利用aspen-plus进行物性参数的估算

利用aspen-plus进行物性参数的估算
利用aspen-plus进行物性参数的估算

1 纯组分物性常数的估算

1.1、乙基2-乙氧基乙醇物性的输入

由于Aspen Plus 软件自带的物性数据库中很难查乙基2-乙氧基乙醇的物性参数, 使模拟分离、确定工艺条件的过程中遇到困难, 所以采用物性估算的功能对乙基2-乙氧基乙醇计算。

已知:

最简式:(C6H14O3)

分子式:(CH3-CH2-O-CH2-CH2-O-CH2-CH2-OH)

沸点:195℃

1.2、具体模拟计算过程

乙基2-乙氧基乙醇为非库组分,其临界温度、临界压力、临界体积和临界压缩因子及理想状态的标准吉布斯自由能、标准吉生成热、蒸汽压、偏心因子等一些参数都很难查询到,根据的已知标准沸点TB,可以使用aspen plus软件的Estimation Input Pure Component(估计输入纯组分) 对纯组分物性的这些参数进行估计。

为估计纯组分物性参数,则需

1. 在 Data (数据)菜单中选择Properties(性质)

2. 在 Data Browser Menu(数据浏览菜单)左屏选择Estimation(估计)然后选Input(输入)

3. 在 Setup(设置)表中选择Estimation(估计)选项,Identifying Parameters to be Estimated(识别估计参数)

4. 单击 Pure Component(纯组分)页

5. 在 Pure Component 页中选择要用Parameter(参数)列表框估计的参数

6. 在 Component(组分)列表框中选择要估计所选物性的组分如果要为多组分估计

选择物性可单独选择附加组分或选择All(所有)估计所有组分的物性

7. 在每个组分的 Method(方法)列表框中选择要使用的估计方法可以规定一个以上的方法。

具体操作过程如下:

1、打开一个新的运行,点击Date/Setup

2、在Setup/Specifications-Global页上改变Run Type位property Estimation

3、在Components-specifications Selection页上输入乙基2-乙氧基乙醇组分,将其Component ID为DIMER

4、在Properties/Molecular Structure -Object Manager上,选择DIMER,然后点Edit

5、在Gageneral页上输入乙基2-乙氧基乙醇的分子结构

6、转到Properties/Parameters/Pure Component Object Manager上,点击“NEW”

然后创建一个标量(Scalar)参数TB

7、输入DIMER的标准沸点(TB)195℃

8、然后转到Properties/Estimation/Set up页上,选择Estimation all missing Parameters

9、运行该估算,并检查其结果。估算结果自动写入到窗体文件中

其模拟结果如下:

Propertyname Parameter Estimatedvalue Units Method

MV 134、1756 FORMULA MOLECULAR WEIGHT

分子量

TC627.594188K JOBACK CRITICAL TEMPERATURE

临界温度

PC3318184.71N/SQM JOBACK CRITICAL PRESSURE

临界压力

VC0.4265CUM/KMOL JOBACK CRITICAL VOLUME

临界体积

ZC0.27121482DEFINITI CRITICAL COMPRES.FAC

临界压缩因子

177504.906J/KMOL-K BENSON IDEAL GAS CP AT 300 K

理想气体CP

AT 500 K264294.092J/KMOL-K BENSON

AT 1000 K386292.527J/KMOL-K BENSON

DHFORM-564698000J/KMOL BENSON STD. HT.OF FORMATION

标准吉布斯自由能

STD.FREE ENERGY FORM

DGFORM -347180000J/KMOL JOBACK

标准吉生成热

101318.723N/SQM RIEDEL

V APOR PRESSURE A T TB

蒸汽压

AT 0.9*TC1080313.99N/SQM RIEDEL

AT TC3318184.71N/SQM RIEDEL

OMEGA0.92834051DEFINITI ACENTRIC FACTOR

偏心因子

DHVLB53706714.1J/KMOL DEFINITI HEAT OF VAP AT TB

汽化焓

LIQUID MOL VOL AT TB

VB0.10949498CUM/KMOL GUNN-YAM 液体mol体积

DELTA25451.023(J/CUM)**.5DEFINITI SOLUBILITY PARAMETER

溶解度参数

UNIQUAC R PARAMETER

GMUQR 5.29070534BONDI UNIQUAC R参数

GMUQQ 4.612BONDI UNIQUAC Q PARAMETER

UNIQUAC Q参数

PARC325.3PARACHOR PARACHOR

等张比容

LIQUID CP A T 298.15 K

291996.108J/KMOL-K RUZICKA 液体

AT TB443532.586J/KMOL-K RUZICKA

2与温度相关的纯组分物性参数的估算

利用aspen plus对乙基2-乙氧基乙醇与温度相关的纯组分物性参数的估算,过程与纯组分物性参数的估算过程一样,只是在过程中选择Estimation Input T-Dependent (估计输入受温度影响参数),计算受温度影响的物性的参数。

其操作过程与纯组分物性参数一样,在组分物性结果点击T-Dependent,可以看到温度相关的物性参数:

其模拟结果如下:

PropertyName

IDEALGASHEATCAPACITY 理想气体热容Parameter

CPIG

Estimated

value

-19911.799

819.051095

-0.5897105

0.00017686

Units

K,J/KMOL-K

Method

BENSON

V APOR PRESSURE

饱和蒸汽压

HEAT OF V APORIZATION 汽化焓

MOLAR VOLUME

气体mol体积

V APOR VISCOSITY

气相粘度

LIQUID VISCOSITY

液相粘度

LIQTHERMCONDUCTIVITY 液体热传导率

LIQUIDSURFACETENSION 表面张力PLXANT

DHVLWT

RKTZRA

MUVDIP

MULAND

KLDIP

SIGDIP

280

1100

36029.2

27.9688868

1.5

118.489262

-12614.567

-13.02921

9.1373e-18

6

468.15

627.594188

53706714.1

468.15

0.40716453

-0.5807282

468.15

0.20396754

2.9389e-08

0.94196054

280

1100

-13.521995

2749

468.15

470.695641

-5.3269879

0.04237204

-0.0001228

1.5744e-07

-7.585e-11

468.15

621.318246

0.09339783

1.22222222

5.3646e-10

-6.037e-10

K,N/SQM

K,J/KMOL

K,N-SEC/SQM

K,N-SEC/SQM

K,WATT/M-K

K,N/M

RIEDEL

DEFINITI

GUNN-YAM

REICHENB

ORRICK-E

SATO-RIE

BROCK-BI

LIQUID HEAT CAPACITY 液体热容CPLDIP

2.3707e-10

468.15

615.042305

284003.707

-523.81995

1.84681065

258.88695

468.15

J/KMOL-K RUZICKA

以上为乙基2-乙氧基乙醇的纯组分参数及与温度相关的纯组分参数的计算过程,由于这些参数在物性数据库中都没有包含,而且都很难查询到。

此时可以通过输入标准沸点TB,利用aspen plus软件的Estimation Input Pure Component(估计输入纯组分) 对纯组分常量进行估计,得到临界温度、临界压力、临界体积和临界压缩因子、及理想状态的标准吉布斯自由能、标准吉生成热、蒸汽压等纯组分参数;用Estimation Input T-Dependent (估计输入受温度影响参数)对纯组分常量进行估计,就可以得到乙基2-乙氧基乙醇的理想气体热容、饱和蒸汽压、汽化焓、气体摩尔体积、气相粘度、等纯组分与温度相关的纯组分物性参数。

