t+1. The market-wide random variable m t+1 is the stochastic discount factor (SDF).1 The prices are obtained by "discounting" the payoffs using the SDF, or multiplying by m t+1, so

1 The random variable m

is also known as the pricing kernel, benchmark pricing variable, or

t+1

that the expected "present value" of the payoff is equal to the price.

The notation E t {.} denotes the conditional expectation, given a market-wide information set, ?t . Since empiricists don't get to see ?t , it will be convenient to consider expectations conditioned on an observable subset of instruments, Z t . These expectations are denoted as E(.|Z t ). When Z t is the null information set, we have the unconditional expectation, denoted as E(.). Empirical work on asset pricing models like (1) typically relies on rational expectations , interpreted as the assumption that the expectation terms in the model are mathematical conditional expectations. Taking the expected values of equation (1), rational expectations implies that versions of (1) must hold for the expectations E(.|Z t ) and E(.).

Assuming nonzero prices, equation (1) is equivalent to:

E(m t+1 R t+1 - 1 |?t )=

0, (2)

where R t+1 is the N-vector of primitive asset gross returns and 1 is an N-vector of ones. The gross return R i,t+1 is defined as (P i,t+1 + D i,t+1)/P i,t . We say that a SDF "prices" the assets if equations (1) and

(2) are satisfied. Empirical tests of asset pricing models often work directly with equation (2) and the relevant definition of m t+1.

Without more structure the equations (1-2) have no content because it is almost always possible to find a random variable m t+1 for which the equations hold. There will be some m t+1 that "works," in this sense, as long as there are no redundant asset returns.2 With the restriction that m t+1 is intertemporal marginal rate of substitution, depending on the context. The representation (1) goes at least back to Beja (1971), while the term "stochastic discount factor" is usually ascribed to Hansen and Richard (1987).

2 For example, take a sample of assets with a nonsingular second moment matrix and let m t+1 be

a strictly positive random variable, equation (1) becomes equivalent to the no arbitrage principle, which says that all portfolios of assets with payoffs that can never be negative, but which are positive with positive probability, must have positive prices [Beja (1971), Rubinstein (1976), Ross (1977), Harrison and Kreps (1979), Hansen and Richard (1987)].

The no arbitrage condition does not uniquely identify m t+1 unless markets are complete. In that case, m t+1 is equal to primitive state prices divided by state probabilities. To see this write equation (1) as P i,t = E t{m t+1X i,t+1}, where X i,t+1 = P i,t+1 + D i,t+1. In a discrete-state setting, P it =Σsπs X i,s =Σs q s(πs/q s)X i,s, where q s is the probability that state s will occur and πs is the state price, equal to the value at time t of one unit of the numeraire to be paid at time t+1 if state s occurs at time t+1. X i,s is the total payoff of the security i at time t+1 if state s occurs. Comparing this expression with equation (1) shows that m s = πs/q s > 0 is the value of the SDF in state s.

While the no arbitrage principle places some restrictions on m t+1, empirical work typically explores the implications of equilibrium models for the SDF, based on investor optimization. Consider the Bellman equation for a representative consumer-investor's optimization:

J(W t,s t) ≡ Max E t{ U(C t,.) + J(W t+1,s t+1)}, (3)

where U(C t,.) is the direct utility of consumption expenditures at time t, and J(.) is the indirect utility of wealth. The notation allows the direct utility of current consumption expenditures to depend on variables such as past consumption expenditures or other state variables, s t. The state variables are sufficient statistics, given wealth, for the utility of future wealth in an optimal consumption-investment plan. Thus, changes in the state variables represent future consumption-investment opportunity risk. [1' (E t{R t+1R t+1'})-1]R t+1.

The budget constraint is: W t+1 = (W t - C t) x'R t+1, where x is the portfolio weight vector, subject to x'1 = 1.

If the allocation of resources to consumption and investment assets is optimal, it is not possible to obtain higher utility by changing the allocation. Suppose an investor considers reducing consumption at time t to purchase more of (any) asset. The expected utility cost at time t of the foregone consumption is the expected marginal utility of consumption expenditures, U c(C t,.) > 0 (where a subscript denotes partial derivative), multiplied by the price P i,t of the asset, measured in the numeraire unit. The expected utility gain of selling the investment asset and consuming the proceeds at time t+1 is E t{(P i,t+1+D i,t+1) J w(W t+1,s t+1)}. If the allocation maximizes expected utility, the following must hold: P i,t E t{U c(C t,.)} = E t{(P i,t+1+D i,t+1) J w(W t+1,s t+1)}, which is equivalent to equation (1), with

m t+1 = J w(W t+1,s t+1)/E t{U c(C t,.)}. (4)

The m t+1 in equation (4) is the intertemporal marginal rate of substitution (IMRS) of the consumer-investor, and equations (2) and (4) combined are the intertemporal Euler equation.

Asset pricing models typically focus on the relation of security returns to aggregate quantities. To get there, it is necessary to aggregate the Euler equations of individuals to obtain equilibrium expressions in terms of aggregate quantities. Theoretical conditions which justify the use of aggregate quantities are discussed by Wilson (1968), Rubinstein (1974) and Constantinides (1982), among others. Some recent empirical work does not assume aggregation, but relies on panels of disaggregated data. Examples include Zeldes (1989), Brav, Constantinides and Geczy (2002) and Balduzzi and Yao (2001).

Multiple factor models for asset pricing follow when m t+1 can be written as a function of

several factors. Equation (4) suggests that likely candidates for the factors are variables that proxy for consumer wealth, consumption expenditures or the state variables -- the sufficient statistics for the marginal utility of future wealth in an optimal consumption-investment plan.

Expected Risk Premiums

Typically, empirical work focuses on expressions for expected returns and excess rates of return. Expected excess returns are related to the risk factors that create variation in m t+1. Consider any asset return R i,t+1 and a reference asset return, R0,t+1. Define the excess return of asset i, relative to the reference asset as r i,t+1 = R i,t+1 - R0,t+1. If equation (2) holds for both assets it implies:

E t{m t+1 r i,t+1} = 0 for all i. (5)

Use the definition of covariance to expand equation (5) into the product of expectations plus the covariance, obtaining:

E t{r i,t+1} = Cov t(r i,t+1; -m t+1) / E t{m t+1}, for all i, (6)

where Cov t(.;.) is the conditional covariance. Equation (6) is a general expression for the expected excess return, from which most of the expressions in the literature can be derived. The conditional covariance of return with the SDF, m t+1, is a very general measure of systematic risk. Asset pricing models say that assets earn expected return premiums for their systematic risk, not their total risk (i.e., variance of return). The covariance with -m t+1 is systematic risk because it measures the component of the return that contributes to fluctuations in the marginal utility of wealth. If we regressed the asset

return on the SDF, the residual in the regression would capture the "unsystematic" risk and would not be "priced," or command a risk premium.

If the conditional covariance with the SDF is zero for a particular asset, the expected excess return of that asset should be zero.3 The more negative is the covariance with m t+1 the less desireable is the distribution of the random return, as the larger payoffs tend to occur when the marginal utility is low. The expected compensation for holding assets with this feature must be higher than for those with a more desireable distribution. Expected risk premiums should therefore differ across assets in proportion to their conditional covariances with -m t+1.

Return Predictability

Rational expectations implies that the difference between return realizations and the expectations in the model should be unrelated to the information that the expectations in the model are conditioned on. For example, equation (2) says that the conditional expectation of the product of m t+1 and R i,t+1 is the constant, 1.0. Therefore, 1-m t+1R i,t+1 should not be predictably different from zero using any information available at time t. If we run a regression of 1-m t+1R i,t+1 on any lagged variable, Z t, the regression coefficients should be zero. If there is predictability in a return R i,t+1 using instruments Z t, the model implies that the predictability is removed when R i,t+1 is multiplied by the correct m t+1. This is the sense in which conditional asset pricing models are asked to "explain" predictable variation in asset returns. This view generalizes the older "random walk" model of stock values, which states that stock returns should be completely unpredictable. That model is a special case which can be motivated by 3 Equation (6) is weaker than equation (2), since equation (6) is equivalent to E

{m t+1R i,t+1} = ?t, all i,

t

where ?t is a constant across assets, while equation (2) restricts ?t=1. Therefore, empirical tests based on equation (6) do not exploit all of the restrictions implied by a model that may be stated in the form of equation (2).

risk neutrality. Under risk neutrality the IMRS, m t+1, is a constant. Therefore, in this case the model implies that the return R i,t+1 should not differ predictably from a constant.

