三角函数的化简及对称变换

三角函数的化简及对称变换
三角函数的化简及对称变换

三角函数的化简及对称变换

一、单选题(共8道,每道12分)

1.若函数的图象向右平移a个单位(a>0)后的图象关于y轴对称,则a的最小值是( )

A. B.

C. D.

2.已知函数,先将y=f(x)的图象上所有点的横坐标缩短到原来的(纵坐标不变),再将得到的图象上所有点向右平移个单位长度,得到的图象关于直线对称,则的最小值是( )

A. B.

C. D.

3.函数在x=3处取得最大值,则( )

A.f(x-3)一定是奇函数

B.f(x-3)一定是偶函数

C.f(x+3)一定是奇函数

D.f(x+3)一定是偶函数

4.已知函数,其图象相邻两条对称轴之间的距离是

,且函数是偶函数,下列判断正确的是( )

A.函数f(x)的最小正周期是2π

B.函数f(x)的图象关于点对称

C.函数f(x)的图象关于直线对称

D.函数f(x)在上单调递增

5.将函数的图象向右平移个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点,则的值不可能是( ) A. B.π

C. D.

6.若函数的图象与直线无公共点,则( )

A. B.

C. D.

7.先将函数的图象向左平移个单位,然后再将所得的图象做关于直线的对称变换,得到的函数图象,则的解析式是( )

A. B.

C. D.

8.已知将函数的图象向右平移个单位,然后向上平移1个单位后,得到的函数图象与函数关于直线对称,则函数的表达式是( )

A. B.

C. D.

三角函数式的化简与求值

三角函数式的化简与求值 三角函数式的化简和求值是高考考查的重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍. ●难点磁场 已知 2π<β<α<43π,cos(α-β)=13 12,sin(α+β)=-53 ,求sin2α的值_________. ● 案例探究 [例1] 不查表求sin 220°+cos 280°+3cos20°cos80°的值. 命题意图:本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高. 知识依托:熟知三角公式并能灵活应用. 错解分析:公式不熟,计算易出错. 技巧与方法:解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会. 解法一:sin 220°+cos 280°+3sin 220°cos80° = 21 (1-cos40°)+21 (1+cos160°)+ 3sin20°cos80° =1-21cos40°+21 cos160°+3sin20°cos(60°+20°) =1-21cos40°+2 1 (cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20° -sin60°sin20°) =1- 21cos40°-41cos40°-43sin40°+43sin40°-2 3sin 220° =1-43cos40°-43(1-cos40°)= 41 解法二:设x =sin 220°+cos 280°+3sin20°cos80° y =cos 220°+sin 280°-3cos20°sin80°,则 x +y =1+1-3sin60°= 2 1 ,x -y =-cos40°+cos160°+3sin100° =-2sin100°sin60°+3sin100°=0 ∴x =y = 41,即x =sin 220°+cos 280°+3sin20°cos80°=4 1.

g3.1049 三角函数的化简、求值与证明

g3.1049 三角函数的化简、求值与证明 一、知识回顾 1、三角函数式的化简:(1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数 2、三角函数的求值类型有三类:(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。 3、三角等式的证明:(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端的化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。 二、基本训练 1、已知θ是第三象限角,且445 9 sin cos θθ+=,那么2sin θ等于 ( ) A 、223 B 、223- C 、23 D 、23 - 2、函数23 232 y sin x cos x =--+的最小正周期 ( ) A 、2π B 、π C 、3π D 、4π 3、tan 70cos10(3tan 201)- 等于 ( ) A 、1 B 、2 C 、-1 D 、-2 4、已知46 sin 3cos (4)4m m m αα--=≠-,则实数m 的取值范围是______。 5、设1 0,sin cos 2 απαα<<+=,则cos2α=_____。 三、例题分析 例1、化简: 4221 2cos 2cos 2.2tan()sin () 44 x x x x ππ -+ -+ 例2、设3177cos(),45124 x x π ππ +=<< ,求2sin 22sin 1tan x x x +-的值。 例3、求证:sin(2)sin 2cos().sin sin αββ αβαα +-+=