3 二元交互作用参数物性常数的估算

在气液平衡计算过程中,物质间的二元交互作用参数手算过程计算量很大,通常用的方法有:二元Van Laar方程、Wilson方程、NTRL方程以及预测液体混合物的活度系数所用的集团贡献法等,而且有些过程的计算量特别大,甚至很难得到。此时,利用aspen plus 的二元交互作用参数物性常数的估算功能显得尤为方便。

本章以乙基2-乙氧基乙醇的水溶液为例来说明aspen plus 的二元交互作用参数物性常数的估算功能, 使用Estimation Binary Input(估计二元输入)进行二元参数估计,在properties中选用UNIFCA为计算方法,然后输人分子结构。自定义新物质乙基2-乙氧基乙醇后,再引入第二组分—水,在Gageneral标签或Formula标签中输入分子结构和已知的物性常数,进行模拟估算。具体过程如下:

1、打开一个新的运行,点击Date/Setup

2、在Setup/Specifications-Global页上改变Run Type位property Estimation

3、在Components、specifications 、Selection页上输入乙基2-乙氧基基乙醇组分,将其Component ID为DIMER

4、引入第二组分H2O

5、在Properties/Molecular Structure -Object Manager上,选择DIMER

6、在Gageneral页上输入乙基2-乙氧基乙醇的分子结构

7、转到Properties/Parameters/Pure Component Object Manager上,点击“NEW”

点击“NEW”,然后创建一个标量(Scalar)参数TB-1

8、Properties/Pure Component,选定TB-1输入DIMER和H2O的标准沸点(TB)195℃、100℃

9、在properties页选择估计选项。点击estimation\input, 选择Estimation only the selected parameters,子菜单选择binary interaction parameters

10、单击Binary(二元)页,单击New(新建)然后规定要用Property(性质)列表框估计的参数,并且输入二元组,在Method 列表框中选择要使用的估计方法

运行该估算,并检查其结果。点击Binary 页,查看估算结果。

Component i C omponent j bij bji Alpha Method

DIMER WATER -2710.1684 568.812833 UNIFAC

在上面例子可以看出:在乙基2-乙氧基乙醇水溶液中,利用aspen plus软件的Estimation Binary Input(估计二元输入)可以完成指定方程二元参数的估算,而且计算过程也显得比较容易。

4、结论

对于Aspen软件数据库中没有物性的物质,物性估算不失为一种可行的方法.在无法简便计算物性数据的情况下.利用Aspen plus软件本身的物性估算功能与已知物性参数或者结合实验数据进行物性参数估算,是一种很好的方法,其可靠性有一定的保证,计算精度可以满足工程设计的需要。

致谢

本论文是在导师张伟军副教授的悉心指导和帮助下完成的。他广博的学识、丰富的阅历、对于学术问题独到的见解以及严谨的治学态度,使本人受益良多。他朴实谦恭的品格以及无私真诚的人生态度,将无疑会在未来的旅途中给予本人深远的影响。对于他半年来对本人学业的帮助与关心,在此谨致以衷心的感谢!

最后要感谢这次中给予我学习和生活上帮助的所有的老师和同学们,有了他们的帮助使我能够顺利的完成毕业论文。

金属热物性参数

金属热物性参数

表1 各种金属的热物性值 金属温度? C 比热 cal/(g·?C) 导热系数 cal/(cm·s·?C) 密度ρ(g/cm3)液相 线、固相线温度(?C) 纯铁 25 200 400 769 800 1000 1500 0.107 0.124 0.145 0.358 0.230 0.148 0.180 0.192 0.152 0.120 0.074 0.071 0.070 0.032 ρ=7.88(20?C) =7.3(1500?C) =7.0(1600?C) 镇静钢(C0.08%) 200 400 800 1200 0.112 0.124 0.142 0.230 0.158 0.142 0.128 0.107 0.068 0.071 ρ=7.86(15?C) 软钢(C0.23%) 200 400 800 1200 0.112 0.124 0.142 0.228 0.158 0.124 0.116 0.102 0.062 0.071 ρ=7.86(15?C) 碳素结构钢(S35C) 25 200 400 800 0.111 0.125 0.134 0.285 0.103 0.095 0.079 0.078 中碳钢(C0.4%) 200 400 800 1200 0.112 0.122 0.140 0.148 0.156 0.124 0.115 0.100 0.059 0.071 ρ=7.85(15?C) 共析钢(C0.8%) 200 400 800 1200 0.108 0.128 0.144 0.146 0.160 0.119 0.108 0.091 0.058 0.072 ρ=7.85(15?C) 工具钢(C1.2%) 200 400 800 0.108 0.130 0.142 0.156 0.103 0.102 0.089 0.057 ρ=7.83(15?C)

流体的物理性质

流体的物理性质 流体流动与输送过程中,流体的状态与规律都与流体的物理性质有关。因此,首先要了解流体的常见物理和化学性质,包括密度、压力、黏度、挥发性、燃烧爆炸极限、闪点、最小引燃能量、燃烧热等。 一、密度与相对密度 密度是用夹比较相同体积不同物质的质量的一个非常重要的物理量,对化工生产的操作、控制、计算等,特别是对质量与体积的换算,具有十分重要的意义。 流体的密度是指单位体积的流体所具有的质量,用符号ρ表示,在国际单位制中,其单位是ke/m3。 式中m——流体的质量,kg; y——流体的体积,m3。 任何流体的密度都与温度和压力有关,但压力的变化对液体密度的影响很小(压力极高时除外),故称液体是不可压缩的流体。工程上,常忽略压力对液体的影响,认为液体的密度只是温度的函数。例如,纯水在277K时的密度为1000kg/m3,在293K时的密度为998.2kg /m3,在373时的密度为958.4kg/ms。因此,在检索和使用密度时,需要知道液体的温度。对大多数液体而言,温度升高,其密度下降。