Conditional asset pricing presumes the existence of some return predictability. There should be instruments Z t for which E(R t+1|Z t) or E(m t+1|Z t) vary over time, in order for the equation E(m t+1R t+1-1|Z t)=0 to have empirical bite.4 Interest in predicting security market returns is about as old as the security markets themselves. Fama (1970) reviews the early evidence.

One body of literature uses lagged returns to predict future stock returns, attempting to exploit serial dependence. High frequency serial dependence, such as daily or intra-day patterns, are often considered to represent the effects of market microstructure, such as bid-ask spreads (e.g. Roll, 1984) and nonsynchronous trading of the stocks in an index (e.g. Scholes and Williams, 1977). Serial dependence at longer horizons may represent predictable changes in the expected returns.

Conrad and Kaul (1989) report serial dependence in weekly returns. Jegadeesh and Titman (1993) find that relatively high return, "winner" stocks tend to repeat their performance over three to nine-month horizons. DeBondt and Thaler (1985) find that past high-return stocks perform poorly over the next five years, and Fama and French (1988) find negative serial dependence over two to five-year horizons. These serial dependence patterns motivate a large number of studies which attempt to assess the economic magnitude and statistical robustness of the implied predictability, or to explain the predictability as an economic phenomenon. For more comprehensive reviews, see Campbell, Lo and MacKinlay (1997) or Kaul (1996). Research in this area continues, and its fair to say that the jury is still out on the issue of predictability using lagged returns.

4 At one level this is easy. Since E(m

|Z t) should be the inverse of a risk-free return, all we need is

t+1

observable risk free rates that vary over time. Ferson (1989) shows that the behavior of stock returns and short term interest rates imply that conditional covariances of returns with m t+1 must also vary over time.

A second body of literature studies predictability using other lagged variables as instruments. Fama and French (1989) assemble a list of variables from studies in the early 1980's, that as of this writing remain the workhorse instruments for conditional asset pricing models. These variables include the lagged dividend yield of a stock market index, a yield spread of long-term government bonds relative to short term bonds, and a yield spread of low-grade (high default risk) corporate bonds over high-grade bonds. In addition, studies often include the level of a short term interest rate (Fama and Schwert (1977), Ferson, 1989) and the lagged excess return of a medium-term over a short-term Treasury bill (Campbell (1987), Ferson and Harvey, 1991). Recently proposed instruments include an aggregate book-to-market ratio (Pontiff and Schall, 1998) and lagged consumption-to-wealth ratios (Lettau and Ludvigson, 2000). Of course, many other predictor variables have been proposed and more will doubtless be proposed in the future.

Predictability using lagged instruments remains controversial, and there are some good reasons the question the predictability. Studies have identified various statistical biases in predictive regressions (e.g. Hansen and Hodrick (1980), Stambaugh (1999), Ferson, Sarkissian and Simin, 2002), questioned the stability of the predictive relations across economic regimes (e.g. Kim, Nelson and Startz, 1991) and raised the possibility that the lagged instruments arise solely through data mining (e.g. Campbell, Lo and MacKinlay (1990), Foster, Smith and Whaley, 1997).

A reasonable response to these concerns is to see if the predictive relations hold out-of-sample. This kind of evidence is also mixed. Some studies find support for predictability in step-ahead or out-of-sample exercises (e.g. Fama and French (1989), Pesaran and Timmerman, 1995). Similar instruments show some ability to predict returns outside the U.S. context, where they arose (e.g. Harvey (1991), Solnik (1993), Ferson and Harvey, 1993, 1999). However, other studies conclude that predictability using the standard lagged instruments does not hold (e.g. Goyal and Welch (1999),

Simin, 2002). It seems that research on the predictability of security returns will always be interesting, and conditional asset pricing models should be useful in framing many future investigations of these issues.

2.2 Consumption-based Asset Pricing Models

In these models the economic agent maximizes a lifetime utility function of consumption (including possibly a bequest to heirs). Consumption models may be derived from equation (4) by exploiting the envelope condition, U c (.) = J w (.), which states that the marginal utility of consumption must be equal to the marginal utility of wealth if the consumer has optimized the tradeoff between the amount consumed and the amount invested.

Breeden (1979) derived a consumption-based asset pricing model in continuous time, assuming that the preferences are time-additive. The utility function for the lifetime stream of consumption is Σt βt U(C t ), where β is a time preference parameter and U(.) is increasing and concave in current consumption, C t . Breeden's model is a linearization of equation (2) which follows from the assumption that asset values and consumption follow diffusion processes [Bhattacharya (1981), Grossman and Shiller (1982)]. A discrete-time version follows Rubinstein (1976) and Lucas (1978), assuming a power utility function:

αα??=?11)(1C C U , (7) where α > 0 is the concavity parameter. This function displays constant relative risk aversion 5 equal to α. Using (7) and the envelope condition, the IMRS in equation (4) becomes: 5 Relative risk aversion in consumption is defined as -Cu''(C)/u'(C). Absolute risk aversion is -u''(C)/u'(C). Ferson (1983) studies a consumption-based asset pricing model with constant absolute risk aversion.

m t+1 = β(C t+1/C t )-α. (8)

A large literature has tested the pricing equation (1), with the SDF given by the consumption model (8), and generalizations of that model.6

2.3 Multi-beta Pricing Models

The vast majority of the empirical work on asset pricing models involves expressions for expected returns, stated in terms of beta coefficients relative to one or more portfolios or factors. The beta is the regression coefficient of the asset return on the factor. Multi-beta models have more than one risk factor and more than one beta for each asset. The Arbitrage Pricing Theory (APT) leads to approximate expressions for expected returns with multiple beta coefficients. Models based on investor optimization and equilibrium lead to exact expressions.7 Both of these approaches lead to models with the following form:

∑=++=K j jt ijt t t i t b R E 101,,)(λλfor all i .

(9)

The b i1t ,..., b iKt are the time t betas of asset i relative to the K risk factors F j,t+1, j=1,..,K. These betas 6 An important generalization allows for nonseparabilities in the U c (C t ,.) function in (4), as may be implied by the durability of consumer goods, habit persistence in the preferences for consumption over time, or nonseparability of preferences across states of nature. Singleton (1990), Ferson (1995) and Campbell, in Chapter 19 of this volume, review this literature.

7

The multiple-beta equilibrium model was developed in continuous time by Merton (1973), Breeden (1979) and Cox, Ingersoll and Ross (1985). Long (1974), Sharpe (1977), Cragg and Malkiel (1982), Connor (1984), Dybvig (1983), Grinblatt and Titman (1983) and Shanken (1987) provide multibeta interpretations of equilibrium models in discrete time.

are the conditional multiple regression coefficients of the assets on the factors. The t j,λ, j=1,...,K are the factor risk premiums, which represent increments to the expected return per unit of type-j beta. These premiums do not depend on the specific security i.t,0λ is the expected zero-beta rate. This is the expected return of any security that is uncorrelated with each of the K factors in the model (i.e., b0jt = 0, j=1,...,K). If there is a risk-free asset, then t,0λ is the return of this asset.