三角函数公式变换

三角函数公式表 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余 中间1”;记忆方法“对角线上两个函数的积为1;阴影 三角形上两顶点的三角函数值的平方和等于下顶点的三 角函数值的平方;任意一顶点的三角函数值等于相邻两 个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式万能公式 sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα ·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα ·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式三角函数的降幂公式

三角函数公式的推导及公式大全

诱导公式 目录·诱导公式 ·诱导公式记忆口诀 ·同角三角函数基本关系 ·同角三角函数关系六角形记忆法 ·两角和差公式 ·倍角公式 ·半角公式 ·万能公式 ·万能公式推导 ·三倍角公式 ·三倍角公式推导 ·三倍角公式联想记忆 ·和差化积公式 ·积化和差公式 ·和差化积公式推导 诱导公式 ★诱导公式★ 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα

tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈z) 诱导公式记忆口诀 ※规律总结※

(完整版)三角函数化简求值证明技巧

第三讲 一、三角函数的化简、计算、证明的恒等变形的应用技巧 1、网络

2、三角函数变换的方法总结 (1)变换函数名 对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。 【例1】已知θ同时满足和,且a、b 均不为0,求a、b的关系。 练习:已知sin(α+β)=,cos(α-β)=,求的值。 2)变换角的形式 对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。 【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。练习已知,求的值

【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α +β)= 提示:sin[(α+β)-β]=Asin (α+β) (3)以式代值 利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。这其中以“1”的变换为最常见且最灵活。“1”可以看作是sin2x+cos2x, sec2x-tan2x, csc2x -cot2x,tanxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。 【例4】化简: (4)和积互化 积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。这往往用到倍、半角公式。 【例5】解三角方程:sin2x+sin22x=sin23x

二倍角的三角函数的化简与证明

课题:二倍角的三角函数 本节考试要求为B 级 一、知识梳理 1、二倍角公式 =α2sin ;=α2cos ;=α2tan . 2、公式变形 =α2sin ;=α2cos ;=-αcos 1 ; =+αcos 1 ;=-α2sin 1 ;=+α2sin 1 . 3、技巧:(1)巧变角;(2)切化弦;(3)变逆用;(4)幂升降;(5)变结构;(6)1代换;(7)三兄妹. 二、三基能力强化 1、已知5 3 )4sin( = -x π ,则=x 2sin . 2、已知θ是第三象限角,且9 5cos sin 4 4=+θθ,那么θ2sin = . 3、在ABC ?中,6cos 4sin 3=+B A ,1cos 3sin 4=+A B ,则C sin 的值为 . 4、教材习题改编)已知1tan 2tan 1=+-θθ,则=++)4 tan(42tan π θθ . 5、已知βα,均为锐角,且α αα αβsin cos sin cos tan +-=,则=+)tan(βα . 三、典例互动 三角函数式的化简:化简的要求 例1:(1)化简)4 cos(6)4sin( 2x x -+-π π ; (2)α αααα2sin ) 1cos )(sin 1sin (cos +--+ 规律总结: 三角函数式的求值:求值的方法 例2:求值:0 01000 1cos 20sin10(tan 5tan 5)2sin 20-+-- 又如:ο ο ο ο 78sin 66sin 42sin 6sin =