液体纯净物的密度通常可以从《物理化学手册》或《化学工程手册》等查取。液体?昆合物的密度通常由实验测定,例如比重瓶法、韦氏天平法及波美度比重计法等。其中,前两者用于精确测量,多用于实验室中,后者用于快速测量,在工业上广泛使用。 在工程计算中,当混合前后的体积变化不大时,液体混合物的密度也可由下式计算,即: 式中ρ—液体混合物的密度,kg/ms; ρ1、ρ2、ρi、ρn——构成混合物的各纯组分的密度,ks/m3; w1、w2、wi、wn——混合物中各组分的质量分数。 气体具有明显的可压缩性及热膨胀性,当温度、压力发生变化时,其密度将发生较大的变化。常见气体的密度也可从《物理化学手册》或《化学工程手册》中查取。在工程计算中,如查压力不太高、温度不太低,均可把气体(或气体混合物)视作理想气体,并由理想气体状态方程计算其密度。 由理想气体状态方程式 式中ρ—气体在温度丁、压力ρ的条件下的密度,kg/m3; V——气体的体积,ITl3; 户——气体的压力,kPa; T一—气体的温度,K; m--气体的质量,kg;

Procast相关参数设置一览

相关参数设置一览 PRECAST中参数的设置 (USER PRE-DEFINED RUN PARAMETER) 一. GENERRAL 1.) STANDARD NSTEP 2000 定义模拟时间总步数,时间步数达到该步数时,模拟终止 TFINAL 1 +000 定义ProCAST模拟时间(如同时定义TFINAL 和NSTEP,哪个先达到,按哪个终止模拟) TSTOP 2 +000 定义模拟分析终止温度 INILEV 0 定义初始步数,第一次模拟INILEV=0,如继续某一步数模拟,INILEV=继续模拟步数,(该步长数必须为输出步长的整数倍)。 DT 1 定义时间初始时间步长

DTMAX 1 +000 定义最大时间步长 TUNITS 2 (K C F)温度输出单位 VUNITS 1 速度输出单位 PUNITS 5 压力输出单位 QUNITS 1 热流输出单位(这几项是设置单位的,数字对应着可选项的顺序数) 2)ADVANCED NRSTAR 5 定义允许重新计算次数 NPRFR 1 定义文件输出频率 PRNLEV 0 定义输出节点某项结果,默认值=0 =0,不输出=1,输出节点速度=8,输出节点压力=16,输出节点温度 =64,输出节点涡流强度=128,输出节点涡流分散率=1024,输出节点位移 =8192,输出面热流=32768,输出节点磁热能

SDEBUG 1 定义调试信息,默认值=1 =0,不记录调试信息=1,在文件中记录求解情况、时间步长控制、自由面模型 AVEPROP 0 定义计算每个个单元属性方法 =0,计算每个高斯点属性=1,计算单元中心属性,以其作为整修单元平均值 CGSQ 0 定义CGSQ求解,默认值=0 =0,使用默认TDMA求解 =1,使用CGSQ求解U方程=2,使用CGSQ求解V方程 =4,使用CGSQ求解W方程=16,使用CGSQ求解能量方程 =64,使用CGSQ求解涡流强度方程=128,使用CGSQ求解可压缩流动密度方程 LUFAC 1 定义CGSQ求解预处理参数 DIAG 16384 对于对称求解,定义DIAG求解项(diagonal preconditioning flag) =0,对所有采用Cholesky预处理=8,对压力采用

PA66物性参数 Vydyne 50BWFS

Vydyne 50BWFS物性表 概述:通用级PA66,用于符合挤出成型 流动性的改善降低了PA66等热塑性材料的加工时间、成本及能源消耗。在其它所有性能相近的情况下,拥有良好流动性的材料在注塑成型中比低流动性的常规材料更受青睐。高流动性意味着注塑或填充压力更低,所需合模力也更低。因此,加工者可以选择更小型的设备生产部件。众所周知,一台注塑成型设备越大,运营成本也就越高;因此,高流动性材料可以为厂商创造更高价值。更优异的流动性也意味着注塑温度更低。这可以带来两个好处:加工周期缩短使生产率提高,以及注塑成型能耗降低。由于高流动性PA66具备更优异的流动性,基本可以实现长流径。制模难度随之降低,注点数量相应减少,从而可以使用更少的昂贵的热流道喷嘴。巴斯夫测试结果表明用高流动性的生产部件所需加工温度更低,降温脱模更快,从而更快地从模具中取出部件。这使加工周期缩短了近30%,如果加工者使用高流动性材料,就可以降低加工温度,同时更早的改铸部件,一举两得,这样既节约了能源,又提高了生产效率。高能源效率特别适合对加工周期有更高要求的后整理工序。 聚酰胺PA66材料在制成后会完全变干。如暴露在潮湿空气中或浸泡在水中,这些模制品会吸水,其吸水速度取决于其所处的具体条件。在加速条件下,如调湿处理时,它们可在极短的时间内吸收一定数量的水分,从而改善模制品的各种特性,如抗冲强度等。聚酰胺6、聚酰胺66及共聚酰胺66/6的吸水量相对较大,因此必须进行调湿处理。但调湿处理对新制注塑PA66部件几乎没有作用,因此无需进行。此时,除需要满足特定的尺寸规格等例外情况外,调节处理没有任何意义。对干的PA66部件进行调湿处理旨在使其尽快吸水。标准操作是在标准实验室环境(23℃/相对湿度50%)下,将部件的水分含量调节处理至平衡值。也可在其他气候条件(给定温度和相对湿度)下将部件的水分含量调节处理至平衡值。除非部件始终浸泡在水中,水分含量将无法达到最大值。但在操作实践中,只有在23℃/相对湿度50%条件下的水分含量平衡值才具有实际意义。吸水使干的聚酰胺部件的特性和尺寸变化增大。如在使用条件下发生吸水,对于很多应用来说,变化都可能产生负面影响。因此,使用中将经受高弹性形变及高冲击荷载