Relation to the Stochastic Discount Factor

We first show how a multi-beta model can be derived as a special case of the SDF representation, when the factors capture the relevant systematic risks. We take this to mean that the error terms, u i,t+1, in a regression of returns on the factors are not "priced;" that is, they are uncorrelated with m t+1: Cov t(u i,t+1,m t+1)=0. We then state the general equivalence between the two representations. This equivalence was first discussed, for the case of a single-factor model, by Dybvig and Ingersoll (1982). The general, multi-factor case follows from Ferson and Jagannathan (1996).

Let R0,t+1 be a zero beta portfolio, and t,0λ the expected return on the zero beta portfolio. Equation (6) implies:

E t(R i,t+1) =t,0λ + Cov t(R i,t+1; -m t+1)/E t(m t+1). (10)

Substituting the regression model R i,t+1 = a i + Σj b ijt F j,t + u i,t+1 into the right hand side of (10) and assuming that Cov t(u i,t+1,m t+1)=0 implies:

E t(R i,t+1) =t,0λ + Σj=1,...K b ijt [ Cov t{

F j,t+1, -m t+1 }/E t(m t+1) ], (11)

-wide risk premium per unit of type-j beta is t j,λ = [Cov t{F j,t+1, -m t+1}/E t(m t+1)]. In the special case where the factor F j,t+1 is a traded asset return, equation (11) implies that t j,λ=E t(F j,t+1)-t,0λ; the expected risk premium equals the factor portfolio's expected excess return.

Equation (11) is useful because it provides intuition about the signs and magnitudes of expected risk premiums for particular factors. The intuition is the same as in equation (6) above. If a risk factor F j,t+1 is negatively-correlated with m t+1, the model implies that a positive risk premium is associated with that factor beta. A factor that is positively-related to marginal utility should carry a negative premium, because the big payoffs come when the value of payoffs is high. This implies a high present value and a low expected return. Expected risk premiums for a factor should also change over time if the conditional covariances of the factor with the scaled marginal utility [m t+1/E t(m t+1)] vary over time.

The steps that take us from (6) to (11) can be reversed, so the SDF and multi-beta representations are, in fact, equivalent. The formal statement is:

Lemma 1 (Ferson and Jagannathan, 1996): The stochastic discount factor representation

(2) and the multi-beta model (9) are equivalent,

where, m t+1 = c0t + c1t F1t+1 +...+ c Kt F Kt+1, (12) with c0t = [ 1 + kΣ{kλ E t(F k,t+1)/Var t(F k,t+1)} ]/t,0λ,

and c jt = - {t j,λ/t,0λ Var t(F j,t+1)}, j=1,...,K.

For a proof, see Ferson and Jagannathan (1996).

If the factors are not traded asset returns, then it is typically necessary to estimate the expected risk premiums for the factors,t k,λ. These may be identified as the conditional expected excess returns on factor-mimicking portfolios. A factor-mimicking portfolio is defined as a portfolio whose return can

be used in place of a factor in the model. There are several ways to obtain mimicking portfolios, as described in more detail below.8

Relation to Mean variance Efficiency

The concept of a minimum variance portfolio is central in the asset pricing literature. A portfolio R p,t+1 is a minimum variance portfolio if no portfolio with the same expected return has a smaller variance. Roll (1977) and others have shown that the portfolio R p,t+1 is a minimum variance portfolio if and only if a beta pricing model holds:9

E t{R i,t+1-R pz,t+1} = βipt E t{R p,t+1-R pz,t+1}, all i; (13)

βipt = [Cov t(R i,t+1; R p,t+1) /Var t(R p,t+1)].

In equation (13), βipt is the conditional beta of R i,t+1 relative to R p,t+1. R pz,t+1 is a zero beta asset relative to R p,t+1. A zero beta asset satisfies Cov t(R pz,t+1; R p,t+1)=0. Equation (13) is essentially a restatement of the first order condition for the optimization problem that defines a minimum variance portfolio.

Equation (13) first appeared as an asset pricing model in the famous Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965). The CAPM is equivalent to the statement that the market portfolio R m,t+1 is mean variance efficient. The market portfolio is the portfolio of all 8 Breeden (1979, footnote 7) derives maximum correlation mimicking portfolios. Grinblatt and Titman (1987), Shanken (1987), Lehmann and Modest (1988), and Huberman, Kandel and Stambaugh (1987) provide further characterizations of mimicking portfolios when there is no conditioning information. Ferson and Siegel (2002b) and Ferson, Siegel and Xu (2002) consider cases where there is conditioning information.

9 It is assumed that the portfolio R

is not the global minimum variance portfolio; that is, the

p,t+1

minimum variance over all levels of expected return. This is because the betas of all assets on the global minimum variance portfolio are the identical.

第五章 因素模型和套利定价理论

第五章因素模型和套利定价理论 一、单选题 1. 假定X基金与恒生指数的相关系数为0.7,X基金的总风险中特有风险为多少?() A. 70% B. 60% C. 51% D. 49% 2. 贝塔与标准差作为对风险的测度,其不同之处在于贝塔测度的() A. 仅是非系统风险,而标准差测度的是总风险。 B. 仅是系统风险,而标准差测度的是总风险。 C. 是系统风险与非系统风险,而标准差只测度非系统风险。 D. 是系统风险与非系统风险,而标准差只测度系统风险。 3. 根据套利定价理论,() A. 高贝塔值的股票都属于高估定价。 B. 低贝塔值的股票都属于低估定价。 C. 正阿尔法值的股票会很快消失。 D. 理性的投资者将会从事与其风险承受力相一致的套利活动。 4. 在什么条件下,会产生具有正阿尔法值的零资产组合?() A. 投资的期望收益率为零。 B. 资本市场线是机会集的切线。 C. 不违反一价定律。 D. 存在无风险套利的机会。 5. 套利定价理论不同于单因素C A P M模型,是因为套利定价理论() A. 更注重市场风险。 B. 减小了分散化的重要性。 C. 承认多种非系统风险因素。 D. 承认多种系统风险因素。 二、多选题 1. 根据指数模型,两个证券之间的协方差是() A. 由同一个因素,即市场指数的收益率对它们的影响决定的 B. 非常难于计算 C. 与行业的特殊情况有关 D. 通常是正的 E. 通常是负的 2. 证券收益率() A. 是由宏观经济因素和企业个别因素共同决定的 B. 只取决于企业个别因素 C. 彼此之间通常是正相关的 D. 彼此之间通常是负相关的 E. 彼此之间通常是无关的 3. 单指数模型() A. 相比马克维茨模型,大大地减少了需要的运算量 B. 加深了对系统风险和非系统风险的认识 C. 相比马克维茨模型,大大地增加了需要的运算量 D. C和B E. A和C 4. 证券市场线() A. 描述的是在无风险收益率的基础上,某只证券的超额收益率是市场超额收益率的函数 B. 能够估计某只证券的贝塔值 C. 能够估计某只证券的阿尔法值

基本的投资组合模型

基本的投资组合模型 摘要 在市场经济活动中,投资成为了一个必不可少的环节。特别是如今物价上涨迅猛,人们生活水平逐渐提高,如何通过投资来获取更多的经济利益已成为一个社会的共同话题。也只有通过投资,消费者才能拥有多渠道的经济来源从而提高生活水平。投资方式的多样性决定了人们在投资过程中投资组合的多样性。而每一项投资在有其收益效果的同时也伴随着风险性,所以不同的投资组合方式将带来不同的效果。对于不同类型的投资者必然有不同的要求,从而适合不同的投资方式,所以意在建立在不同投资者的不同要求下应采用哪种投资方式的模型,使投资者能做出正确的选择。 关键词:股市;组合投资;均值;方差;收益;风险 目录 一、问题重述与分析 (2) 二、符号说明 (3) 三、模型假设 (3) 四、模型的建立与求解 (4) 五、模型的分析和检验 (9) 六、模型评价 (9) 七、参考文献 (9) 八、附录 (10)