例3:已知),43(ππα∈,3 10 tan 1tan =+αα,求 ) 2 sin(28 2 cos 112 cos 2 sin 82 sin 52 2 π αα α α α --++的 值。 变题:本题条件不变,求 ) 3 sin(cos 22sin 2π ααα- -的值。 例4:已知ββαsin 3)2sin(=+,设x =αtan ,y =βtan ,记)(x f y = (1)求)(x f 的解析式;(2)若角α是一个三角形的最小内角,试求函数)(x f 的值域 四、课堂反馈 1.已知cos2α=1 4 ,则sin 2α=________. 2.2sin2α1+cos2α·cos 2αcos2α 等于________. 3.已知α,β,γ∈(0,π 2),且sin α+sin γ=sin β,cos β+cos γ=cos α,则α-β的值等于________. 4.定义运算a b =ab 2+a 2b ,则sin15°cos15°的值是________. 5.(原创题)已知sin θ=4 5 ,且cos θ-sin θ+1<0,则sin2θ=________. 6.化简:2cos 4x -2cos 2x + 1 2 2tan(π4-x )·sin 2(π 4+x ) .

三角函数公式大全关系

三角函数公式大全关系: 倒数 tanα·cotα=1 sinα·cscα=1 cosα·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式 sin^2(α)+cos^2(α)=1 tan α *cot α=1 一个特殊公式 (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式 我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即 i=h / l, 坡度的一般形式写成 l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作 a(叫做坡角),那么 i=h/l=tan a. 锐角三角函数公式 正弦: sin α=∠α的对边/∠α的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边 二倍角公式 正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)

三角函数式化简

三角函数式化简 孙小龙 所谓三角函数化简,就是灵活运用公式,对复杂的三角函数式进行变形,从而得到较为简单的三角函数式以便于进行问题讨论,所以三角函数式的化简是研究复杂三角函数式的基础。下面我们一起深入探究如何进行三角函数式化简。 方法引导 三角函数式化简通常是最让人头疼的一类题型,因为化简没有明确的方向,很难继续进行。其实化简只要遵守“三看”原则,即能顺利化简。一是看角,二是看名,三是看式子的结构和特征。 (1) 看角的特点,充分利用角之间的关系,尽量向同角转化,利用已知角构建待求角; 如倍角关系、半角关系、互余关系、互补关系等; (2) 看函数名的特点,向同名函数转化,弦切互化; (3) 看式子的结构特点,从整体出发,正用、逆用、变形应用这些公式。另外,根据式 子的特点,还可以使用辅助角公式。 了解了化简原则之后,下面我们开始化简了。 例一 化简f(x)=2cosxsin(x+3 π )-3sin 2x+sinxcosx 分析:首先先看角,式子中的角度不统一,所以首要任务是统一角度,根据式子的结构特点和π 3的特殊性,可以运用两角和的正弦公式将式子展开 f (x )=2cos x sin(x +3 π)-3sin 2 x +sin x cos x ?????→用三角公式展开2cos x (sin x cos 3 π +cos x sin 3 π)-3sin 2 x +sin x cos x = 2sin x cos x +3cos 2 x -3sin 2 x 第一步化简完成后,再次观察式子的结构特点,每一个单项式都是二次的,所以再运用降幂公式把式子变为一次式 2sin x cos x + 3cos 2 x -3sin 2 x ???? →降幂公式 sin2x +3cos2x 继续运用辅助角公式进行彻底化简 sin2x + 3cos2x ????→辅助角公式 2sin(2x + 3 π ). 例二 化简: 42212cos 2cos 2.2tan()sin () 44 x x x x ππ-+ -+ 分析:我们还是先从角度入手,分子上角度统一,分母角度不统一,但仔细观察发现分母中两个角 呈互余关系,再看函数名的特点,我们可以运用诱导公式进行化简;分子上仔细观察结构,提出1 2, 可以得到完全平方式 42212cos 2cos 2.2tan()sin ()44 x x x x ππ-+ -+诱导公式及完全平方式 → 12(4cos x?4cos x+1)242cot(π4+x)sin (π4 +x )2=(2cos x?12)24sin(π4+x)cos(π4+x) 统一角度后,分析式子的结构特点,运用降幂公式进行化简 (2cos x?12) 2 4sin(π4+x)cos(π 4+x) 降幂公式 → 2cos 2x 22sin(π+2x)= 2cos 2x 22cos 2x = 12 cos 2x 我们可以通过两个例题发现化简题目中透露出来的隐藏信息,这就是三角函数式化简要求 最终形式:正弦型函数(通常情况) 化简方法: 1、切割化弦; 2、降幂公式; 3、用三角公式转化出现特殊角; 4、 异角化同角; 5、异名化同名; 6、高次化低次; 7、辅助角公式; 8、分解因式。 任何三角函数式化简只要掌握了化简的原则和要求,遇到化简题就能轻而易举的攻破了,但首先有个前提:熟练掌握常见三角函数变换公式,如同角三角函数变换公式、诱导公式、两角和与差的余弦正弦正切公式、倍角与半角公式、辅助角公式等。同时还要了解其他三角函数变换公式,如三角函数积化和差和和差化积公式、三倍角公式和万能置换公式等。 小试牛刀 1. 化简βαβαβα2cos 2cos 2 1 cos cos sin sin 2222-+。 2. 化简x x x x x x f 2sin 2cos sin cos sin )(2244-++=