空气物性参数表

空气物性参数表 工程热力学研究的对象是热能转化成机械能的规律和方法,以及提高转化效率的途径。热力学第一定律说明了能量在传递和转化时的数量关系,即某一物体失去的热量必然等于另一物体所得到的热量。热力学第二定律是研究能量传递和转移过程进行的方向、条件和深度等规律问题,其中最根本的是关于方向的问题。热不可能自发地、不付代价地、从低温物体传至高温物体。 1. 导热:也称热传导,是指物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递现象。例如,物体内部热量从温度较高的部分传递到温度较低的部分,以及温度较高的物体把热量传递给与之接触的温度较低的另一物体都是导热现象。 2. 热对流:简称对流,是指流体内部各部分之间发生相对位移,冷热流体相互掺混而引起的热量传递现象。热对流现象仅能发生在流体内部,而且必然伴随有导热现象。 3. 热辐射:物体通过电磁波来传递能量的方式称为辐射。物体会因各种原因发出辐射能,其中因热的原因而发出辐射能的现象称为热辐射。(由物体表面直接向外界发射可见和不可见射线,在空间传递能量的现象称为热辐射。它是一种非接触传递能量的方式。)

4. 温度:是指物体冷热的程度。是指物质微观粒子(分子、电子等)热运动激烈程度的衡量。 5. 导热系数λ(导热率):它表示物质导热能力的大小。由实验取得。单位:W/m.℃ 6. 换热系数α(放热系数、给热系数):表示当流体与壁面间的温差为1℃时,在单位时间内,通过单位面积的热量。放热系数的大小反映出对流换热过程的强烈程度。单位:W/m2.℃ 7. 传热系数k:传热温差为1℃时,在单位时间内,通过单位面积的热量。它反映传热过程的强烈程度。单位:W/m2.℃ 8. 导温系数α(热扩散率):表示物体中热扩散的快慢程度。是材料传播温度变化能力大小的指标。α=λ/ρc 由实验取得。单位:m2/s 9. 热阻Rt:热转移过程中的阻力称为热阻。Rt=△t/Q 10. 比热c:物体温度升高1度所需的热量叫热容,单位物量的物体温度升高1度所需的热量叫比热容,简称比热。根据计量物量的单位不同,有质量比热、容积比热、摩尔比热之分。质量比热单位:kJ/kg.℃;

(推荐)氯化钙热力学物性参数

氯化钙热力学物性参数 1氯化钙理化性质及其应用 氯化钙的相对密度为2.15g/cm3,熔点782℃、沸点 1600℃以上。具有极强的吸湿性,暴露于空气中极易潮解。易溶于水,同时放出大量的热。文献[1]详细介绍了氯化钙的应用和生产工艺:氯化钙的应用按级别分为:工业级氯化钙[2]和食品级氯化钙[3]。 1.1工业级氯化钙 工业级氯化钙具有遇水发热且凝点低的特点,可用于融雪和除冰[4-6]。并有吸水性强的功能,还可用作干燥剂,如用于氮气、氧气、氢气等气体的干燥。还是港口消雾[7]和路面集尘[8]、织物防火的最佳材料[9]。氯化钙水溶液是冷冻机用和制冰用的重要制冷介质[10]。另外氯化钙还可当作脱水剂、防冻剂、絮凝剂及生产色淀颜料的沉淀剂等。 1.2食品级氯化钙应用 在食品生产中,氯化钙可用于食品加工的稳定剂、稠化剂、吸潮剂、口感改良剂等。在医药领域,氯化钙还可用于药物合成的原料。 1.3氯化钙用于热泵 氯化钙主要是用于化学热泵(Chemical Heat Pump 简称CHP),它是利用不同条件下的一对耦合的可逆化学反应所产生的吸收放热现象来实现热量的传递的,它是一种将热能转化为化学能,从而将

蓄热机和热泵机合二为一的新型节能技术[11]。文献[11]研究了化学热泵为CaCl 2/CH 3OH 体系,它利用了如下化学反应: 23232()2()CaCl CH OH g CaCl CH OH s ??→+?←?? 该反应是一个气固两相的可逆络合反应,反应的正方向是放热反应。 以CaCl 2/CH 3OH 体系设计的化学热泵的工作原理图如下: 下面是氯化钙的部分热力学性质图表:

常见物性参数表word版本

常见物性参数表

常用溶剂 一、乙醇(ethyl alcohol,ethanol)CAS No.:64-17-5 (1)分子式 C2H6O (2)相对分子质量 46.07 (3)结构式 CH3CH2OH, (4)外观与性状:无色液体,有酒香。 (5)熔点(℃):-114.1 (6)沸点(℃):78.3 溶解性:与水混溶,可混溶于醚、氯仿、甘油等多数有机溶剂; 密度:相对密度(水=1)0.79;相对密度(空气=1)1.59; 稳定性:稳定;危险标记 7(易燃液体); 主要用途:用于制酒工业、有机合成、消毒以用作溶剂 不同压力下乙醇物性参数变化 表压液态密 度比热容气体密 度 蒸发 热 分子 量 粘度沸 点 MPa Kg/m3KJ/Kg*K Kg/m3KJ/Kg g/mol MPa*s ℃ 0.06 750.49 2.811 2.4693 830.21 46.07 0.58 90.6 5 0.04 752.35 2.790 2.1825 837.84 46.07 0.59 87 0.02 754.38 2.767 1.8917 845.99 46.07 0.61 83 常压756.65 2.742 1.5966 854.89 46.07 0.63 78.3 5 -0.02 759.50 2.711 1.2984 865.7 6 46.0 7 0.66 72. 8 -0.04 762.93 2.674 0.9936 878.32 46.07 0.6 9 65.9 -0.06 767.38 2.627 0.6806 893.85 46.07 0.74 56.8 2 -0.08 774.37 2.556 0.3559 916.51 46.07 0.83 42.4

空气物性参数表

物性参数: 物性参数主要是材料在制工方面能否达到要求的数据。不同材料有不同的物性参数。比如尼龙,就有很多数据要求,有冲击强度,拉伸强度,融溶指数等等。 传热学中的参数: 工程热力学研究的对象是热能转化成机械能的规律和方法,以及提高转化效率的途径。热力学第一定律说明了能量在传递和转化时的数量关系,即某一物体失去的热量必然等于另一物体所得到的热量。热力学第二定律是研究能量传递和转移过程进行的方向、条件和深度等规律问题,其中最根本的是关于方向的问题。热不可能自发地、不付代价地、从低温物体传至高温物体。 1. 导热:也称热传导,是指物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递现象。例如,物体内部热量从温度较高的部分传递到温度较低的部分,以及温度较高的物体把热量传递给与之接触的温度较低的另一物体都是导热现象。 2. 热对流:简称对流,是指流体内部各部分之间发生相对位移,冷热流体相互掺混而引起的热量传递现象。热对流现象仅能发生在流体内部,而且必然伴随有导热现象。 3. 热辐射:物体通过电磁波来传递能量的方式称为辐射。物体会因各种原因发出辐射能,其中因热的原因而发出辐射能的现象称为