一、问题重述与分析 1.1 问题重述 本案例中以投资股票为例,分析股票的选取和赢利问题。在股票市场上往往会有很多股票,每个股票都会有其对应所属的公司,公司的运作现况以及其未来在市场上的潜力都会影响该股票在股票市场的上涨或下跌,所以每一只股票都会有其内在的风险性。但是,对于不同股票,也就对应不同实力,不同前景的公司其收益性和风险性也会有所不同,所以不同的投资组合,以及每种组合中不同投入资金比例,将会造成其不同的收益效果。 1.2问题分析 在充满风险和机会的证券市场中,无论是个人还是机构投资者在进行证券投资时,总是以投入资金的安全性和流动性为前提,合理的运用投资资金,达到较小风险、较高收益的目的。投资于高收益的证券,很可能获得较高的投资回报;但是,高收益往往伴随着高风险,低风险常又伴随着低收益。如果投资者单独投资于某一种有价证券,那么一旦该有价证券的市场价格出现较大波动,投资者将蒙受较大的损失,所以,稳健的投资方法是将资金分散地投资到若干种收益和风险都不同的有价证券上,以“证券组合投资”的方式来降低风险。在马科维茨的组合投资模型中,数学期望代表着预期收益,方差或标准差代表着风险,协方差代表着资产之间的相互关系,进而资产组合的预期收益是资产组合中所有资产收益的简单加权平均,而资产组合的方差则为资产方各自方差与它们之间协方差的加权平均。确定最小方差资产组合首先要计算构成资产组合的单个资产的收益、风险及资产之间的相互关系,然后,计算资产组合的预期收益和风险。因此,研究证券投资组合的优化模型就显得十分重要了。对于我们的日常经济生活而言,也有了研究的实践意义。 风险可以用收益的方差(或标准差)来进行衡量:方差越大,则认为风险越小。在一定的假设下用收益的方差(或标准差)来衡量风险确实是合适的。 1.3 问题提出 案例美国某三种股票(A,B,C)12年(1943—1954)的价格(已经包括了粉红在内)每年的增长情况如表6—6所示(表中还给出了相应年份的500种股票的价格指数的增长情况)。例如,表中第一个数据1.300的含义是股票A在1943年末价值是其年初价值的1.300倍,即收益为30%,其余数据的含义依此类推。假设你在1955年时有一笔资金准备投资这三种股票,并期望年收益率至少达到15%,那么你应当如何投资?当期望的年收益率变化时,投资组合和相应的风险如何变化? 表:股票收益数据

资本资产定价模型与多因子模型(一)

The CAPM&Multifactor Models Business Finance722 Investment Management Professor Karl B.Diether The Ohio State University Fisher College of Business Review and Clari?cation In the last few lectures we have considered how an investor should allocate her wealth between different assets. To solve the allocation problem we made some assumptions. 1.Utility maximization. 2.The investor likes expected return and dislikes variance. 3.Securities are in?nitely divisible. 4.A frictionless?nancial market(borrow and sell at the riskfree rate,and costless to short-sell). 5.The investor takes prices as given. 6.The investor knows the expected return vector and covariance matrix of all the securities they can invest in. The CAPM&Multifactor Models1

三因素模型

一、经济背景 CAPM曾一度是资产定价的主要依据,引发了很多学者对其的实证检验。但是从结果来看,期望收益与市场beta并不相关,CAPM也便遭到了人们的质疑。 正是在这种对传统单因素beta资产定价的挑战下,出现了异象研究。 异象研究:人们发现,股票的平均收益与上市公司的财务特征相关,公司特征对截面收益的解释往往比传统单因素beta模型更加有力。 之后,人们进行了分析。 有的学者就提出,规模效应,size effect,小公司的股票平均收益率高于大公司股票。 还有的学者就提出,账面市值比效应,B/M effect,高账面市值比的股票比地账面市值比的股票有显著高的收益率。 除此之外,还有例如D/E债务权益比效应,E/P盈余价格比效应之类的解释。 二、B/M effect 学术界对于各种异象的研究主要集中于“BM 效应”产生的原因,即为什么高BM 的股票比低BM 的股票具有更高的收益。目前,主要有如下四种观点: 1.有的学者认为B/M 效应只是特定样本在特定检验期内才存在,是数据挖掘的结果。通俗来说,它就是个概率事件,样本局限性:选择性偏差造成BM 效应的存在。但肯尼思·弗伦奇等人通过检验美国之外的股市或拉长检验期后,仍发现B/M 效应显著存在,从而否定了此种解释。 2. 第二种观点(Fama 和French ,1992 ,1993 ,1996) 认为,B/M 代表的是一种风险因素———财务困境风险。具有困境的公司对商业周期因素如信贷条件的改变更加敏感,而高B/M 公司通常是盈利和销售等基本面表现不佳的公司,财务状况较脆弱,因此比低BM 公司具有更高风险。可见,高B/M公司所获得的高收益只是对其本身高风险的补偿,并非所谓不可解释的“异象”。—三因素模型前身。 同时,为了验证自己的结论并不是由于样本选择的原因,他们从国际股票市场的角度进行了考察,发现B/M效应在覆盖四大洲的13个主要国家的股票收益中同时出现,证明了这一现象并不仅局限于美国,否认了B/M效应的质疑。 3. 第三种观点认为,B/M 效应的出现是由于投资者对公司基本面过度反应造成的。高B/M 公司通常是基本面不佳的公司,因此投资者对高B/M公司的股票价值非理性地低估;低B/M公司则是基本面较好的公司,因此投资者对低B/M 公司的股票价值非理性地高估。可见,投资者通常对基本面不佳的公司过度悲观,对基本面优良的公司过度乐观。当过度反应得到纠正后,高BM 公司将比低BM 公司具有更高的收益。 4. 第四种观点也就是特征模型。 (Daniel 和Titman ,1997) 也认为BM 和SIZE 不是风险因素, 实际上,BM 和SIZE 代表的是公司的特征,简称“特征因素”—其代表投资者偏好,并决定收益的高低,而仅仅是特征本身决定了股票的预期收益率。 高B/M 公司由于基本面较差而价值被低估,故称“价值股”;反之,低B/M 公司由于基本面较好而价值被高估,故称“成长股”。 由于投资者偏好于持有基本面较好的成长股,而厌恶持有基本面不佳的价值股,结果导致高B/M 公司具有较高收益。 本文重点主要在论述三因素模型,并与特征模型进行了比较,证明了三因素模型的优势。 三、对三因素模型论述。 第一部分主要是在风险模型中对整体市场,公司规模以及价值溢价的一个整体说明。

多因素模型

多因素模型 在单指数模型中,我们假设每个股票对每个风险因素有相同的敏感度,实际上,每个股票相对于不同的宏观经济因素有不同的β值。 1. 双因素模型 假设两个最重要的宏观经济风险来源是围绕经济周期周围的不确定性(GDP)和利率(IR)。任何股票的收益都与这两个宏观风险因素以及它们自己公司的特有风险相关。可以把单指数模型扩展成一个双因素模型,表示如下: 例:有两个公司,一个是公用事业单位,另一个是航空公司。公用事业单位对GDP的敏感性较低,但是对利率的敏感度较高,当利率上升时,它的股票价格将下跌;航空公司的业绩对经济活动非常敏感,但对利率却不那么敏感。假设某一天,有一个新闻节目暗示经济将发生扩张,GDP的期望上升,利率也上升。那么对公用事业单位来说这是坏消息,因为它对利率极为敏感。而对于航空公司而言,由于它更关切GDP,所以这是个好消息。很明显,一个单因素或者单指数模型难以把握公司对不同的宏观经济不确定性信息的反应。 2. 多因素模型 多因素模型的一个例子是陈(Chen)、罗尔(Roll)与罗斯(Ross)将下列因素作为描述宏观经济的变量建立的。 设IP—行业生产的变动百分比; EI—预期通货膨胀的变动百分比; UI—非预期通货膨胀的变动百分比; CG—长期公司债券对长期政府债券的超额收益; GB—长期政府债券对短期国库券的超额收益。 3. Fama-French多因素模型 法马(Fama)与弗伦奇(French)建立了如下的多因素模型。 式中SMB—小减去大(small minus big):小股票资产组合的收益超过大股票资产组合的收益;HML—高减去低(high minus low):有高帐面价值-市值比的股票资产组合的收益超过有低帐面价值-市值比的股票收益。 注意,在这个模型中,市场指数确实扮演着一个角色,并被期望能用它把握源于宏观经济因素的系统风险。