三角函数解题技巧和公式(已整理)

浅论关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααc o s s i n 21c o s s i n 2c o s s i n )c o s (s i n 2 22±=±+=±故知道)c o s (s i n αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3 cos sin -= -求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33( cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 4 3133]313)33[(332=?=?+= 2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用: 由于tg θ+ctg θ=θ θθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2= 12+n C .n m 2 2= D .22m n =

三角函数辅助角公式化简

实用文档 7.已知函数()4cos sin 16f x x x π?? =+- ?? ? ,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ?? -??? ?上的最大值和最小值. 8.设函数()() sin 3cos ?cos 2tan x x x f x x π?? +- ? ??= . (1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2π?? ?? ? 上的单调性. 9.已知函数()2 23sin cos 2cos 1f x x x x =-+, (I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[] 0,π上的单调性。 10.已知函数. (1)求 的最小正周期; (2)若关于 的方程在 上有两个不同的实根,求实数 的取值范围. 11.设()2 sin cos cos 4f x x x x π?? =-+ ?? ? . (1)求()f x 的单调递增区间; (2)锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若02A f ?? = ??? , 1a =, 3bc =,求b c +的值. 12.已知函数. (1)求函数 的单调增区间;

实用文档 (2)的内角,,所对的边分别是,,,若,,且的面积为,求的值. 13.设函数. (1)求的最大值,并写出使 取最大值时的集合; (2)已知中,角 的边分别为 ,若 ,求的最小值. 14.已知()( ) 1 3sin cos cos 2 f x x x x ωωω= +-,其中0ω>,若()f x 的最小正周期为4π. (1)求函数()f x 的单调递增区间; (2)锐角三角形ABC 中, ()2cos cos a c B b C -=,求()f A 的取值范围. 15.已知a r =(sinx ,cosx ),b r =(cos φ,sin φ)(|φ|<).函数 f (x )=a r ?b r 且f (3 π -x )=f (x ). (Ⅰ)求f (x )的解析式及单调递增区间; (Ⅱ)将f (x )的图象向右平移3π单位得g (x )的图象,若g (x )+1≤ax +cosx 在x ∈[0, 4 π ] 上恒成立,求实数a 的取值范围. 16.已知向量a v =(2cos 2x ω, 3sin 2x ω),b v =(cos 2x ω,2cos 2 x ω),(ω>0),设函数f (x )=a v ?b v , 且f (x )的最小正周期为π. (1)求函数f (x )的表达式; (2)求f (x )的单调递增区间. 17.已知函数()()sin (0,0,)2 f x A x A π ω?ω?=+>><的部分图象如图所示. (1) 求函数()f x 的解析式; (2) 如何由函数2sin y x =的通过适当图象的变换得到函数()f x 的图象, 写出变换过程; (3) 若142f α??= ???,求sin 6πα?? - ??? 的值. 18.已知函数 (1)求函数在上的单调递增区间; (2)若 且 ,求 的值。