热辐射。(由物体表面直接向外界发射可见和不可见射线,在空间传递能量的现象称为热辐射。它是一种非接触传递能量的方式。) 4. 温度:是指物体冷热的程度。是指物质微观粒子(分子、电子等)热运动激烈程度的衡量。 5. 导热系数λ(导热率):它表示物质导热能力的大小。由实验取得。单位:W/m.℃ 6. 换热系数α(放热系数、给热系数):表示当流体与壁面间的温差为1℃时,在单位时间内,通过单位面积的热量。放热系数的大小反映出对流换热过程的强烈程度。单位:W/m2.℃,但是与导热系数不同,它不是物性参数。 7. 传热系数k:传热温差为1℃时,在单位时间内,通过单位面积的热量。它反映传热过程的强烈程度。单位:W/m2.℃ 8. 导温系数α(热扩散率):表示物体中热扩散的快慢程度。是材料传播温度变化能力大小的指标。α=λ/ρc 由实验取得。单位:m2/s 9. 热阻Rt:热转移过程中的阻力称为热阻。Rt=△t/Q 10. 比热c:物体温度升高1度所需的热量叫热容,单位物量的物体温度升高1度所需的热量叫比热容,简称比热。根据计量物量的单位不同,有质量比热、容积比热、摩尔比热之分。质量比热单位:kJ/kg.℃;容积比热单位:kJ/m3.℃;摩尔比热单位:kJ/mol.℃。定压比热用cp表示;定容比热用cv表示。

空气的物理性质

空气的物理性质 .温度 温度是描述空气冷热程度的物理量,主要有三种标定方法:摄氏温标、华氏温标和绝对温标(又称热力学温标或开氏温标)。 2.压力 空气的压力就是当地的大气压,用符号p表示。常用单位有国际单位帕(Pa);工程单位kfg/cm2;液柱高单位毫米汞柱高和毫米水柱高。 3.湿度 空气湿度是指空气中含水蒸气量的多少,有以下几种表示方法: (1)绝对湿度。即每平方米空气中含有水蒸气的质量,用符号γZ表示,单位为kg/m3。如果在某一温度下,空气中水蒸气的含量达到了最大值,此时的绝对湿度称为饱和空气的绝对湿度,用γB表示。 (2)相对湿度。为了能准确说明空气中的干湿程度,在空调中采用了相对湿度这个参数,它是空气的绝对湿度γZ与同温度下饱和空气的绝对湿度γB的比值,用符号φ表示。4.比焓 空气的焓值是指空气中含有的总热量,通常以干空气的单位质量为基准,称作比焓,工程上简称焓。因此,空气的比焓是指1kg干空气的焓和与它相对应的水蒸气的焓的总和,用符号h表示,单位是kj/kg。 5.密度和比容 空气的密度是指每立方米空气中干空气的质量与水蒸气的质量之和,用ρ表示,单位为kg/m3。 空气的比容是指单位质量的空气所占有的容积,用符号ν表示,单位为m3/kg。因此空气的密度与比容互为倒数关系。 湿空气是水蒸汽和干空气的混合物。完全不含水蒸汽的空气称为干空气,干空气本身是氮、氧及少量其它气体的混合物,其成分比较稳定。大气中的空气或多或少都含有水蒸汽,因此人们在日常生活及工程上遇到的都是湿空气。随地理位置、季节、气候等条件影响,大气成分有些变动。通常认为干空气各组分的标准容积分数如下表: 在某些过程如干燥、空气调节等问题中,空气中的水蒸汽起着特殊作用,所以我们必须研究气体和蒸汽的混合物的热力性质,特别是干空气和水蒸汽的混合物—湿空气的热力性质。

氨气物性参数

1.别名·xx 液氨;Ammonia、Liquid amlllorlia. 2.用途 氮肥、铵盐、硝酸、尿素、丙烯腈、三聚氰酰胺、丙烯酰胺、氢氰酸、无机试剂、药品、染料、酸性中和剂、橡胶氧化剂、金属表面氮化、制冷剂、半导体用气体、氧化、氮化膜、化学气相淀积、标准气、校正气、在线仪表标准气。 3.制法 氢和氮在高温高压时在催化剂的作用下合成而得氨。 4.理化性质 分子量: 17.031熔点( 101.325kPa):-77.7℃沸点( 101.325kPa):-33.4℃液体密度(- 73.15℃, 8.666kPa):729kg/m3 气体密度(0℃, 101.325kPa): 0.7708kg/m3 相对密度(气体,空气= 1.25℃, 101.325kPa):

0.597比容( 21.1℃, 101.325kPa): 1.4109m3/kg 气液容积比: (15℃,100kPa):947L/L 临界温度: 132.4℃临界压力:11277kPa临界密度:235kg/m3 压缩系数: 压缩系数 压力kPa 300K380K420K580K 101.330. 99060.99660. 99780.9997 506.630. 94630.97850.985l 0.9954 1013.250. 88600.95730. 97030.9911熔化热(- 77.74℃,

6.677kPa): 331.59kJ/kg 气化热(- 33.41℃, 101.325kPa): 1371.18kJ/kg 比热容( 101.33kPa,300K): Cp= 2159.97J/(kg·K) 比热比(气体, 46.8℃, 101.325kPa): CP/Cv= 1.307 蒸气压(-20℃): 186.4kPa(0℃): 410.4kPa(20℃):829,9kPa粘度(气体,20℃,101.325kPa): 0.00982mPa·s(液体,- 33.5℃):

空气物性参数表

空气物性参数表 湿空气热物性计算示例A ●分子量 Maw=Ma-(Ma-Mw)pw/paw 式中,Maw为湿空气分子量,g/mol;Ma为干空气的分子量,28.97g/mol;Mw为水蒸气的分子量,18.02g/mol;pw为湿空气中水蒸气的分压力,Pa;paw为湿空气的总压力,Pa。 计算示例:设湿空气总压力为101325Pa,其中水蒸气的分压力为3000Pa,则此时湿空气的分子量为: Maw=28.97-(28.97-18.02)*3000/101325 =28.65 g/mol ●湿空气中水蒸气分压力

pw=φps 式中,pw为湿空气中水蒸气的分压力,Pa;φ为湿空气的相对湿度,无因次;ps为湿空气温度下纯水的饱和蒸气压力(也为湿空气温度下饱和湿空气中水蒸气的分压力),Pa。 纯水的饱和蒸气压力的估算式为(0~100℃): ln(ps)=25.4281-5173.55/(Ts+273) 式中,ps为水的饱和蒸气压,Pa;Ts为水的温度,℃。 计算示例:设湿空气温度为36℃,相对湿度为70%,则湿空气中水蒸气分压力的计算过程为: 该温度下纯水的饱和蒸气压为: ln(ps)=25.4281-5173.55/(36+273)=8.6852 ps =e8.6852=5915 Pa