3消费-投资组合模型

第三章课件1:消费-投资组合模型 3.2.1 单时期最优消费和投资组合模型 单时期模型显然是对复杂的、时间变化的随机现象(像股票价格和债券价格等)的非真实表示,但是,它们的优点是数学形式简单,能够简明地揭示许多重要的经济原理。它们是研究最复杂的连续时间模型的基础,因此,先引入和研究单时期模型非常必要。 在单时期的消费-投资模型中,引入了金融市场交易策略的概念,这是把传统的消费-投资分析拓广为现代消费-投资分析,从而为金融研究提供分析基础的关键点。本书中讨论的消费-投资分析及其模型与传统的消费-投资分析及其模型的主要区别是: (1)传统的消费-投资分析及其模型把未来收入,尤其是资产的未来收益,都作为外生变量,而本书中的消费-投资分析及其模型把它们作为内生变量,通过交易策略的概念实现了这一点。交易策略是模型的核心概念。 (2)在传统的消费-投资分析及其模型中,投资者对于不确定性等风险因素完全是被动的,风险完全是选择的外生条件,而在本节的消费-投资分析及其模型中,风险对于投资者来说并不都是坏事,风险也是一种投资。不仅如此,风险往往也是可以进行组合的,后面 3.2节的均值-方差投资组合分析就说明了这一点。 1.单时期和多时期消费-投资的基本原理性模型 我们先来把涉及到金融市场的单时期和多时期的消费-投资决策的原理性模型做一个简单介绍,第一点,是为了读者便于把握本章后面的各种不同时期的消费-投资分析模型。因为金融学中的消费-投资分析模型一般都比较麻烦。这是让初学者比较头痛的事情。第二点,如果初学者没有时间,掌握这个基本原理性模型也够用。第三点,这样做的最根本目的是让初学者认识到,不管现代金融研究中的理论、方法和模型多么复杂、困难和抽象,其实原理都很简单。从下面的介绍中读者就可以看到这一点。 考虑市场有N 个证券性资产,其价格分别表示为1S ,…,N S 。一种无风险的银行存款或债券记为B 。市场是不确定的。一个代表性消费者-投资人现在的资产向量是 1(,,,)N Z B S S =??? 如果他要选择的策略是1(,,)N H h h =???,那么他在时刻t 的自融资条件或预算约束条件就是 011()()()N N Z t h B h S t h S t =++??? 而消费-投资的决策则是要使下面的预期效用或收益最大化,

因子分析模型的建立

基于因子分析模型的居民消费价格指数影响因素分 析 摘要:由于目前对居民消费价格变动原因的分析指标很多,且指标体系中各指标之间存在着多重共线性,从而影响了分析模型的稳定性,使所得模型中出现了不符合经济学原理的现象。本文采用多元统计分析方法,以2010年居民消费物价水平为例,建立了关于居民消费价格分类指数变动的因子分析模型,研究发现影响居民消费价格指数的主要因素为食品、衣着和家用设备等生活必需品的价格水平,其次为健身等娱乐设施价格和房价水平。 关键词:消费价格指数;影响因素;因子分析 一、研究背景 随着社会主义市场经济体制的确立和逐步完善,我国经济总量和综合实力迅速上升,居民的生活水平显着提高,经济和社会都有了较大的发展。相对于过去而言,居民食品方面的消费支出比重在逐渐下降,而在文化娱乐等方面的消费支出比重越来越大。国家发改委在全国物价局长会议上指出,明年要围绕促进经济平稳较快发展这一主线,积极稳妥地推进价格改革,切实改进价格监管,保持价格总水平基本稳定。同时由于影响价格变动的因素日益复杂,价格异常波动的可能性增加。分析影响居民消费价格指数的主要影响因素,改进价格监管,保持价格总水平基本稳定有着重要意义;同时也为产业政策的制定和宏观经济的调控提供了参考。 居民消费价格指数(CPI)是反映与居民生活有关的产品及劳务价格统计出来的物价变动指标,通常作为观察通货膨胀水平的重要指标,在一定程度上也反映出我国居民消费结构的变化。本文通过对2010年全国居民消费价格指数的变化进行因子分析,从而确定出影响全国居民消费物价水平和消费结构变化的主导因素。 二、因子分析模型的建立 因子分析最初是由英国心理学家C.Spearman提出的,是多元统计分析的一个重要分支,其主要目的是浓缩数据。通过对诸多变量的相关性研究,来表示原来变量的主要信息。假设有n个样本,对于多指标问题X=(X1,X2,...Xk),形成的背景原因是多种多样的,其中共同原因称为公共因子,假设用Fj表示,它们之间是两两正交的;每一个分量Xi又有其特定的原因,称为特殊因子,假设用ei表示,其两两之间互不相关,且只对相应的Xi起作用。同时,F与e相互独立。于是因子分析的数学模型可表示为: Fi叫做公共因子(也称主因子),它们是在各个原观测变量的表达式中都共同出现的因子,是相互独立的不可观测的理论变量。

第十一章投资组合管理基础

第十一章投资组合管理基础 本章要点:了解证券组合管理的概念;熟悉现代投解基金组合管理的过程。 了解证券投资组合理论的基本假设;熟悉单个证券和证券组合的收益风险衡量方法;熟悉风险分散原理;了解两种和多个风险证券组合的可行集与有效边界;了解无差异曲线的含义以及在最优证券组合中的运用;了解资产组合理论的运用以及在运用中要注意的问题。 了解资本资产定价模型的含义和基本假设;熟悉资本资产定价模型的推导。 第一节、证券组合管理与基金组合管理过程 (一) 证券组合管理的概念 证券组合管理是一种以实现投资组合整体风险一收益最优化为目标,选择纳入投资组合的证券种类并确定适当权重的活动。它是伴随着现代投资理论的发展而兴起的一种投资管理方式。 (二)基金组合管理的过程 1.设定投资政策; 2.进行证券分析; 3.构造投资组合; 4.对投资组合的效果加以评价; 5.修正投资组合。 第二节、现代投资理论的产生与发展 现代投资组合理论主要由投资组合理论、资本资产定价模型、APT模型、有效市场理论以及行为金融理论等部分组成。它们的发展极大地改变了过去主要依赖基本分析的传统投资管理实践,使现代投资管理日益朝着系统化、科学化、组合化的方向发展。 1952年3月,美国经济学哈里.马克威茨发表了《证券组合选择》的论文,作为现代证

券组合管理理论的开端。马克威茨对风险和收益进行了量化,建立的是均值方差模型,提出了确定最佳资产组合的基本模型。由于这一方法要求计算所有资产的协方差矩阵,严重制约了其在实践中的应用。 1963年,威廉·夏普提出了可以对协方差矩阵加以简化估计的单因素模型,极大地推动了投资组合理论的实际应用。 20世纪60年代,夏普、林特和莫森分别于1964、1965和1966年提出了资本资产定价模型CAPM。该模型不仅提供了评价收益一风险相互转换特征的可运作框架,也为投资组合分析、基金绩效评价提供了重要的理论基础。 1976年,针对CAPM模型所存在的不可检验性的缺陷,罗斯提出了一种替代性的资本资产定价模型,即APT模型。该模型直接导致了多指数投资组合分析方法在投资实践上的广泛应用。 第三节、证券投资组合理论的基本假设 (一)投资者以期望收益率和方差(或标准差)来评价单个证券或证券组合 (二)投资者是不知足的和厌恶风险的 (三)投资者的投资为单一投资期 (四)投资者总是希望持有有效资产组合 第四节、单个证券收益风险衡量 投资涉及到现在对未来的决策。因此,在投资上,投资者更多地需要对投资的未来收益率进行预测与估计。马克威茨认为,由于未来收益率往往是不确定的,表现为一个随机变量。因此,可以以期望收益率作为对未来收益率的最佳估计。 数学上,单个证券的期望收益率(或称为事前收益率)是对各种可能收益率的概率加权,用公式可表示为:

