四轴飞行器螺旋桨

四轴飞行器螺旋桨
四轴飞行器螺旋桨

名称:正反桨1045桨螺旋桨

规格:直径:10英寸螺矩:4.5英寸

颜色:黑、红、蓝、黄、绿、橙

桨直径:25.4CM

中心孔正面孔径:6MM

中心孔反面孔径:9MM(此孔可套入下面桨垫)中心座厚度:6mm

重量:7g(约/单只)

变距环组:x 7(每组2个),桨垫分别是2MM 3MM 4MM 5MM 6MM 7.8MM

描述:适配不同桨夹尺寸的环。适合四旋翼飞行器或多旋

翼飞行器使用。适合于本店的所有多旋翼飞行器。

正反桨的区分:

正桨在桨片上以“L”字母标注,从正桨片正面看以逆时针旋转拨动气流。

反桨在桨片上以“R”字母标注,从反桨片正面看以顺时针旋转拨动气流。

正桨和反桨在四轴上的应用原理:

厂家的四轴多旋翼飞行器是安装4个桨片,假如说都用一个逆时针转动的话,4个桨片都会产生一个逆时针旋转的自旋扭力,使得被载体向右自旋。所以四轴为了抵消这种自旋就用2个正桨2个反桨,2个顺时针2个逆时针的桨片按照循环排列,一对桨片往左扭,一对桨片往右扭来抵消掉桨片转动时发出的自旋扭力,使之均衡。

3S电池下;KV900-1000的电机配1060或1047浆,9寸浆也可

KV1200-1400配9050(9寸浆)至8*6浆

KV1600-1800左右的7寸至6寸浆

KV2200-2800左右的5寸浆

KV3000-3500左右的4530浆

2S电池下;KV1300-1500左右用9050浆

KV1800左右用7060浆

KV2500-3000左右用5X3浆

KV3200-4000左右用4530浆

浆的大小与电流关系:

因为浆相对越大在产生推力的效率就越高

例如:同用3S电池,电流同样是10安(假设)

用KV1000配1060浆与KV3000配4530浆它们分别产生的推力前者是后者的两倍。

机型与电机、浆的关系:

一般来说:浆越大对飞机所产生的反扭力越大,所以浆的大小与机的翼展大小有着一定关系,但浆与电机也有着上面所讲的关系。

例如用1060浆,机的翼展就得要在80CM以上为合适,不然的话机就容易造成反扭;又如用8*6的浆翼展就得在60以上。

再比如:用4530浆做翼展1米以上机行否?是可以,但飞机飞起来会很耗电,因为翼展大飞行的阻力大,而4530浆产生的推力相对情况下小(上面浆的大小与电流关系有讲到)。

所以模友在选择玩什么机型的时候就要注意这4者的关系,尤其是新手选择机型,一定要看这机型翼展大小选择配电机、浆、电池,特别要注意的是,不能用大浆配高KV的电机,否则烧电机还影响了电池,有可能连电调也烧掉。

四轴飞行器运动分析

四轴飞行器运动分析 一、飞行原理 四轴飞行器的结构形如图所示,其中同一对角线上的电机转向应该相同,不同对角线上的电机转向应该相反。这样,当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。 与传统的直升机相比,四旋翼飞行器有下列优势:各个旋翼对机身所施加的反扭矩与旋翼的旋转方向相反,因此当电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,可以平衡旋翼对机身的反扭矩。四旋翼飞行器在空间共有6个自由度(分别沿3个坐标轴作平移和旋转动作),这6个自由度的控制都可以通过调节不同电机的转速来实现。其基本运动状态可分为: (1)垂直运动; (2)俯仰运动; (3)滚转运动; (4)偏航运动; (5)前后运动; (6)侧向运动;

下面将逐个说明飞行器的各种飞行姿态: 垂直运动——在图中,因有两对电机转向相反,可以平衡其对机身的反扭矩,当同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。保证四个旋翼转速同步增加或减小是垂直运动的关键。 俯仰运动——在图(b)中,电机1的转速上升,电机3的转速下降,电机2、电机4的转速保持不变。为了不因为旋翼转速的改变引起四旋翼飞行器整体扭矩及总拉力改变,旋翼1与旋翼3转速该变量的大小应相等。由于旋翼1的升力上升,旋翼3的升力下降,产生的不平衡力矩使机身绕y轴旋转(方向如图所示),同理,当电机1的转速下降,电机3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。

轴飞行器毕业设计论文

毕业论文 基于单片机的四轴飞行器 夏纯 吉林建筑大学 2015年6月

毕业论文 基于单片机的四轴飞行器 学生:夏纯 指导教师:许亮 专业:电子信息工程 所在单位:电气与电子信息工程学院答辩日期: 2015 年6月

目录 摘要.......................................................... I ABSTRACT ...................................................... II 第1章绪论. (1) 论文研究背景及意义 (1) 国内外的发展情况 (2) 本文主要研究内容 (4) 第2章总体方案设计 (5) 总体设计原理 (5) 总体设计方案 (5) 系统硬件电路设计方案 (5) 各部分功能作用 (6) 系统软件设计方案 (7) 第3章系统硬件电路设计 (8) Altium Designer Summer 09简介 (8) 总体电路设计 (8) 遥控器总体电路设计 (8) 飞行器总体电路设计 (10) 各部分电路设计 (10) 电源电路设计 (10) 主控单元电路设计 (12)