湿空气中的水蒸气分压力为: pw=φps=0.7*5915=4140.5Pa ●湿空气的露点温度 湿空气中水蒸气开始凝结的温度为其露点温度,等于其湿空气中水蒸气分压力下纯水的饱和温度,其估算式为(0~80℃): Td=5266.77/(25.7248-ln(pw))-273 式中,Td为湿空气的露点温度,℃;pw为湿空气中水蒸气的分压力,Pa。 计算示例:接上例,温度为36℃,相对湿度为70%的湿空气,其露点温度计算过程为: 湿空气中水蒸气分压力为4140.5Pa,则其对应的露点温度为:

材料热物性参数

Apache-Tables 5.9

Apache-Tables Table1Ground Reflectance (3) Table2Precipitable Water Vapour Depth(In Metres) (4) Table3Dry-Bulb Temperatures (5) Table4World Weather Data (6) Table5U-Values for Glazing (7) Table6Thermal Conductivity,Specific Heat Capacity and Density (9) Table8Shading Coefficient and Short-wave Radiant Fraction for Blinds and Curtains (19) Table9Transmission Factors for External Miniature Louvres (20) Table10Sensible and Latent Gains from People (21) Table11Radiant Fraction for Casual Gains (22) Table12Winter Design Temperatures and Air Changes (23) Table13Heat Emitter Radiant Fraction (26) Table14Solar Absorptivity (27) Table15Thermal Resistances of Air Gaps (28) Table16Diffusion Resistance Factors (30) Table17Permeances (31) Table18Vapour Resistivities (32) Table21Inside Surface Resistance(Table A3.5CIBSE Guide) (34) Table22Outside Surface Resistance(Table A3.6CIBSE Guide) (35) Table23Emissivities of Various Materials(Table C3.7CIBSE Guide) (36)

物性参数表

常用溶剂 一、乙醇(ethyl alcohol,ethanol)CAS No.:64-17-5 (1)分子式 C2H6O (2)相对分子质量 46.07 (3)结构式 CH3CH2OH, (4)外观与性状:无色液体,有酒香。 (5)熔点(℃):-114.1 (6)沸点(℃):78.3 溶解性:与水混溶,可混溶于醚、氯仿、甘油等多数有机溶剂; 密度:相对密度(水=1)0.79;相对密度(空气=1)1.59; 稳定性:稳定;危险标记7(易燃液体); 主要用途:用于制酒工业、有机合成、消毒以用作溶剂 不同压力下乙醇物性参数变化 表压液态密 度比热容气体密 度 蒸发 热 分子 量 粘度沸 点 MPa Kg/m3KJ/Kg*K Kg/m3KJ/Kg g/mol MPa*s ℃0.06 750.49 2.811 2.4693 830.21 46.07 0.58 90.65 0.04 752.35 2.790 2.1825 837.84 46.07 0.59 87 0.02 754.38 2.767 1.8917 845.99 46.07 0.61 83 常压756.65 2.742 1.5966 854.89 46.07 0.63 78.35 -0.02 759.50 2.711 1.2984 865.76 46.07 0.66 72.8 -0.04 762.93 2.674 0.9936 878.32 46.07 0.69 65.9 -0.06 767.38 2.627 0.6806 893.85 46.07 0.74 56.82 -0.08 774.37 2.556 0.3559 916.51 46.07 0.83 42.4

常用材料的热物性参数

表1 各种金属的热物性值 温度 C 比热 cal/(g·C) 导热系数 cal/(cm·s· C) 密度(g/cm3)液相 线、固相线温度(C) =7.88(20C) =7.3(1500C) =7.0(1600C) =7.86(15C) =7.86(15C) =7.85(15C) =7.85(15C)

=7.83(15C)续表1 各种金属的热物性值 温度 C 比热 cal/(g·C) 导热系数 cal/(cm·s· C) 密度(g/cm3)液相 线、固相线温度(C) =7.73(15C) Ts=1488 T L=1497 =7.84(15C) T S=1420 T L=1520 =7.7(15C) 13.1Cr,0.5Ni T S=1399 T L=1454 =7.0(15C) 比热相对于 普通铸铁

=7.1(15C) 温度 C 比热 cal/(g·C) 导热系数 cal/(cm·s· C) 密度(g/cm3)液相 线、固相线温度(C) =7.5~7.8(15C) =8.92 T S=T L=1083

s=2.70(15C) T S=T M=660.2 温度 C 比热 cal/(g·C) 导热系数 cal/(cm·s· C) 密度(g/cm3)液相 线、固相线温度(C) s=1.74 T L=T S=651

s=6.09 T S=1395 T L=1427表2 铸型的热物性计算公式

硅砂,干型,呋喃铸型600C以下 0.385<<0.494 0.0058

常用材料的热物性参数

表1 各种金属的热物性值 温度 C 比热 cal/(g·C) 导热系数 cal/(cm·s· C) 密度(g/cm3)液相 线、固相线温度 (C) =7.88(20C) =7.3(1500C) =7.0(1600C) =7.86(15C) =7.86(15C) =7.85(15C) =7.85(15C) =7.83(15C)

续表1 各种金属的热物性值 温度 C 比热 cal/(g·C) 导热系数 cal/(cm·s· C) 密度(g/cm3)液相 线、固相线温度 (C) =7.73(15C) Ts=1488 T L=1497 =7.84(15C) T S=1420 T L=1520 =7.7(15C) 13.1Cr,0.5Ni T S=1399 T L=1454 =7.0(15C) 比热相对于 普通铸铁

=7.1(15C) 温度 C 比热 cal/(g·C) 导热系数 cal/(cm·s· C) 密度(g/cm3)液相 线、固相线温度 (C) =7.5~7.8(15C) =8.92 T S=T L=1083

s=2.70(15C) T S=T M=660.2 温度 C 比热 cal/(g·C) 导热系数 cal/(cm·s· C) 密度(g/cm3)液相 线、固相线温度 (C) s=1.74 T L=T S=651 s=6.09 T S=1395 T L=1427