三因子模型实证分析

新三因子模型及其在中证100的实证分析 罗小明 (吉水二中江西吉安 331600) 摘要:本文通过对FF-三因子模型的研究,并借鉴了国内外的研究成果,同时结合国内股市的具体特点,提出以下三个影响股票收益率因子:流通市值、市盈率、换手率。在FF-三因子模型的基础上,构建了国内特有的新三因子模型,进行了实证检验,并与FF-三因子模型进行了比较分析。 关键字:三因子模型;流通市值;市盈率;换手率 资产定价是金融学的核心任务之一, 各种资产定价模型总是试图找出投资者在投资决策时的相关经济环境变量, 由这些变量来解释股票的收益差异。本文在FF-三因子模型的基础上,并借鉴了国内外的研究成果,同时结合国内股市的具体特点构建了国内特有的新三因子模型,进行了实证检验,并与FF-三因子模型进行了比较分析,以便进一步认识中国股市 的股票定价机理。 一.国内股市的特点 1、股本结构 我国上市公司的股本按投资主体的不同性质可以分为国有股、法人股、社会公众股和外资股等不同的类型。由于我国的股权分置,投资者在股票市场买卖的股票都是流通股。此情形下,我国上市公司股票市场价格是在非流通股不能上市流通的前提下所形成的供求平衡价格,这就隐含了这一价格大大高于在全部股流通条件下的市场均衡价格,而股票的市场价格并不是非流通股的价格,这对资产定价模型产生较大影响。 2、存在价格操纵者 近年来,我国股票市场上庄家、庄股之说,并且成为广大投资者、中介机构和有关媒体十分关注的话题。所谓庄家,实际上就是股价操纵者,而庄股就是股价被操纵的股票;虽然从法律角度看,操纵股价的行为是违反《证券法》的,但由于操纵股价能为操纵者带来巨额的超常收益,所以操纵行为禁而不绝。当然,这种操纵行为的出现和演变,具有独特的市场机制和外部环境渊源。 3、考虑交易费用和所得税的情形 在我国,股票交易的费用主要由两部分构成,即交易印花税和佣金,而且这两项都按交易金额的一定比例提取,此外还有过户费(上海股市)、交易手续费(上海股市)。从费率的角度看,目前印花税和佣金有所降低,交易费用有所下降;但考虑到其他费用的存在,我国的股票交易费用仍然偏高。另外,股票收益包括股票股息收入、资本利得和公积金转增收益组成,其中股息又分为现金股息、股票股息、财产股息等多种形式;目前,在我国仅对现金股息征税,而对资本利得和其它股息均未征税。对于大多数股票来说,由于股票收益率绝大部

fama三因素模型中文版_图文.

The Cross-Section of Expected Stock Returns EUGENE F. FAMA and KENNETH R. FRENCH (1992 JOURNAL OF FINANCE 47(2, 427-465 摘要: 結合兩個簡單的變數:規模、帳面對市價比,衡量市場β、規模、財務槓桿、帳面對市價比、E/P ratio與股票平均報酬變異的關係異。而且,當測試變數β與規模無關,即使β是唯一解釋變數,市場β跟股票平均報酬間的關係是無關的。 Sharpe(1964, Linter(1965, and Black(1972所提出之資產定價模型長期被學術界及實務界用來探討平均報酬與風險的關係。模型的主要預測:市場投資組合受mean-variance 的效率影響。效率市場投資組合指:(a證券的預期報酬與市場β是正的線性函數關係。(b市場βs有能力解釋預期報酬的橫斷面。 實證上的發現有許多與 Sharpe-Lintner-Black(SLB模型相抵觸的地方。最明顯的為 Banz(1981的規模效果:在給定市場βs下之預期股票報酬的橫斷面,加入市值ME(股票價格乘以流通在外股數這個變數。結果顯示在給定市場β下,低市值股票的平均報酬太高;高市值股票的平均報酬則太低。 另一個有關 SLB 模型的矛盾則是 Bhandari(1988所提出的財務槓桿與平均報 酬間的正相關。財務槓桿與風險及報酬相關看起來似乎合理,但在 SLB 模型下, 財務槓桿風險應已包含於市場β中。然而 Bhandari 發現財務槓桿能協助解釋包含規模(ME的平均股票報酬的橫斷面變異,且比包含β要來的好。 Stattman(1980, Rosenberg, Reid , and Lanstein (1985發現美國股票的平均報酬與普通股帳面價值(BE市值(ME比有正相關。Chan, Hamao, and Lakonishok(1991發現帳面對市價比(BE/ME對於解釋日本股票的橫斷面平均報酬也扮演很重要的角色。 最後,Basu(1983認為 E/P ratio也能協助解釋包含規模與市場β的美國股票橫斷面平均報酬。Ball(1978提出 E/P是一個在預期股票報酬下,可囊括所有未知因子的

多因子定价模型检验,波动和投资组合Tests of Multi-Factor Pricing Models, Volatility, and Portfolio Pe

NBER WORKING PAPER SERIES TESTS OF MUTLIFACTOR PRICIN G MODELS, VOLATILITY BOUNDS AND PORTFOLIO PERFORMANCE Wayne E. Ferson Working Paper9441 https://www.360docs.net/doc/606505256.html,/papers/w9441 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 January 2003 The author acknowledges financial support from the Collins Chair in Finance at Boston College and the Pigott-PACCAR professorship at the University of Washington. He is also grateful to George Constantinides and Ludan Liu for helpful comments and suggestions. The views expressed herein are those of the authors and not necessarily those of the National Bureau of Economic Research. ?2003 by Wayne E. Ferson. All rights reserved. Short sections of text not to exceed two paragraphs, may be quoted without explicit permission provided that full credit including . notice, is given to the source.