无线通信模块电路设计 (13) 惯性测量单元电路设计 (16) 电机驱动电路设计 (18) 串口调试电路设计 (19) PCB设计 (21) PCB设计技巧规则 (21) PCB设计步骤 (22)

PCB外形设计 (23) 实物介绍 (25) 第4章系统软件设计 (27) Keil 简介 (27) Keil MDK概述 (27) Keil MDK功能特点 (27) 软件设计框图 (28) 软件调试仿真 (29) 飞控软件设计 (30) MPU6050数据读取 (30) 姿态计算IMU (32) PID电机控制 (32) 结论 (36) 致谢 (38) 参考文献 (39) 附录1 遥控器主程序源代码 (40) 附录2 飞行器主程序源代码 (45) 附录3 遥控器原理图 (50) 附录4 飞行器原理图 (51)

四轴飞行控制原理

四轴(1)-飞行原理 总算能抽出时间写下四轴文章,算算接触四轴也两年多了,从当初的模仿到现在的自主创作经历了不少收获了也不少。朋友们也经常问我四轴怎么入门,今天就简单写下四轴入门的基本知识。尽量避开专业术语和数学公式。 1、首先先了解下四轴的飞行原理。 四轴的一般结构都是十字架型,当然也有其他奇葩结构,比如工字型。两种的力学模型稍微有些不一样,建议先从常规结构入手(其实是其他结构我不懂)。 常规十字型结构其他结构 常规结构的力学模型如图。 力学模型 对四轴进行受力分析,其受重力、螺旋桨的升力,螺旋桨旋转给机体的反扭矩力。反扭矩影响主要是使机体自旋,可以想象一下直升机没有尾桨的情况。螺旋桨旋转时产生的力很复杂,

这里将其简化成只受一个升力和反扭矩力。其它力暂时先不管,对于目前建模精度还不需要分析其他力,顶多在需要时将其他力设为干扰就可以了。如需对螺旋桨受力进行详细研究可以看些空气动力学的书,推荐两本, 空气螺旋桨理论及其应用(刘沛清,北航出版社) 空气动力学基础上下册(徐华舫,国防科技大学) 网易公开课:这个比麻省理工的那个飞行器构造更对口一些。 荷兰代尔夫特理工大学公开课:空气动力学概论 以上这些我是没看下去,太难太多了,如想刨根问底可以看看。 解释下反扭矩的产生: 电机带动螺旋桨旋转,比如使螺旋桨顺时针旋转,那么电机就要给螺旋桨一个顺时针方向的扭矩(数学上扭矩的方向不是这样定义的,可以根据右手定则来确定方向)。根据作用力与反作用力关系,螺旋桨必然会给电机一个反扭矩。 在转速恒定,真空,无能量损耗时,螺旋桨不需要外力也能保持恒定转速,这样也就不存在扭矩了,当然没有空气也飞不起来了。反扭矩的大小主要与介质密度有关,同样转速在水中的反扭矩肯定比空气中大。 因为存在反扭矩,所以四轴设计成正反桨模式,两个正桨顺时针旋转,两个反桨逆时针旋转,对角桨类型一样,产生的反扭矩刚好相互抵消。并且还能保持升力向上。六轴、八轴…类似。 我们控制四轴就是通过控制4个升力和4个反扭矩来控制四轴姿态。 如力学模型图,如需向X轴正方向前进,只需增加桨3的转速,减少桨1的转速,1、3桨的反扭矩方向是一样的,一个加一个减总体上来说反扭矩没变。此时飞机已经有向X轴方向的分力,即可前行。 如需向X轴偏Y轴45°飞行,那么增加桨2、3的转速,减少桨1、4的转速,即可实现。 如果将X正作为正前方,那么就是”十”模式,如果将X轴偏Y45°作为正前方向,那就是”×”模式。理论上这两种都可以飞行,”十”模式稍微比”×”模式好计算,但是”十”模式不如”×”模式灵敏。 四轴如需向任意方向飞行只需改变电机的转速,至于电机转速改变的量是多少,增量之比是多少就需要算法了。对于遥控航模,不需要知道具体到度级别的方向精度,飞行时手动实时调节方向即可。 四轴除了能前后左右上下飞行,还能自旋,自旋靠的就是反扭矩,如需顺时针旋转,只需增加桨1、3转速,减少2、4转速,注意不能只增加桨1、3而不减少2、4,这样会造成总体升力增加,飞机会向上飞的。 理想情况下,四轴结构完全对称,电机转速一样,飞机就可以直上直下飞行。但事实和理想还是有差距的,不存在完全对称的结构,也没有完全一样的电机螺旋桨。所以需要飞控模块进行实时转速调节,这样才能飞起来,不像直升机,螺旋桨加速就能飞。 2、分析完飞行原理,接下来分析四轴飞行器系统的主要部件。