表2 铸型的热物性计算公式

硅砂,干型,呋喃铸型600C以下 0.385<<0.494 0.0058

PVC物性表

物质安全资料表 一.物品与厂商资料:物品名称:PVC塑胶物品编号:无资料 制造商或供应商名称:XXXXXXX塑胶有限公司联系电话:0769-XXXXXXXx 二.成分辨识资料 成分名称PVC粉45-60可塑剂18-30填充剂27-30安定剂 1.5-2.0滑 剂 0.5-1.0 三.危害辨识资料: 四.急救措施 不同暴露途径之急救方法:.吸入:未有资料 .皮肤接触:粉尘与颗粒触到皮肤用清洁剂与清水清洗,严重时送医治..食入:用手按喉吐出,严重时送医院治疗.最重要症状及危害效应:燃烧时产生氯化物对急救人员之防护:无资料对医师之提示:无资料五.灭火措施 适用灭火剂:二氧化碳 灭火时可能遭遇之特殊危害:防止口腔及眼睛长时间接触特殊灭火程序:无资料 消防人员之特殊防护设备:口罩和手套六.泄漏处理方法: 个人应注意事项:佩带口罩 手套环境注意事项:回收及收取飞散之物清理方法:设有良好的通风排气装置七.安全处置与储存方法: 处置:使用时不要品尝胶料味道,保持通风使空气循环 储存:1.储于阴凉、通风良好的的地区,远离热源、火花、火焰2.避免阳光直接照射,以免老化 物品危害分类:无含量(%)主要物质成分CAS NO.(化学文摘社登记号码) 主要症状:呕吐 9002-86-226761-40-000471-34-100557-05-1 最重要危害效应健康危害效应:无 环境影响:环保产品 低铅低镉 物理性及化学性危害:燃烧时产生氯化物及轻微气味和粉尘 特殊危害:无

3.于其他可燃物隔离八.暴露预防措施:工程控制:无资料 控制参数:八小时日时平均容许浓度/短时间量平均容许浓度/最高容许浓度.呼吸防护:佩带口罩.手部防护:清水清洗 .眼睛防护:清水清洗,严重时送医院治疗 .皮肤及身体防护:清水清洗,严重时送医院治疗九.物理及化学性质十.安全性及反应性:安定性:安定 特殊状况下可能之危害反应:不会发生应避免之物质:强氧化剂、强酸、强碱危害分解物:氯化物十一.毒性资料:急毒性:无局部效应:无致敏感性:无 慢毒性或长期毒性:无资料特殊效应:无资料十二.生态资料: 不能弃于水域、林域地带,避免鸟鱼摄取十四.运输资料 国际运输规定:无资料联合国编号:无 国内运输规定:无资料特殊运输方法及注意事项: 避免同酸性物质一起运输,如发生意外而泄漏要立即收回十五.法规资料: 相关法规:消防法 卫生法十六.其他资料:参考文献 制表单位制表人 名称:XXXXXXXXXXXXX塑胶有限公司 地址: 职称: 姓名:熔点:130℃保存期:六个月蒸汽密度:无资料水中溶解度:不溶解 密度:1.3-1.5克每立方厘米物质状态:固体颜色:多色成型参考温度:170~180℃PH值:无 自然温度:常温蒸汽压:无资料、 形状:颗粒状气味:稍有异味

procast热物性参数

附注:红色字体为热应力耦合模拟必须输入的参数,蓝色字体为一般模拟需要的相应参数 一、材料参数(Material Database ) (一)成分(composition 重量百分含量%) 通过输入合金成分,软件可以自动计算(采用Scheil 或Lever 模型)Al 系,Fe 系,Ni 系,Ni16,Ti 系,Mg 系的热函曲线,固相分数和液固相温度。 (二)传热属性(thermal) 1. 热导率(Conductivity 常数或温度的函数,单位:W/m/K ) 2. 密度(Density 常数或温度的函数,单位:kg/m**3) 3. 比热容(Specific Heat 常数或温度的函数,单位:kJ/kg/K) 4. 热函(Enthalpy 常数或温度的函数,单位:kJ/kg)(等同于比热容和潜热) 5. 固相分数(Fraction Solid 常数或温度的函数) 6. 潜热(Latent Heat 常数,单位:kJ/kg) 7. 液固相线温度(Liquid-Solidus 常数,单位:℃) 8. 发热属性(Exothermic 轴套材料达到燃烧温度后放出的热量,燃烧分数为温度 的函数) (三) 流体属性(Fluid) 1. 粘度(Viscosity) a. Newtonian 流体 粘度(常数或温度的函数,单位:Pa.s) b. Carreau-Yasuda 流体(非牛顿流体模型,其粘度为切变速率的函数平衡方程:()()[]ααγληηηη1 1-∞?∞?+++=n ) 涉及到的参数有ηo ,η∞,λ,α c. Power-Cutoff 流体(用于触变铸造) 2. 表面张力(Surface Tension 常数或温度的函数,单位:N/m) 3. 渗透率(Permeability 高渗透率意味着自由流动,反之则意味着不流动.铸件材料仅适用于液固相线之间.常数或固相分数的函数,单位m**2) 4. 过滤网材料属性(Filter) a . 孔隙率(V oid fraction 常数) b. 表面积Surface area(常数,单位:1/m) 二、界面传热参数(Interface Database )

天然气物性参数(新)

T ci 天然气组分i 的临界温度,(273+t) ° 2.1天然气临界参数计算 2.1.1 天然气平均分子量 天然气是混合气体,分子量不是一成不变的,其平均分子量按 Key 规则计算: (2.1) 式中M g —天然气的平均分子量kg/mol ; M 、y i —天然气中i 组分的分子量和摩尔分数 2.1.2 天然气的相对密度 首先假定空气和天然气都取同一标准状态,天然气的相对密度可用下式表示: M g M air —天然气、空气的平均分子量 kg/mol 2.1.3 拟临界压力 田和拟临界温度T PC ①组分分析方法 (2.3) M g y j M i 式中 P ci ―― 天然气组分i 的临界压力(绝),MPa ; r g air M g M g M g M air 28.97 29 (2.2) 式中 r g —天然气的相对密度; air —同一标准状态下,天然气、空气的密度 kg/m 3 ; P pc y i P ci