三角函数化简题

4三角函数得化简、求值与证明日期:2009年月日星期 ,能正确地运用三角公式进行三角函数式得化简与恒等式得证明、 用、 (1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③三角公式得逆用等。(2)化简要求:①能求出值得应求出值; ②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数 2、三角函数得求值类型有三类:(1)给角求值:一般所给出得角都就就是非特殊角,要观察所给角与特殊角间得关系,利用三角变换消去非特殊角,转化为求特殊角得三角函数值问题;(2)给值求值:给出某些角得三角函数式得值,求另外一些角得三角函数值,解题得关键在于“变角”,如等,把所求角用含已知角得式子表示,求解时要注意角得范围得讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得得所求角得函数值结合所求角得范围及函数得单调性求得角。 3、三角等式得证明:(1)三角恒等式得证题思路就就是根据等式两端得特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端得化“异”为“同”;(2)三角条件等式得证题思路就就是通过观察,发现已知条件与待证等式间得关系,采用代入法、消参法或 、三角函数得求值: ,化非特殊角为特殊角; ?2、正确灵活地运用公式,通过三角变换消去或约去一些非特殊角得三角函数值; ?3、一些常规技巧:“1”得代换、切割化弦、与积互化、异角化同角等、 1、三角函数式得化简: 三角函数式得化简常用方法就就是:异名函数化为同名三角函数,异角化为同角,异次化为同次,切割化弦,特殊值与特殊角得三角函数互化、 ?2、三角恒等式得证明: 三角恒等式包括有条件得恒等式与无条件得恒等式、①无条件得等式证明得基本方法就就是化繁为简、左右归一、变更命题等,使等式两端得“异”化为“同”;②有条件得:代入法、消去法、综合法、分析法等、 ( A) A、B、C、D、 2、函数得最小正周期( B) A、B、C、D、 3、等于( D) A、1 B、2 C、-1 D、-2 4、已知,则实数得取值范围就就是__[-1,]___。 ____。 ,(),则?( ) ???或 略解:由得或(舍),∴,∴、 例2、已知,就就是第三象限角,求得值、 解:∵就就是第三象限角,∴(), ∵,∴就就是第四象限角,∴, ?∴原式 221 cos(15)sin(15)sin(75)cos(75) 3αααα + =---=+-+=-、 例3、已知,求得值、

三角函数中三角变换常用的方法和技巧1

三角函数中三角变换常用的方法和技巧 一、角的变换 当已知条件中的角与所求角不同时,需要通过“拆”、“配”等方法实现角的转化,一般是寻求它们的和、差、倍、半关系,再通过三角变换得出所要求的结果. 例1 函数ππ2sin cos ()36y x x x ???? =--+∈ ? ????? R 的最小值等于( ) . (A )3- (B )2- (C )1- (D )解析:注意到题中所涉及的两个角的关系:πππ 362 x x ????-++= ? ?????,所以将函数()f x 的表达式转化为πππ()2cos cos cos 666f x x x x ?????? =+-+=+ ? ? ??????? , 故()f x 的最小值为1-.故选(C ). 评注:常见的角的变换有:()ααββ=+-,2()()ααβαβ=++-, 2()αβααβ-=+-,2 2 αβ αβ β+-= - ,3πππ ()442 βααβ????+--=++ ? ?????,ππ44αβαβ? ???++-=+ ? ????? .只要对题设条件与结论中所涉及的角进行仔细的观察,往往 会发现角之间的关系. 例2、已知 βαβαα,,14 11 )cos(,71cos -=+= 均是锐角,求βcos 。 解: 。 。)2 1734143571)1411(cos 1435sin(,734sin . sin )sin(cos )cos(])cos[(cos =?+?-=∴=+=+++=-+=ββαααβααβααβαβ 小结:本题根据问题的条件和结论进行])[(αβαβ-+=的变换。 例3、已知cos(91)2- =-βα,sin(2α-β)=3 2 ,且,20,2πβπαπ<<<<求.2cos βα+ 分析:观察已知角和所求角,可作出)2 ( )2 (2 βα β αβ α--- =+的配凑角变换,然后利用 余弦的差角公式求角。