四轴飞行器飞行原理

四轴飞行器飞行原理 四旋翼飞行器结构 形式如图所示,电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。 与传统的直升机相比,四旋翼飞行器有下列优势:各个旋翼对机身所施加的反扭矩与旋翼的旋转方向相反,因此当电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,可以平衡旋翼对机身的反扭矩。四旋翼飞行器在空间共有6个自由度(分别沿3个坐标轴作平移和旋转动作),这6个自由度的控制都可以通过调节不同电机的转速来实现。 其基本运动状态分别是: (1)垂直运动; (2)俯仰运动; (3)滚转运动; (4)偏航运动; (5)前后运动; (6)侧向运动; 在控制飞行器飞行时,有如下技术难点: 首先,在飞行过程中它不仅受到各种物理效应的作用,还很容易受到气流等外部环境的干扰,很难获得其准确的性能参数。

其次,微型四旋翼无人飞行器是一个具有六个自由度,而只有四个控制输入的欠驱动系统。它具有多变量、非线性、强耦合和干扰敏感的特性,使得飞行控制系统的设计变得非常困难。 再次,利用陀螺进行物体姿态检测需要进行累计误差的消除,怎样建立误差模型和通过组合导航修正累积误差是一个工程难题。这三个问题解决成功与否,是实现微型四旋翼无人飞行器自主飞行控制的关键,具有非常重要的研究价值。 下面将逐个说明飞行器的各种飞行姿态: 垂直运动——在图中,因有两对电机转向相反,可以平衡其对机身的反扭矩,当同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。保证四个旋翼转速同步增加或减小是垂直运动的关键。 俯仰运动——在图(b)中,电机1的转速上升,电机3的转速下降,电机2、电机4的转速保持不变。为了不因为旋翼转速的改变引起四旋翼飞行器整体扭矩及总拉力改变,旋翼1与旋翼3转速该变量的大小应相等。由于旋翼1的升力上升,旋翼3的升力下降,产生的不平衡力矩使机身绕y轴旋转(方向如图所示),同理,当电机1的转速下降,电机3的转速上升,机身便绕y轴向另一个方向旋

四旋翼飞行器 设计报告

大学生电子设计竞赛 设计报告 摘要:本设计实现基于STM32开发板的十字形四旋翼飞行器,四旋翼由主控制板、陀螺仪、电机模块、超声波测距、电源和投弹打靶模块等六部分组成。其中,控制核心STM32负责飞行器姿态数据接收和飞行姿态控制;陀螺仪采用MPU6050模块,该模块经过卡尔曼滤波处理采集的数据,输出数据,用PID控制算法对数据进行处理,同时,解算出相应电机需要的的PWM增减量,及时调整电机转速,调整飞行姿态,使飞行器的飞行的更加稳定。电机模块通过电调控制无刷直流电机,超声波传感器进行测距,起飞后悬停在一定高度,打靶后降落。 关键词:四旋翼;PID控制;陀螺仪,姿态角,电机控制

2

目录 1系统方案 (1) 1.1控制系统选择方案 (1) 1.2飞行姿态控制方案论证 (1) 1.3角度测量模块的方案论证 (2) 1.4高度测量模块方案论证.............................................. 错误!未定义书签。2理论分析与计算 (2) 2.1控制模块 .................................................................... 错误!未定义书签。 2.2机翼电机 .................................................................... 错误!未定义书签。 2.3飞行姿态控制单元 (3) 3电路与程序设计 (4) 3.1系统总体设计思路 (4) 3.2主要元器件清单......................................................... 错误!未定义书签。 3.3系统框图 .................................................................... 错误!未定义书签。 3.3.1系统硬件框图 ..................................................... 错误!未定义书签。 3.3.2系统软件框图 ..................................................... 错误!未定义书签。4测试方案与测试结果.. (5) 5结论 (6) 3

四旋翼飞行器结构和原理

四旋翼飞行器结构和原理 1.结构形式 旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。结构形式如图1.1所示。 .工作原理 四旋翼飞行器通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。四旋翼飞行器是一种六自由度的垂直升降机,但只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。

四旋翼飞行器的电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。

在上图中,电机1和电机3作逆时针旋转,电机2和电机4作顺时针旋转,规定沿x轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表示此电机转速提高,在下方表示此电机转速下降。 (1)垂直运动:同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。 (2)俯仰运动:在图(b)中,电机1的转速上升,电机3 的转速下降(改变量大小应相等),电机2、电机4 的转速保持不变。由于旋翼1 的升力上升,旋翼3 的升力下降,产生的不平衡力矩使机身绕y 轴旋转,同理,当电机1 的转速下降,电机3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。 (3)滚转运动:与图b 的原理相同,在图c 中,改变电机2和电机4的转速,保持电机1和电机3的转速不变,则可使机身绕x 轴旋转(正向和反向),实现飞行器的滚转运动。 (4)偏航运动:旋翼转动过程中由于空气阻力作用会形成与转动方向相反的反扭矩,为了克服反扭矩影响,可使四个旋翼中的两个正转,两个反转,且对角线上的各个旋翼转动方向相同。反扭矩的大小与旋翼转速有关,当四个电机转速相同时,四个旋翼产生的反扭矩相互平衡,四旋翼飞行器不发生转动;当四个电机转速不完全相同时,不平衡的反扭矩会引起四旋翼飞行器转动。在图d中,当电机1和电机3 的转速上升,电机2 和电机4 的转速下降时,旋翼1和旋翼3对机身的反扭矩大于旋翼2和旋翼4对机身的反扭矩,机身便在