② 相关经验公式方法在缺乏天然气组分分析数据的情况下,可引用Standing 在1941 年发表的相关经验公式 对于干气 p pc T pc 4.666 93.3 0.103 g 181 g 7 0.25 g2 2 g (2.4) 对于湿气 p pc 4.868 0.356 g 39.7 g2 Q (2.5) T pc 103.9 183.3 g 39.7 g2 也可以用下面经验关系式进行计算 对于干气 p pc 4.8815 0.3861 g T pc 92.2222 176.6667 g g 0.7 p pc 4.7780 0.2482 g T pc 92.2222 176.6667 g g 0.7 2.6) 对于湿气 p pc 5.1021 0.6895 g T pc 132.2222 176.6667 g g 0.7 (2.7) p pc 4.7780 0.2482 g T pc 106.1111 152.2222 g g 0.7 注意:上式是对于纯天然气适用,而对于含非烃 CO2 、H2S 等可以 用 Wichert 和 Aziz 修正。修正常数的计算公式为: p pc 4.7546 0.2102 g 0.03 CO21.1583 10 2 N23.0612 10 2 H2S 2 2 2 (2.8) T pc 84.9389 188.4944 g 0.933 3 CO 1.494 4 N

流体及其主要物理性质

第1章流体及其主要物理性质 一、概念 1、什么是流体?什么是连续介质模型?连续介质模型的适用条件; 2、流体粘性的定义;动力粘性系数、运动粘性系数的定义、公式;理想流体的 定义及数学表达;牛顿内摩擦定律(两个表达式及其物理意义);粘性产生的机理,粘性、粘性系数同温度的关系;牛顿流体的定义; 3、可压缩性的定义;体积弹性模量的定义、物理意义及公式;气体等温过程、 等熵过程的体积弹性模量;不可压缩流体的定义及体积弹性模量; 4、作用在流体上的两种力。 二、计算 1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动。 第2章流体静力学 一、概念 1、流体静压强的特点;理想流体压强的特点(无论运动还是静止); 2、静止流体平衡微分方程,物理意义及重力场下的简化; 3、不可压缩流体静压强分布(公式、物理意义),帕斯卡原理; 4、绝对压强、计示压强、真空压强的定义及相互之间的关系; 5、各种U型管测压计的优缺点; 6、作用在平面上的静压力(公式、物理意义)。

二、计算 1、U型管测压计的计算; 2、绝对压强、计示压强及真空压强的换算; 3、平壁面上静压力大小的计算。 第3章流体运动概述 一、概念 1、描述流体运动的两种方法(着眼点、数学描述、拉格朗日及欧拉变数); 2、流场的概念,定常场、非定常场、均匀场、非均匀场的概念及数学描述; 3、一元、二元、三元流动的概念; 4、物质导数的概念及公式:物质导数(质点导数)、局部导数(当地导数)、对 流导数(迁移导数、位变导数)的物理意义、数学描述;流体质点加速度、不可压缩流体、均质不可压缩流体的数学描述; 5、流线、迹线、染色线的定义、特点和区别,流线方程、迹线方程,什么时候 三线重合;流管的概念; 6、线变形的概念:相对伸长率、相对体积膨胀率公式,不可压缩流体的相对体 积膨胀率应为什么?旋转的概念:旋转角速度公式,什么样的流动是无旋的? 角变形率公式。 7、微分形式连续方程的适用条件、物理意义、公式及各种简化形式。 二、计算 1、物质导数的计算,如流体质点加速度或流体质点某物理量对时间的变化率;

空气物性参数表

空气物性参数表 空气是指地球大气层中的气体混合。它主要由78%的氮气、21%氧气、还有1%的稀有气体和杂质组成的混合物。空气的成分不是固定的,随着高度的改变、气压的改变,空气的组成比例也会改变。但是长期以来人们一直认为空气是一种单一的物质,直到后来法国科学家拉瓦锡通过实验首先得出了空气是由氧气和氮气组成的结论。19世纪末,科学家们又通过大量的实验发现,空气里还有氦、氩、氙、氖等稀有气体。 在自然状态下空气是无味无臭的。 空气中的氧气对于所有需氧生物来说是必需。所有动物都需要呼吸氧气,植物利用空气中的二氧化碳进行光合作用,二氧化碳是近乎所有植物的唯一的碳的来源。 氮 氮气是一种化学上非常惰性的气体,但不属于惰性气体。只有通过固氮它才进入氮循环,能够被生物所利用。生物的氨基酸需要氮。通过反硝化作用氮回到空气中。在技术上人们使用哈柏法将空气中的氮加工为肥料。固氮与反硝化作用基本上互相抵消,对空气中的氮的浓度没有影响。在深潜的过程中(潜水深度大于60米)压缩空气瓶中的氮会被氦代替,否则的话血液中溶的氮会导致氮麻醉。

氧 氧是一种重要的氧化剂,它使得空气具有氧化的作用。几乎所有化学燃烧和生理呼吸都需要氧。空气中的氧是通过光合作用产生的。在整个地球历史中通过光合作用所产生的氧的总量约是今天空气中氧的总量的20倍。 氩 氩是一种惰性气体。它基本上不参加化学反应。因此在焊接时氩用来当作保护气。此外由于它相对于空气而言导热性比较差,因此它也被用来作为气密窗玻璃之间的隔热气体。 水蒸气 按照空气湿度的不同空气中可以含0至4%体积比的水蒸气。一般空气中水蒸气的含量在0.1%体积比(极地)至3%体积比(热带)之间。地面附近的水蒸气平均含量为1.3%。

常用材料的热物性参数

表1 各种金属的热物性值 温度 C 比热 cal/(g·C) 导热系数 cal/(cm·s· C) 密度(g/cm3)液相线、固相线温度 (C) =7.88(20C) =7.3(1500C) =7.0(1600C) =7.86(15C) =7.86(15C) =7.85(15C) =7.85(15C) =7.83(15C)

续表1 各种金属的热物性值 温度 C 比热 cal/(g·C) 导热系数 cal/(cm·s· C) 密度(g/cm3)液相线、固相线温度 (C) =7.73(15C) Ts=1488 T L=1497 =7.84(15C) T S=1420 T L=1520 =7.7(15C) 13.1Cr,0.5Ni T S=1399 T L=1454 =7.0(15C) 比热相对于 普通铸铁

=7.1(15C) 温度 C 比热 cal/(g·C) 导热系数 cal/(cm·s· C) 密度(g/cm3)液相线、固相线温度 (C) =7.5~7.8(15C) =8.92 T S=T L=1083

s=2.70(15C) T S=T M=660.2 温度 C 比热 cal/(g·C) 导热系数 cal/(cm·s· C) 密度(g/cm3)液相线、固相线温度 (C) s=1.74 T L=T S=651 s=6.09 T S=1395 T L=1427

表2 铸型的热物性计算公式

硅砂,干型,呋喃铸型600C以下 0.385<<0.494 0.0058

相关文档
最新文档