模拟电子线路实验报告2012版

模拟电子线路实验报告2012版
模拟电子线路实验报告2012版

网络高等教育《模拟电子线路》实验报告

学习中心:

层次:高中起点专科

专业:

年级:年春/秋季

学号:

学生姓名:

实验一常用电子仪器的使用

一、实验目的

1、了解并掌握模拟电子技术实验箱的主要功能及使用方法.

2、了解并掌握数字万用表的主要功能及使用方法.

3、了解并掌握TDS1002 型数字储存示波器和信号源的基本操作方法

二、基本知识

1.简述模拟电子技术实验箱布线区的结构及导电机制。

布线区面板以大焊孔为主,其周围以十字花小孔结构相结合,构成接点的连接形式,每个大焊孔与它周围的小孔都是相通的。

2.试述NEEL-03A型信号源的主要技术特性。

(1)输出波形:三角波、正弦波、方波、二脉、四脉、八脉、单次脉冲信号;

(2)输出频率:10Hz~1MHz 连续可调;

(3)、幅值调节范围:0~10VP-P 连续可调;

(4)波形衰减:20dB、40dB;

(5)带有6位数字频率计,既可作为信号源的输出监视仪表,也可以作外侧频率计用。

注意:信号源输出端不能短路。

3.试述使用万用表时应注意的问题。

使用万用表进行测量时,应先确定所需测量功能和量程。

确定量程的原则:

(1)知被测参数大致范围,所选量程应“大于被测值,且最接近被测值”。

(2)如果被测参数的范围未知,则先选择所需功能的最大量程测量,根据初测结果逐步把量程下调到最接近于被测值的量程,以便测量出更加准确的数值。如屏幕显示“1” ,表明已超过量程范围,须将量程开关转至相应档位上。

4.试述TDS1002型示波器进行自动测量的方法。

按下“测量”按钮可以进行自动测量。共有十一种测量类型。一次最多可显示五种。按下顶部的选项按钮可以显示“测量1”菜单。可以在“信源”中选择在其上进行测量的通道。可以在“类型”中选择测量类型。测量类型有:频率周期平均值、峰-峰值、均方根值、最小值、最大值、上升时间、下降时间、正频宽、负频宽。

三、预习题

1.正弦交流信号的峰-峰值= 2 ×峰值,峰值

= ×有效值。

2.交流信号的周期和频率是什么关系? 互为倒数,f=1/T ,T=1/f 四、实验内容 1.电阻阻值的测量

表一

2.直流电压和交流电压的测量 表二

3.测试9V 交流电压的波形及参数 表三

4.测量信号源输出信号的波形及参数 表四

五、实验仪器设备

六、问题与思考

1.使用数字万用表时,如果已知被测参数的大致范围,量程应如何选定?

使用数字万用表时,应先确定测量功能和量程,确定量程的原则是:若已知被测参数的大致范围,所选量程应“大于被测值,且最接近被测值”。

2.使用TDS1002型示波器时,按什么功能键可以使波形显示得更便于观测?

TDS1002型示波器时,可能经常用到的功能:自动设置和测量。按“自动设置”按钮,自动设置功能都会获得稳定显示的波形,它可以自动调整垂直刻度、水平刻度和触发设置,更便于观测。按下“测量”按钮可以进行自动测量。共有十一种测量类型。一次最多可显示五种。

实验二晶体管共射极单管放大器

一、实验目的

1、学习单管放大器静态工作点的测量方法。

2、学习单管放大电路交流放大倍数的测量方法。

3、了解放大电路的静态工作点对动态特性的影响。

4、熟悉常用电子仪器及电子技术实验台的使用。

二、实验电路

三、实验原理

(简述分压偏置共射极放大电路如何稳定静态工作点)

R和图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用1B

R组成的分压电路,并在发射极中接有电阻E R,以稳定放大器的静态工作点。当在放大2

B

器的输入端加入输入信号i u后,在放大器的输出端便可得到一个与i u相位相反,幅值被放u,从而实现了电压放大。

大了的输出信号0

四、预习题

在实验电路中,C1、C2和C E的作用分别是什么?

在实验电路中电容C1、C2有隔直通交的作用,C1滤除输入信号的直流成份,C2滤除输出信号的直流成份。

射极电容C E在静态时稳定工作点;动态时短路E R,增大放大倍数。

五、实验内容

1.静态工作点的测试

表一I c=2mA

2.交流放大倍数的测试

表二

3.动态失真的测试

表三

六、实验仪器设备

七、问题与思考

1.哪些电路参数会影响电路的静态工作点?实际工作中,一般采取什么措施来调整工作点?