四旋翼飞行器设计

摘要 本设计采用瑞萨R5F100LEA单片机作为主控制器。超声波传感器实时发送飞行高度数据给主控系统,主控制器通过判断、分析、处理产生控制信号进而控制各个电机,使其在不同的飞行高度具有不同的速度,保证了飞行器在某一高度范围内飞行;主控制器读取MPU6050陀螺仪的数据,通过对采集数据的分析,使飞行器做出相应的姿态调整,来保持飞行器能够平稳飞行;激光传感器能够对白色场地上的黑线进行识别,达到循迹的目的。本设计通过对飞行控制系统的总体框架设计,实现了飞行控制系统的硬件设计和软件设计,并对设计中的关键技术问题进行了研究,最终实现了四旋翼飞行器的一键启动自主飞行控制。 关键词:R5F100LEA 传感器姿态控制四旋翼飞行器

1. 四旋翼自主飞行器简介 1.1 结构形式 四旋翼飞行器采用四个旋翼作为飞行的直接动力源,旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,旋翼1和旋翼3逆时针旋转,旋翼2和旋翼4顺时针旋转,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。四旋翼飞行器的结构形式如图 1.1 所示。 图1.1 四旋翼飞行器结构形式 1.2 工作原理 传统直升机是通过控制舵机来改变螺旋桨的桨距角,从而控制直升机的姿态和位置。四旋翼飞行器与此不同,是通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。由于飞行器是通过改变旋翼转速实现升力变化,这样会导致其动力部稳定,所以需要一种能够长期保稳定的控制方法。四旋翼飞行器是一种六自由度的垂直升降机,因此非常适合静态和准静态条件下飞行。但是四旋翼飞行器只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。

轴飞行器作品说明书

四轴飞行器 作品说明书 摘要 四轴飞行器在各个领域应用广泛。相比其他类型的飞行器,四轴飞行器硬件结构简单紧凑,而软件复杂。本文介绍四轴飞行器的一个实现方案,软件算法,包括加速度计校正、姿态计算和姿态控制三部分。校正加速度计采用最小二乘法。计算姿态采用姿态插值法、需要对比这三种方法然后选出一种来应用。控制姿态采用欧拉角控制或四元数控制。 关键词:四轴飞行器;姿态;控制

目录 1.引言 (1) 2.飞行器的构成? (1) .硬件构成..............................................1? 机械构成 (1) 电气构成 (3) .软件构成 (3) 上位机 (3) 下位机........... . (4) 3.飞行原理........... ................................ (4) . 坐标系统 (4) .姿态的表示 (5) .动力学原理 (5) 4.姿态测量........... ................................ (6) .传感器校正 (6) 加速度计和电子罗盘 (6) 5.姿态控制 (6) .欧拉角控制 (6) .四元数控制 (7) 6.姿态计算 (7) 7.总结 (8) 参考文献 (9)

四轴飞行器最开始是由军方研发的一种新式飞行器。随着MEMS?传感器、单片机、电机和电池技术的发展和普及,四轴飞行器成为航模界的新锐力量。到今天,四轴飞行器已经应用到各个领域,如军事打击、公安追捕、灾害搜救、农林业调查、输电线巡查、广告宣传航拍、航模玩具等。 目前应用广泛的飞行器有:固定翼飞行器和单轴的直升机。与固定翼飞行器相比,四轴飞行器机动性好,动作灵活,可以垂直起飞降落和悬停,缺点是续航时间短得多、飞行速度不快;而与单轴直升机比,四轴飞行器的机械简单,无需尾桨抵消反力矩,成本低?。 本文就小型电动四轴飞行器,介绍四轴飞行器的一种实现方案,讲解四轴飞行器的原理和用到的算法,并对几种姿态算法进行比较。 2.飞行器的构成 四轴飞行器的实现可以分为硬件和软件两部分。比起其他类型的飞行器,四轴飞行器的硬件比较简单,而把系统的复杂性转移到软件上,所以本文的主要内容是软件的实现。? .硬件构成? 飞行器由机架、电机、螺旋桨和控制电路构成。 机械构成? 机架呈十字状,是固定其他部件的平台,本项目采用的是碳纤维材料的机架。电机采用无刷直流电机,固定在机架的四个端点上,而螺旋桨固定在电机转子上,迎风面垂直向下。螺旋桨按旋转方向分正桨和反桨,从迎风面看逆时针转的为正桨,四个桨的中心连成的正方形,正桨反桨交错安装。 CA D设计机架如图: 整体如图2-1: 电气构成 电气部分包括:控制电路板、电子调速器、电池,和一些外接的通讯、传感器模块。控制电路板是电气部分的核心,上面包含MCU、陀螺仪、加速度计、电子罗盘、气压计等芯片,负责计算姿态、处理通信命令和输出控制信号到电子调速器。电子调速器简称电调,用于控制无刷直流电机。 电气连接如图2-2所示。 .软件构成

四轴飞行器:让PCB板飞!