三角函数平移变换方法张

三角函数平移变换问题的简易判定 三角函数中的正弦、余弦在水平方向上的平移变换、涉及伸缩的平移变换问题是高考命题的热点之一,它主要以选择题的形式出现,为此本文将价绍能迅速、准确做出断定的简易方法. 先来看问题:sin()y A x ω?=+的图象可由sin()y A x ωθ=+(0,0A ω>>)的图象作怎样的变换得到 易知sin()y A x ωθ=+的图象上所有的点都向左( 0?θω->)或向右(0?θ ω -<) 平移θ?ωω-个长度单位得到sin(())y A x ?θ ωθω -=+ +,即sin()y A x ω?=+的图象.而()?θωω---中的 θω- 、? ω -可分别看作令sin()y A x ωθ=+和sin()y A x ω?=+中“角”的位置的代数式值为0所求得的x 的值.显然点(,0)?ω-是所得图象上与原来图象上的点(,0)θω-对应,(,0)θ ω -是被移动的 点(本文约定被告移动的点为“起”),而(,0)? ω -是所得的点(本文约定移动得到的点为“终”),要 从点(,0)θω- 到点(,0)? ω -,得沿x 轴平移()?θωω---个长度单位,其余各对对应点也如此. 由此,我们得到三角函数平移变换问题的第一种类型及其简易判定方法: 类型一、两个都是“弦”,且振幅相同、变量系数相同的同名函数间的平移变换问题. 简易判定方法:在判断sin()y A x ω?=+是由sin()y A x ωθ=+(0,0A ω>>)经过怎样的变换得到时(余弦的亦然),令0x x θωθω+=?=- (起),且令0x x ? ω?ω +=?=-(终).为直观起见,可在x 轴上标出这两个点(注:要明确“起”和“终”),平移方向是由“起”指向“终”,平移的长度单位个数是()?θ ωω - --. 例1. 函数sin(2)6y x π =- 的图象可由函数sin(2)3 y x π =+的图象作怎样的变换得到 解:令203 x π + =得6 x π =- (起),令206 x π - =,得12 x π =- (终)显然sin(2)6 y x π =- 的 图象可由sin(2)3 y x π =+ 的图象向右平移()1264 πππ - --=个单位得到. 我们再来看可转化为类型一的以下两种类型: 类型二、两个都是“弦”,且振幅相同、变量系数相同的异名函数间的平移变换问题.(此时只要

三角函数转换公式

三角函数转换公式 1、诱导公式: sin(-α) = -sinα;cos(-α) = cosα;sin(π/2-α) = cosα;cos(π/2-α) = sinα;sin(π/2+α) = cosα;cos(π/2+α) = -sinα;sin(π-α) = sinα;cos(π-α) = -cosα;sin(π+α) = -sinα;cos(π+α) = -cosα;tanA= sinA/cosA; tan(π/2+α)=-cotα;tan(π/2-α)=cotα; tan(π-α)=-tanα;tan(π+α)=tanα 2、两角和差公式: sin(A±B) = sinAcosB±cosAsinB cos(A±B) = cosAcosB sinAsinB tan(A±B) = (tanA±tanB)/(1 tanAtanB) cot(A±B) = (cotAcotB 1)/(cotB± 3、倍角公式 sin2A=2s inA?cosA cos2A=cosA2-sinA2=1-2sinA2=2cosA2-1 tan2A=2tanA/(1-tanA2)=2cotA/(cotA2-1) 4、半角公式 tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