多因素时间序列的灰色预测模型

第 39卷 第 2期 2007年 4月 西 安 建 筑 科 技 大 学 ( 学 报 ( 自然科学版) ) V ol.39 No.2 Apr . 2007 J 1Xi ’an Univ . of Arch . & Tech . Natural Scie nce Editio n 多因素时间序列的灰色预测模型 苏变萍 ,曹艳平 ,王 婷 (西安建筑科技大学理学院 ,陕西 西安 710055) 摘 要:对于传统的单因素时间序列预测法在实际应用中的不足之处 ,提出采用灰色 DGM (1 ,1) 模型和多元 线性回归原理相结合的方法 ,综合各种因素建立多因素时间序列的灰色预测模型。它首先利用 DGM (1 ,1) 模 型对影响事物发展趋势的各项因素进行预测 ;然后利用多元线性回归法将各种因素综合起来 ,以预测事物的 发展趋势。最后将该模型应用于预测分析陕西省的就业状况 ,取得了较好的预测效果 ,同时也验证了此模型 的可行性。 关键词: 时间序列 ;单因素 ;多因素 ;预测模型 中图分类号:TB114 文献标识码:A 文章编号 :100627930 2007 022******* ( ) 多年以来 ,对时间序列的预测研究 ,大多是停留在对单因素时间序列上 ,对其预测通常采用的是趋 势外推法 ,而且该方法适合于原始时间序列规律性较好的情况 ,若时间序列中包含了随机因素的影 响 ,再采用这种方法得出的预测结果可能会失真. 同时 ,客观世界又是复杂多变的 ,事物的发展通常不 是由某个单个因素决定 ,往往是许多错综复杂的因素综合作用的结果 ,为了对某项事物的发展做出更加 符合实际的预测 ,这就需要来探讨多因素时间序列的预测问题 ,正是基于这些 ,本文在应用灰色 D GM (1 ,1)模型对单因素时间序列预测的基础上 ,结合多元回归原理 ,提出建立多因素时间序列的灰色预测 模型 ,这样就充分发挥了二者的优点 ,既克服了时间序列的随机因素影响 ,又综合考虑了影响事物发展 的多种因素 ,从而达到提高预测精度和增加预测结果可靠性的效果. 1 模型的建立 设 Y = (y (1) , y (2) , …, y( n)) 表示事物发展的特征因素时间序列, X i = (x i (1) , x i (2) , …, x i ( n)) (i = 1 ,2 , …, p) 表示影响事物发展的单因素时间序列. 1.1 单因素时间序列的 DGM(1 ,1) 模型 对于单因素原始时间序列{ X i } (i = 1 ,2 , …, p) ,根据灰色系统理论建模方法 ,得 D GM (1 ,1) 模 型 : x i (1) a (1 - a) + a b ,t > 1 1.2 多因素时间序列的预测模型 为了能将影响事物发展的众多因素结合起来进行综合预测和相关因素的预测分析 ,在经过多次研 究与比较后,采用多元回归的原理建立多因素时间序列的灰色预测模型: y t = a 0 + a 1 x 1 t + a 2 x 2 t + …+ a p x p t 2 式中 y t 为该事物在 t 时刻的预测值;x i t i = 1 ,2 , …, p 为第 i 个单因素 ,通过应用上述的灰色 3收稿日期 :2005201209 修改稿日期:2006204212 基金项目 :陕西省教育厅专项基金项目 01J K133( ) 作者简介 :苏变萍 19632( ) ,女 ,山西忻州人 ,副教授 ,博士研究生 ,研究方向为计量经济学. [122] (0) (0) (0) ( ) ( ) [4] (0) x (1) = x (1) ^ x (t) = (1) ( ) ^ ^ ^ ^ ^ ^

投资组合优化模型

投资组合优化模型 摘要 长期以来,金融资产固有的风险和由此产生的收益一直是金融投资界十分关注的课题。随着经济的快速发展,市场上的新兴资产也是不断涌现,越来越多的企业、机构和个人等都用一部分资金用来投资,而投资方式的多样性决定了人们在投资过程中投资组合的多样性。而每一项投资在有其收益效果的同时也伴随着风险性,所以不同的投资组合方式将带来不同的效果。对于不同类型的投资者必然有不同的要求,从而适合不同的投资方式,所以意在建立在不同投资者的不同要求下应采用哪种投资方式的模型,使投资者能做出正确的选择。 本文研究的主要是在没有风险的条件下,找出投资各类资产与收益之间的函数关系,合理规划有限的资金进行投资,以获得最高的回报。 对于问题一,根据收益表中所给的数据,我们首先建立二元线性回归模型来模拟收益U与x,y之间的关系,对于模型中的各项自变量前的系数估计量,利用spss软件来进行逐步回归分析。发现DW值为0.395,所以原模型的随机误差项违背了互相独立的基本假设的情况,即存在自相关性。为了处理数据间的自相关问题,运用了迭代法,先通过Excel进行数据的处理和修正,达到预定精度时停止迭代,再一次用spss软件来进行检验,发现DW值变为2.572,此时DW值落入无自相关性区域。在进一步对模型进行了改进后,拟合度为进行了残差分析和检验预测,这样预测出的结果更加准确、有效,希望能为投资者实践提供某种程度的科学依据。 对于问题二,根据问题一建立的模型和问题二中所给出的条件,确定目标函数,进行线性规划,用MATLAB软件来求得在资金固定的情况下,选择哪种投资方式能使达到利益最大化。 最后,对模型的优缺点进行评价,指出了总收益与购买A 类资产x份数和B 类资产y份数之间的关系模型的优点与不足之处,并对模型做出了适度的推广和优化。 关键字:经济效益回归模型自相关迭代法线性规划有效投资方法

基于因子Copula的CDO定价模型

基于因子Copula的CDO定价模型 债务抵押证券CDO是以一个或多个类别且分散化的资产作质押的证券。这些资产包括公司债券、新兴市场债券、资产质押债券和房屋抵押贷款债券、不动产投资信托和银行债务等。CDO作为一种创新型的金融衍生工具,结合了资产证券 化和信用衍生品的优点,也受到了广大投资者的信赖。金融机构利用CDO分别达成转移风险或套取价差等目的,特别是可利用这一产品设计不同信用风险的债券系列,以满足各种风险偏好的投资人。 对于组合信用衍生品CDO的定价,必须考虑的因素有各参考资产的违约概率、参考资产之间的违约相关性以及违约回收率。其中,违约相关性是非常重要的因素,它确定了在同一个时刻,CDO信用资产池中的所有参考资产同时发生违约的 概率,进而得到资产池的潜在损失分布。对于CDO的定价,主流金融界并没有达成共识,常用的定价方法有BET模型、因子Copula模型、仿射强度模型等。而现有的这些方法存在着一些不足和缺陷,因而,本文结合国内外的现有研究成果,深入研究CDO的定价机理,运用金融工程的前沿方法进行创新,构建合理的定价模型,促进债务抵押证券定价理论和实践的发展。 本文立足于CDO参考资产池损失分布的“尖峰厚尾”特征以及“动态相关性”特征,引入了随机回收率,建立了具有随机相关性和局部相关性、具有随机回收率结构的厚尾混合Copula模型用于CDO定价,并且通过数值分析比较了模型的优劣性,相关研究成果如下:1.标准Gaussian Copula模型缺乏“厚尾性”和存在“相关性微笑”,导致模型的运算结果不能很好的贴合市场报价。这就启发我们在因子Copula模型中,假定系统因子和非系统因子都服从厚尾的混合G-VG分布。G-VG 分布具有良好的厚尾性和卷积等性质,这使其适用于CDO定价;此外,本文把常相关性扩展为动态相关性,包括随机相关性和局部相关性。从而建立起具有二状态、三状态的随机相关性和局部相关性结构下的混合G-VG Copula定价模型,以体现CDO参考资产池损失的“尖峰厚尾性”和“动态相关性”。 在计算方面,我们运用快速傅里叶变换以及逆变换给出了CDO参考资产池损失的计算方法,并且做了数值模拟,在此基础上就可以得到CDO各分券层的合理 信用利差。2.鉴于快速傅里叶变换以及逆变换的计算效率不高,我们考虑在大样本同质投资组合(LHP)的近似情况下,CDO的定价问题。我们仍旧假设市场系统因