我们在制作一个非常袖珍的四轴飞行器,就用PCB作为承力结构。第一个版本被命名为疯狂直升机。 它的主要特点有: ?STM32 Cortex-M3 CPU ?3轴加速度计 ?1轴/2轴陀螺仪 ?Nordic 2.4GHz 射频通信芯片 ?电动机,螺旋桨和银辉(Silverlit)X翼模型飞机的电池 这架直升机可以从电脑上通过USB无线适配器遥控。我们制作了三架样品(每个成员各一架),并完成了大多数的固件程序。 为了达到稳定飞行的目的,还需要解决一些控制上的问题,以及完成电脑上的控制程序模块。更多的信息和实际飞行视频会在稍后公布:) 这架直升机是通过PC机上运行的Python程序控制的,我们实际上用一个游戏机的蓝牙手柄来操纵它。 疯狂直升机四轴飞行器详述 像承诺过的那样,我们要在这里公布疯狂直升机(也是我们第一架四轴飞行器)的更多信息。该系统的主要架构如下:

疯狂直升机的高层次系统图。 直升机本身是围绕CPU组织起来的。CPU的任务是读取物理传感器(陀螺仪和加速度计)的测量结果,给出控制信号控制电机,让直升机保持稳定。通过一个控制反馈回路,CPU每秒能够对电机发送250次调节转速的指令。无线通信的带宽需求很低,仅仅需要发送操作命令和接受遥测数据。CPU上运行的程序可以通过无线通信更新。 控制和遥测程序在电脑上运行,控制程序从手柄读取输入,然后向直升机发送命令。我们也有调节直升机上控制参数的程序模块,并且会记录下传感器的测量结果,方便调整控制回路。 所有这些开发工作在Windows或linux系统上完成。事实上有三个人同时在这个项目上工作,两个人在Linux上工作,剩下一个人主要使用Windows。利用自由/开源软件(FLOSS,Free/Libre and Open Source Software)许可对提高工作效率非常有帮助。我们主要使用GCC 编译器编译直升机程序,GNU(GNU's Not Unix,一个包含了递归的缩写!GNU Linux工程是为与可复制﹑修改﹑和重新分配的源代码一起的类Unix操作系统的发展而建立的。)建立我们的工程,Mercurial(一个轻量级的分布式版本控制系统)管理我们的源代码,与直升机之间的通讯采用python/pyusb(一个python上的USB通讯软件库)。所有这些软件都能在linux和windows系统间来回无缝切换,使这个项目的管理变得容易许多。 电动机之间的距离(X轴和Y轴方向)大约有8cm,整个飞行器的重量只有20g。 电路板顶面的细节

采用STM32设计的四轴飞行器飞控系统

1、引言 四轴飞行器是一种结构紧凑、飞行方式独特的垂直起降式飞行器,与普通的飞行器相比具有结构简单,故障率低和单位体积能够产生更大升力等优点,在军事和民用多个领域都有广阔的应用前景,非常适合在狭小空间内执行任务。因此四旋翼飞行器具有广阔的应用前景,吸引了众多科研人员,成为国内外新的研究热点。 本设计主要通过利用惯性测量单元(IMU)姿态获取技术、PID电机控制算法、2.4G 无线遥控通信技术和高速空心杯直流电机驱动技术来实现简易的四轴方案。整个系统的设计包括飞控部分和遥控部分,飞控部分采用机架和控制核心部分一体设计增加系统稳定性,遥控部分采用模拟摇杆操作输入使操作体验极佳,两部分之间的通信采用2.4G无线模块保证数据稳定传输。飞行控制板采用高速单片机STM32作为处理器,采用含有三轴陀螺仪、三轴加速度计的运动传感器MPU6050作为惯性测量单元,通过2.4G无线模块和遥控板进行通信,最终根据PID控制算法通过PWM方式驱动空心杯电机来达到遥控目标。 2、系统总体设计 系统硬件的设计主要分要遥控板和飞控板两个部分,遥控板采用常见羊角把游戏手柄的外形设计,控制输入采用四向摇杆,无线数据传输采用2.4G无线模块。飞控板采用控制处理核心和机架一体的设计即处理器和电机都集成在同一个电路板上,采用常规尺寸能够采用普通玩具的配件。系统软件的设计同样包括遥控板和飞控板两部分的工作,遥控板软件的设计主要包括ADC的采集和数据的无线发送。飞控板的软件的设计主要包括无线数据的接收,自身姿态的实时结算,电机PID增量的计算和电机的驱动。整个四轴飞行器系统包括人员操作遥控端和飞行器控制端,遥控端主控制器STM32通过ADC外设对摇杆数据进行采集,把采集到的数据通过2.4G无线通信模块发送至飞控端。飞控板的主要工作就是通过无线模块进行控制信号的接收,并且利用惯性测量单元获得实时系统加速度和角速度原始数据,并且最终解算出当前的系统姿态,然后根据遥控板发送的目标姿态和当姿态差计算出PID电机增量,然后通过PWM驱动电机进行系统调整来实现飞行器的稳定飞行。系统的总体设计框图如图1所示。 图1 系统总体设计框图

四旋翼飞行器论文(原理图 程序)..