5、和差化积 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 6、积化和差 sinαsinβ = -1/2*[cos(α-β)-cos(α+β)] cosαcosβ = 1/2*[cos(α+β)+cos(α-β)] sinαcosβ = 1/2*[sin(α+β)+sin(α-β)] cosαsinβ = 1/2*[sin(α+β)-sin(α-β)] 7、万能公式 2 t a n 12t a n 2t a n ,2t a n 12t a n 1c o s ,2t a n 12t a n 2s i n 2222α-α=αα+α-=αα+α=α 同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系: tan α ·cot α=1 sin α ·csc α=1 cos α ·sec α=1 sin α/cos α=tan α=sec α/csc α cos α/sin α=cot α=csc α/sec α sin2α+cos2α=1

三角函数图像变换顺序详解(全面)

《图象变换的顺序寻根》 题根研究 一、图象变换的四种类型 从函数y = f (x)到函数y = A f ()+m,其间经过4种变换: 1.纵向平移——m 变换 2.纵向伸缩——A变换 3.横向平移——变换 4.横向伸缩——变换 一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样. 以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题. 【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到? 【解法1】第1步,横向平移: 将y = sin x向右平移,得 第2步,横向伸缩: 将的横坐标缩短倍,得 第3步:纵向伸缩: 将的纵坐标扩大3倍,得 第4步:纵向平移: 将向上平移1,得 【解法2】第1步,横向伸缩: 将y = sin x的横坐标缩短倍,得y = sin 2x 第2步,横向平移:

将y = sin 2x向右平移,得 第3步,纵向平移: 将向上平移,得 第4步,纵向伸缩: 将的纵坐标扩大3倍,得 【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2中有的变 换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大. 【质疑】对以上变换,提出如下疑问: (1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变? (2)在横向平移和纵向平移中,为什么它们增减方向相反—— 如当<0时对应右移(增方向),而m < 0时对应下移(减方向)? (3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反—— 如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”? 【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m 中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式 (y+) = f (),则x、y在形式上就“地位平等”了. 如将例1中的变成 它们的变换“方向”就“统一”了. 对于疑问(1):在不同的变换顺序中,为什么“伸缩量不变”,而“平移量有变”?这是因为在“一次”替代:x→中,平移是对x进行的. 故先平移(x→)对后伸缩(→)没有影响; 但先收缩(x→)对后平移(→)却存在着“平移”相关. 这

三角函数化一公式例题解析

三角函数化一公式解析 一、化一公式 三角函数化一公式是指如下的三角函数公式: )cos()sin(cos sin 2222θ?-+=++=+x b a x b a x b x a , 其中 2 2sin cos b a a += =θ?,2 2cos sin b a b += =θ?, θ?、 完美地融入直角梯形中。 如果0=ab ,则公式显然成立。不妨假设0≠ab ,则 []), sin( cos sin sin cos cos sin cos sin 2222222 222???++=++=? ?????++++=+x b a x x b a x b a b x b a a b a x b x a 同理可得 )cos(cos sin 22θ-+=+x b a x b x a 。 二、公式的应用 化一公式把含有两个三角函数x sin 、x cos 的线性问题转化成了只含一个三角函数式的问题,从而方便了利用三角函数的有关性质解决最值、单调区间、图象对称轴、对称中心、三角方程、三角不等式、图象变换等方面的有关问题。这些问题均是三角函数的基本问题,但学生往往难以掌握。下面举例说明化一公式的应用及其注意事项。

1、三角函数最值问题 例1、求函数 R x x x x x f ∈+=),cos (sin sin 2)( 的最大值。 解析:142sin 212cos 2sin cos sin 2sin 2)cos (sin sin 22+?? ? ? ?-=+-=+=+πx x x x x x x x x 。 于是,函数的最大值是12+。 例2、求函数 R x x x x f ∈??? ? ? ++??? ??+=,94sin 59sin 3)(ππ 的最大值和最小值。 解析: ) sin(7 )sin(94sin 59sin 394cos 59cos 3 cos 94sin 59sin 3sin 94cos 59cos 394sin 59sin 32 2 ??ππππππππππ+=+??? ??++??? ? ? +=??? ?? ++??? ??+=??? ??++??? ??+x x x x x x 因此,该函数的最大值和最小值分别是7、-7。 例3、已知函数 R x x a x x f ∈++=,4cos sin 2)(