黄金价格影响因素与中期定价模型研究

黄金价格影响因素与中期定价模型研究 国泰君安期货 张智勇 翟旭 一、序言 在黄金价格经历了长达20年的熊市后,黄金价格于2001年启动,开始了一轮长期上涨行情。进入2006年以来,黄金价格波动率大幅增加,2007年11月8日,金价成功突破历史高点850美元/盎司大关,2008年3月17日黄金价格又创出了1034美元/盎司的新高。以2007年8月16日为起点计算,这轮7个月的中级上涨行情的涨幅达到了61%。2008年3月17日后,金价开始了一轮中期调整行情,以前期低点843美元/盎司计,调整幅度达到19%。目前业界对黄金后期的走势众说纷纭,有的观点认为美元走势决定了黄金走势,并认为美元在未来将走强带动黄金继续向下调整;有的观点认为美国的总体经济形势决定了黄金走势,美国房产市场触底将带来美国经济的总体触底,由此黄金将走弱,不一而足。我们认为,当今经济全球化蓬勃发展导致各国宏观经济政策外部性增强,主要工业国前期一系列货币政策导致全球性流动性泛滥,新兴经济体经济增长迅速引致大量资源增量需求导致初级资源产品价格大幅上涨从而引发全球性通胀,国际货币体系格局面临变局,美元作为全球储备资产和结算货币地位受到挑战,在上述宏大的历史变局背景下,不能从简单的数据挖掘的角度进行黄金定价研究,不能简单的从宏观指标和黄金之间的关系的角度来对黄金进行定价研究,也不能单从供需的角度而不考虑美元问题及流动性问题进行黄金定价研究,而应该首先构建一个系统的、有着理论基础、可以充分反映时代背景的模型,并以此为基础对黄金定价问题进行系统深入的研究。 二、文献综述 国内外业界就黄金的定价问题做出了大量研究,可以根据研究方法的不同将他们大致分为三类:第一类研究从黄金和宏观经济变量之间关系的角度出发进行研究。Kennedy(2002)认为黄金在通货膨胀初期的上涨幅度不如其他商品,但在通胀后期,金价的上涨幅度将超过其他商品,远大于通胀率,从而达到保值增值的效果。Ranson&Wainwright(2005)研究发现,黄金价格是通货膨胀和债券市场的先行指标,而且可以充当通货膨胀、短期和长期名义利率的强大预报器,是构建投资组合预防通货膨胀损失的一种很好的资产组合工具。Harmston(1998)还对美国、英国、法国、德国和日本的消费价格指数、批发价格指数与黄金价格指数进行了对比研究,结果发现,从长期看黄金保持了对消费品和中间产品的实际购买力,从而保持了它的价值。虽然在战争等非常时期,物价的上升更快,但在这些时期,黄金的流动性、可接受性和可携带性往往比它与其他商品的交换比率更重要。傅瑜(2004)使用相关分析和简单回归分析的方法验证了黄金价格的决定因素发现黄金价格与美元汇率、证券价格、GDP、石油价格等呈负相关趋势,

fama三因素模型翻译完整版

本文确定了股票和债券收益的五个常见风险因素。股票市场有三个因素:一个总体的市场因素和与公司规模以及账面市值比有关的因素。债券市场有两个因素。与到期和违约风险有关。由于股票市场的因素,股票回报有共同的变化,它们通过债券市场因素的共同变化与债券收益联系在一起。除了低级的企业。债券市场因素反映了债券收益率的共同变化。最重要的。这五个因素似乎解释了股票和债券的平均回报率。 1.介绍 美国普通股平均收益的横截面与夏普比例β(1964)TLNTNER(1965)资产定价模型或BREEDEN(1979)等跨期资产消费定价模型的消费关系不大。例如,ReigANUM(198 1)和布里登、吉本斯和LyZeNBER(1989)。换句话说,在资产定价理论中没有特殊地位的变量显示了可靠的解释平均回报截面的能力。经验确定的平均值变量的列表包括大小(ME,市值),杠杆率,收益/价格(E/P),和账面市值比(公司普通股的账面价值,BE,其市值,ME)。例如班兹(1981)。班达里(1988)。巴(1983)。还有罗森伯格、瑞德和Lanstein FAMA和法国(1992年)研究了股票平均收益的横截面中市场β、规模、E/P、杠杆和账面市值比共同作用。他们发现,单独使用或与其他变量组合共同使用,β(股票收益在市场回报的回归中的斜率)几乎并不显著。单独使用,大小,E/P,杠杆,和书对市场的股本有解释力。在组合中,规模(ME)和账面市值比(BE/ME)似乎吸收杠杆和E的作用;最终结果是,两个经验确定的变量,规模以及账面市值比,很好地解释了在1963年至1990年期间纽约证券交易所、美国证券交易所和纳斯达克股票的平均回报的横截面。本文以三种方式扩展了Fama和法国(1992年A)的资产定价测试。 (a)我们扩展了解释资产的围。在FAMA和法国(1992年A)中考虑的唯一资产是普通股。如果市场一体化,单一模型也应该解释债券收益。这里的测试包括美国政府和公司债券以及股票。 (b)我们还扩展了用于解释回归的变量集。FAMA和法国(1992年A)的规模和账面市值比直接作用于股票。我们将列表扩展到可能在债券收益中起作用的期限结构变量。我们的目标是检查债券回报中重要的变量是否有助于解释股票收益,反之亦然。这种观点认为,如果市场一体化,债券和股票的回报过程可能会有一些重叠。 (c)或许最重要的是,测试资产定价模型的方法是不同的。FAMA和FA(1992年A)使用FAMA和MACBETH(1973)的截面回归:使用回归股票收益的横截面来解释平均的回归。由于规模和账面市值等解释变量对政府和公司债券没有明显的意义,因此很难在横截面回归中增加债券。 本文采用时间序列回归的方法,黑色,延森和斯科尔斯(1972)。股票和债券的月度收益在股票市场组合的回报率上回归,并模拟投资组合的大小、账面市值比(B/ME)和回报的期限结构风险因素。时间序列回归斜率是与大小或BE/ME不同的因素负荷,对债券和股票有明确的风险敏感性。时间序列回归也便于研究两个重要资产定价问题。 (a)我们的一个中心主题是,如果资产价格合理,与平均收益相关的变量,如规模和账面净值权益,必须代表对回报中常见(共享的和不可预测的)风险因素的敏感性。时间序列回归在这个问题上提供了直接的证据。特别是,斜率和R平方值表明,模拟相同大小或账面市值比在股票和债券收益的共享变化没有被其他因素解释。 (b)时间序列回归使用超额收益(月度股票或债券收益减去一个月国库券利率)作为因变量和超额收益或零投资组合的回报作为解释变量。在这样的回归中,一个很好的资产定价模型产生了截然不同于0的截距(默顿(1973))。所估计的截距显示共同因素的不同组合很好的捕获横截面的平均回报数据。此外,基于超额收益回归的截断来判断资产定价模型提出了严格的标准。竞争模型被要求解释一个月的票据利率以及长期债券和股票的回报率。 我们的主要结果很容易总结。对于股票而言,无论是在时间序列回归中投资组合模拟相

多因素的套利定价理论

多因素的套利定价理论 例:两因素模型 因素F1代表预期国内生产总值GDP增长的偏离;因素F2表示预料之外的通货膨胀。每一个因素均具有零期望值,厂商特定因素引起的非预期收益e i也具有零期望值。 首先,引入因素资产组合(factor portfolio)的概念,构造一个充分分散化的投资组合,使其中一个因素为0,另一个为1。因素资产组合可作为多因素证券市场曲线的基准资产组合。 假定两个因素资产组合:资产组合1和资产组合2, E(r1)=10%; E(r2)=12%, 无风险利率r f=4%。这样,资产组合1的风险溢价为10%-4%=6%,资产组合2的风险溢价为12%-4%=8%。 考虑一个任意的充分分散化的资产组合A,第一个因素的贝塔值=0.5,第二个因素的贝塔值为=0.75。因素1产生的风险的补偿部分为;风险因素2产生的风险补偿部分为。多因素套利定价理论认为该资产组合的全部风险溢价必须等于作为对投资者的补偿的每一项系统风险的风险溢价的总和。因此,资产组合的总风险溢价为3%+6%=9%。资产组合的总收益应为13%,即 假设资产组合的期望收益为12%而非13%,投资者可以构造一个具有和资产组合A的Beta值相同的资产组合,这个资产组合要求其组合的第一个因素的权重为0.5,第二个因素的权重为0.75,无风险资产的权重为-0.25。这使该资产组合与资产组合A具有相同的Beta因素:资产组合的第1个因素的权重为0.5,所以,第一个因素的Beta值为0.5,第2个因素的权重为0.75,所以,第二个因素的Beta值为0.75。尽管如此,对比其期望收益为12%的资产组合A,上述资产组合的期望收益为(0.5×10)+(0.75×12)-(0.25×4)=13%。对该资产组合作多头,同时对资产组合A作空头,即可获得套利利润。每一美元的多头或空头头寸的总收益为一个正的、零净投资头寸的一项无风险收益: 把这个观点一般化,由资产组合第一个因素的权重为、资产组合第二个因素的权重为组成的有竞争的资产组合和β值为的国库券的值等于资产组合P的值,其期望收益为

相关文档
最新文档