四旋翼自主飞行器(B题) 摘要 系统以R5F100LE作为四旋翼自主飞行器控制的核心,由电源模块、电机调速控制模块、传感器检测模块、飞行器控制模块等构成。飞行控制模块包括角度传感器、陀螺仪,传感器检测模块包括红外障碍传感器、超声波测距模块、TLS1401-LF模块,瑞萨MCU综合飞行器模块和传感器检测模块的信息,通过控制4个直流无刷电机转速来实现飞行器的欠驱动系统飞行。在动力学模型的基础上,将小型四旋翼飞行器实时控制算法分为两个PID控制回路,即位置控制回路和姿态控制回路。测试结果表明系统可通过各个模块的配合实现对电机的精确控制,具有平均速度快、定位误差小、运行较为稳定等特点。

目录 1 系统方案论证与控制方案的选择............................................................................................. - 2 - 1.1 地面黑线检测传感器............................................................................................................. - 2 - 1.2 电机的选择与论证................................................................................................................. - 2 - 1.3 电机驱动方案的选择与论证................................................................................................. - 3 - 2 四旋翼自主飞行器控制算法设计............................................................................................. - 3 - 2.1 四旋翼飞行器动力学模型..................................................................................................... - 3 - 2.2 PID控制算法结构分析.......................................................................................................... - 3 - 3 硬件电路设计与实现................................................................................................................. - 5 - 3.1飞行控制电路设计.................................................................................................................. - 5 - 3.2 电源模块................................................................................................................................. - 6 - 3.3 电机驱动模块......................................................................................................................... - 6 - 3.4 传感器检测模块..................................................................................................................... - 7 - 4 系统的程序设计......................................................................................................................... - 8 - 5 测试与结果分析......................................................................................................................... - 9 - 5.1 测试设备................................................................................................................................. - 9 - 5.2 测试结果................................................................................................................................. - 9 - 6 总结........................................................................................................................................... - 10 - 附录A 部分程序清单.................................................................................................................. - 11 -

四旋翼飞行器建模与仿真Matlab

四轴飞行器的建模与仿真 摘要 四旋翼飞行器是一种能够垂直起降的多旋翼飞行器,它非常适合近地侦察、监视的任务,具有广泛的军事和民事应用前景。本文根据对四旋翼飞行器的机架结构和动力学特性做详尽的分析和研究,在此基础上建立四旋翼飞行器的动力学模型。四旋翼飞行器有各种的运行状态,比如:爬升、下降、悬停、滚转运动、俯仰运动、偏航运动等。本文采用动力学模型来描述四旋翼飞行器的飞行姿态。在上述研究和分析的基础上,进行飞行器的建模。动力学建模是通过对飞行器的飞行原理和各种运动状态下的受力关系以及参考牛顿-欧拉模型建立的仿真模型,模型建立后在Matlab/simulink软件中进行仿真。 关键字:四旋翼飞行器,动力学模型,Matlab/simulink Modeling and Simulating for a quad-rotor aircraft ABSTRACT The quad-rotor is a VTOL multi-rotor aircraft. It is very fit for the kind of reconnaissance mission and monitoring task of near-Earth, so it can be used in a wide range of military and civilian applications. In the dissertation, the detailed analysis and research on the rack structure and dynamic characteristics of the laboratory four-rotor aircraft is showed in the dissertation. The dynamic model of the four-rotor aircraft areestablished. It also studies on the force in the four-rotor aircraft flight principles and course of the campaign to make the research and analysis. The four-rotor aircraft has many operating status, such as climbing, downing, hovering and rolling movement, pitching movement and yawing movement. The dynamic model is used to describe the four-rotor aircraft in flight in the dissertation. On the basis of the above analysis, modeling of the aircraft can be made. Dynamics modeling is to build models under the principles of flight of the aircraft and a variety of state of motion, and Newton - Euler model with reference to the four-rotor aircraft.Then the simulation is done in the software of Matlab/simulink. Keywords: Quad-rotor,The dynamic mode, Matlab/simulink