三角函数化简技巧

三角函数化简技巧 一、化简要求: 将一个三角函数式化简,最终结果一般都是出现两种形式:1、一元一次(即类似 B x A y ++=)sin(?ω)的标准形式;2、一元二次(即类似y=A(cosx+B)2 +C )的标准形式。 二、三角化简的通性通法: 1、切割化弦; 2、降幂公式; 3、用三角公式转化出现特殊角; 4、 异角化同角; 5、异名化同名; 6、高次化低次; 7、辅助角公式; 8、分解因式。 三、例题讲解: (例1)f(x)=2cosxsinx+ x x x x cos sin 1sin 2cos 22 +--=_y=A(cosx+B)2+C B x A y ++=)sin(?ω (三角函数化简技巧)-3sin 2 x+sinxcosx 解:f (x )=2cos x sin(x +3 π)-3sin 2x +sin x cos x ?????→用三角公式展开 2cos x (sin x cos 3 π +cos x sin 3 π )- 3sin 2x +sin x cos x ????→降幂公式 sin2x + 3cos2x ????→辅助角公式 2sin(2x + 3 π ). (例2)y =2cos 2 x -2a cos x -(2a +1) 解:y =2cos 2 x -2a cos x -(2a +1) ???→配方 2(cos x -2 a )2-22 42+-a a . (例3)若tan x =2,则 x x x x cos sin 1sin 2cos 22 +--=_______. (例4)sin 4α+cos 4α=_______. 解:sin 4α+cos 4α?? →(sin 2α+cos 2α)2-2sin 2αcos 2α??→1-2 1 sin 22α?? →1-11-cos222α ? =13cos 244 α+. (例5)函数y =5sin x +cos2x 的最大值是_______. (例6)函数y =sin (3 π -2x )+sin2x 的最小正周期是 (例7)f (x )=2cos 2x +3sin2x +a (a 为实常数)在区间[0,2 π ]上的最小值为-4,那么a 的值等于

三角函数恒等变换练习试题和答案解析详解

两角和与差的正弦、余弦、正切 1.利用两角和与差的正弦、余弦、正切公式进行三角变换; 2.利用三角变换讨论三角函数的图象和性质 2.1.牢记和差公式、倍角公式,把握公式特征;2.灵活使用(正用、逆用、变形用)两角和与差的正弦、余弦、正切公式进行三角变换,三角变换中角的变换技巧是解题的关键. 知识点回顾 1. 两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β (C α-β) cos(α+β)=cos_αcos_β-sin_αsin_β (C α+β) sin(α-β)=sin_αcos_β-cos_αsin_β (S α-β) sin(α+β)=sin_αcos_β+cos_αsin_β (S α+β) tan(α-β)=tan α-tan β 1+tan αtan β (T α-β) tan(α+β)=tan α+tan β 1-tan αtan β (T α+β) 2. 二倍角公式 sin 2α=ααcos sin 2; cos 2α=cos 2 α-sin 2 α=2cos 2 α-1=1-2sin 2 α; tan 2α=2tan α 1-tan 2 α . 3. 在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T α±β 可变形为 tan α±tan β=tan(α±β)(1?tan_αtan_β), tan αtan β=1-tan α+tan βα+β=tan α-tan β α-β -1. 4. 函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)= a 2 +b 2 sin(α+φ)或f (α)=a 2 +b 2 cos(α-φ),其中φ可由a ,b 的值唯一确定. [难点正本 疑点清源] 三角变换中的“三变” (1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等. (3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等. 热身训练 1. 已知sin(α+β)=23,sin(α-β)=-15,则tan α tan β 的值为_______.

相关文档
最新文档