四旋翼无人飞行器设计学习笔记

1、互补滤波算法 互补滤波器作为一种频域滤波器,常用于融合来自不同传感器测量得到的数据。一般地,互补滤波器包含至少两种频率特性互补的输入信号。例如,对于陀螺仪和加速度计解算姿态这一双输入系统,两个输入量都能分别对姿态角进行解算,其中加速度计输入量包含高频,应通过低通滤波器来滤除;陀螺仪则包含低频噪声(积分漂移),应采用高频滤波器滤队。两者的频率特性互补,可用互补滤波思想进行姿态解算,最终输出较准确信号。 2、四元数表示姿态角 运用互补滤波与卡尔曼滤波思想进行姿态整合的过程归根结底都是利用加速度计解算出的姿态角去修正陀螺仪积分的漂移误差. 这两种方法在姿态融合过程中姿态角的表示形式都是欧拉角表示.但是用欧拉角进行姿态解算在大角度计算时会出现万向节锁(角度为90度时加速度计进行姿态解算的反三解函数无解),为了避免该问题,可采用四元数来解算姿态. 四元数的优点: ·四元数不会存在欧拉角的万向节死锁的问题 ·四元数由4个数组成2个四元数之间更容易插值 ·对四元数规范化正交化计算更加容易 3、MPU6050 DMP内部四元数解算功能 运动控制传感器MPU6050提供了DMP内部四元数解算功能,可以直接输出四元数数据。它除了提供三轴陀螺仪和三轴加速度计传感器的16位ADC信号采集功能之外,还集成了数字低通滤波器和数字运动处理DMP,可以直接输出经低通滤波处理和四元数姿态解算后的四元数数据。将该四元数转换为欧拉角,可以得到准确的俯仰角和橫滚角。 4、PID 控制

由自动控制原理可知,采用角速度反馈闭环控制可有效增加系统稳定性,因此,在进行状态角控制之前需设计姿态角速度增稳内环控制。同时,系统最终控制量为空间位置,因此需要增加外环位置控制。由此得到四轴飞行器俯仰角方向整体控制结构: 4.1、PID 控制 比例控制指的是使用一个比例系数对输入量与期望量的差进行放大或缩小。不过单纯的比例控制会产生静态误差(误差不会收敛于0),所以这时要加入积分控制,对误差进行积分再乘以积分系数,误差累计越大积分控制的比重越大。其优点是可以消除静态误差;其缺点是不稳定,会使系统产生振荡。微分控制是预测系统的变化趋势。当输入的数据缓慢变化时微分项不起作用,当产生一个阶跃响应瞬间发生变化时,微分项发挥作用,做“超前控制”。 4.2串级PID 当将两个PID串联起来,用第一个PID的输出量作为第二个PID的输入量,第一个PID的期望量为期望达到的角度,第二个PID的期望量为此时该轴的角速度,角度环为1级PID为外环,角速度环为2级PID为内环 串级PID较单级PID的优点是,作为内环的角速度由陀螺仪采集数据输出,采集值一般不存在受外界影响的情况,抗干扰能力强,并且角速度变化灵敏,当受外界干扰时,回复迅速,这样使四轴在飞行时抗干扰能力强,飞行更稳定. 4.3PID调试过程详解--P64

四轴飞行器设计

编号: 项目结题报告 项目名称: 项目负责人:学号: 联系电话:电子邮箱: 院系及专业: 指导教师:职称: 联系电话:电子邮箱: 院系及专业: 填表日期:年月日

二、指导教师意见 三、项目专家组意见 四、项目成果

四轴飞行器设计 摘要 四轴飞行器具备垂直起降飞行器的所有优点,又具备无人机的造价低、可重复性强以及事故代价低等特点,具有广阔的应用前景。可应用于军事上的地面战场侦察和监视,获取不易获取的情报。能够执行禁飞区巡逻和近距离空中支持等特殊任务,可应对现代电子战、实现通信中继等现代战争模式。在民用方面可用于灾后搜救、城市交通巡逻与目标跟踪等诸多方面。工业上可以用在安全巡检,大型化工现场、高压输电线、水坝、大桥和地震后山区等人工不容易到达空间进行安全任务检查与搜救工作,能够对执行区域进行航拍和成图等。因此,四轴飞行器的研究意义重大。 本文主要讨论四轴飞行器的设计实现。首先从历史的角度介绍小型四轴飞行器的发展以及研究成果,引入现代四轴飞行器的研究,以及运用现代控制理论进行的研究方法和所取得成果。其次给出本项目所设计的四轴飞行器样机模型与飞行控制器电路设计。着重从机械结构与飞行控制器硬件电路设计方面论述四轴飞行器的样机设计。文中详细分析了机械结构设计中的选材以及元器件选型,实现了一个切实可用,能够满足应用研究的四轴飞行器样机模型。一个稳定可用的样机模型是实现四轴飞行器的基础。之后分析四轴飞行器的飞行控制原理,分析其飞行姿态原理。对控制器中需要用到姿态角求解部分进行了详细论述。姿态角的求解在整个四轴飞行器设计中也是核心内容之一。通过软件设计实现飞行控制器方案。最后对飞行器各性能指标进行考察,进行实地飞行、调试优化飞行器软件控制器设计 关键词:四轴飞行器,飞行控制器,无人机。 一.课题背景 1.1背景:四轴飞行器,一个陌生新奇的东西慢慢地走入我们小组的生活。四轴飞行器现在是科学家想要完成突破的重要课题,但是不免遇到了很多实用性的技术难题,研究与实践应用之间还是有一定的距离的。但普通的四轴飞行器在现在已经不是我们触不可及的高精尖的科技,它现在已经成为大学生进行科技创新的一个训练,成为我们提高自身科技技术水平的桥梁;对于研究人员,他们在微电子领域不断地提高四轴飞行器的质量,增强它的功能;而很多电子爱好者也已经能够熟练地掌控四轴飞行器。 虽然现在研发的四轴飞行器有尺寸较小,运动灵活等优势,但是四轴飞行器也遇到了一些技术上的难题如载重量小,续航时间较短,产生恼人的噪音等等。对四轴飞行器的设计与优化,需要空气动力学与自动控制等方面的人才,而现在我们的小组没有对这些方面的涉猎,但我们可以在网络上获取大量的相关资源与技术支持,虽然我们有时找不到思路,但是我们并不是在未知中探索。慢慢地我们的困难会一点点被克服。四轴飞行器已经作为新兴的遥控航拍机进入了人们的生活,与其他的电子产品相同,它会逐渐开始普及,变得越来越先进。解决现在遇到的种种问题,并实现现在人们提出的假想。 当然,四轴飞行器在商业,农业,军事,消防,工业方面的前景是非常广阔的,例如商业上,技术人员可以通过增大其载重降低其噪音来使用四轴飞行器发放快递,传递信息;农业上可以进行田地的勘测,而装有太阳能电池板的四轴飞行器可以节能的进行种子的播撒;对于军事,四轴飞行器有着可怕的前景,四轴飞行器可以制作成与小型鸟类一样的大小,并使用透明机体,这样就可以达到一系列军事目的,如果在四轴飞行器携带炸弹或更恐怖的武器,后果不堪设想;关于消防,四轴飞行器由于动作灵活可已进行快速地勘测与救援;而在工业方面四轴飞行器可以在大型化工厂,高压输电线,地震后山区等人工不易到达的区域进

四轴飞行器毕业设计论文

四轴飞行器毕业设计论文 This model paper was revised by the Standardization Office on December 10, 2020

毕业论文 基于单片机的四轴飞行器 夏纯 吉林建筑大学 2015年6月

毕业论文 基于单片机的四轴飞行器 学生:夏纯 指导教师:许亮 专业:电子信息工程 所在单位:电气与电子信息工程学院答辩日期: 2015 年6月

目录 摘要.......................................................... I ABSTRACT ...................................................... II 第1章绪论. (1) 论文研究背景及意义 (1) 国内外的发展情况 (2) 本文主要研究内容 (4) 第2章总体方案设计 (5) 总体设计原理 (5) 总体设计方案 (5) 系统硬件电路设计方案 (5) 各部分功能作用 (6) 系统软件设计方案 (7) 第3章系统硬件电路设计 (8) Altium Designer Summer 09简介 (8) 总体电路设计 (8) 遥控器总体电路设计 (8) 飞行器总体电路设计 (10) 各部分电路设计 (10) 电源电路设计 (10) 主控单元电路设计 (12)

无线通信模块电路设计 (13) 惯性测量单元电路设计 (16) 电机驱动电路设计 (18) 串口调试电路设计 (19) PCB设计 (21) PCB设计技巧规则 (21) PCB设计步骤 (22)

四轴飞行器结题报告

学校名称: 队长姓名: 队员姓名: 指导教师姓名:2013年9月6日

摘要 本次比赛我们需要很好地控制飞行器,让它自主完成比赛应该完成的任务。 本文的工作主要针对微型四旋翼无人飞行器控制系统的设计与实现问题展开。首先制作微型四旋翼无人飞行器实验平台,其次设计姿态检测算法,然后建立数学模型并设计姿态控制器和位置控制器,最后通过实验对本文设计的姿态控制器进行验证。设计机型设计全部由小组成员设计并制作,部分元件从网上购得,运用RL78/G13作为主控芯片,自行设计算法对飞行器进行,升降,俯仰,横滚,偏航等姿态控制。并可以自行起飞实现无人控制的自主四轴飞行器。 关键字:四旋翼无人飞行器、姿态控制、位置控制

目录 第1章设计任务.................................................................................... 错误!未定义书签。 1.1 研究背景与目的........................................................................ 错误!未定义书签。 1.2 .................................................................................................... 错误!未定义书签。 1.3...................................................................................................... 错误!未定义书签。第2章方案论证.................................................................................... 错误!未定义书签。 2.1...................................................................................................... 错误!未定义书签。 .................................................................................................... 错误!未定义书签。 .................................................................................................... 错误!未定义书签。 2.2 ........................................................................................................... 错误!未定义书签。第3章理论分析与计算........................................................................ 错误!未定义书签。 ........................................................................................................... 错误!未定义书签。第4章测试结果与误差分析................................................................ 错误!未定义书签。 4.1...................................................................................................... 错误!未定义书签。 4.2...................................................................................................... 错误!未定义书签。 4.3...................................................................................................... 错误!未定义书签。 4.4 .................................................................................................... 错误!未定义书签。 ........................................................................................................... 错误!未定义书签。第5章结论心得体会............................................................................ 错误!未定义书签。 5.1 .................................................................................................................. 错误!未定义书签。.................................................................................................................. 错误!未定义书签。 2设计任务: 基本要求 (1)四旋翼自主飞行器(下简称飞行器摆放在图1所示的A区,一键式

相关文档
最新文档