改变电路参数CC V 、C R 、B1R 、B2R 、E R 都会引起静态工作点的变化。在实际工作中,一般是通过改变上偏置电阻B1R (调节电位器W R )调节静态工作点的。

W R 调大,工作点降低(C I 减小);W R 调小,工作点升高(C I 增大)。

2.静态工作点设置是否合适,对放大器的输出波形有何影响?

静态工作点是否合适,对放大器的性能和输出波形都有很大影响。工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时o v 的负半周将被削底。 工作点偏低则易产生截止失真,即o v 的正半周被缩顶。

实验三集成运算放大器的线性应用

一、实验目的

1、熟悉集成运算放大器的使用方法,进一步了解其主要特性参数意义;

2、掌握由集成运算放大器构成的各种基本运算电路的调试和测试方法;

3、了解运算放大器在实际应用时应考虑的一些问题。

二、实验原理

1.反相比例器电路与原理

由于V o未达饱和前,反向输入端Vi与同向输入端的电压V相等(都是零),因此I=Vi/R1,,再由于流入反向端的电流为零,因此V2=I ×R2 =(Vi ×R2)/R1 ,因此V o=-V2=-(R2/R1) ×Vi。R2如改为可变电阻,可任意调整电压放大的倍数,但输出波形和输入反相

2.反相加法器电路与原理

根据虚地的概念,即

根据虚地的概念,即:vI=0→vN-vP=0, iI=0

3.减法器电路与原理

由1e 输入的信号,放大倍数为31/R R ,并与输出端0e 相位相反,所以

3

011

R e e R =-

由2e 输入的信号,放大倍数为

413

241

,

R R R R R R ++ 与输出端e0相位相,所以

413

02241

[

,]R R R e e R R R +=+

当R1=R2=R3=R4时 e0=e2-e1

三、预习题

在由集成运放组成的各种运算电路中,为什么要进行调零?

为了补偿运放自身失调量的影响,提高运算精度,在运算前,应首先对运放进行调零,即保证输入为零时,输出也为零。

四、实验内容

1.反相比例运算电路

表一

2.反相加法运算电路表二

3.减法运算电路

表三

五、实验仪器设备

六、问题与思考

1.试述集成运放的调零方法。

为了补偿运放自身失调量的影响,提高运算精度,在运算前,应首先对运放进行调零,即保证输入为零时,输出也为零。

2.为了不损坏集成块,实验中应注意什么问题?

实验前要看清运放组件各管脚的位置,切忌正、负电源极性接反和输出端短路,否则将会损坏集成块。

实验四 RC 低频振荡器

一、实验目的

1.掌握桥式RC 正弦波振荡器的电路及其工作原理;

2.学习RC 正弦波振荡器的设计、调试方法;

3.观察RC 参数对振荡频率的影响,学习振荡频率的测定方法

二、实验电路

三、振荡条件与振荡频率

(写出RC 正弦波电路的振荡条件以及振荡频率公式)

RC 正弦波电路的振荡条件它的起振条件为 :1

1f

f R A R =+

应略大于3,f R 应

略大于12R ,其中2//f

w D R R R R =+

震荡频率:01

2f RC

π=

四、预习题

在RC 正弦波振荡电路中, R 、C 构成什么电路?起什么作用?3R 、w R 、4R 构成什么电路?起什么作用?

RC 串、并联电路构成正反馈支路,同时兼作选频网络,引入正反馈是为了满足振荡的相位条件,形成振荡

3R 、w R 及二极管等元件构成负反馈和稳幅环节。引入负反馈是为了改善振荡器的性能。调节电位器w R ,可以改变负反馈深度,以满足振荡的振幅条件和改善波形,利用两个反向并联二极管D1、D2正向电阻的非线性特性来实现稳幅。D1、D2采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。4R 的接入是为了削弱二极管非线性的影响,以改善波形失真。 五、安装测试

表一

六、实验仪器设备

七、问题与思考

1.如何改变RC 正弦波振荡电路的振荡频率?

改变选频网络的参数C 或R ,即可调节振荡频率。一般采用改变电容C 作频率量程切换,而调节R 作量程内的频率细调。

2.RC 正弦波振荡器如果不起振或者输出波形失真,应调节那个参数?如何调?

调整反馈电阻f R (调w R ),使电路起振,且波形失真最小。如不能起振,

说明负反馈太强,应适当加大w R ,使f R 增大;如果电路起振过度,产生非线性失真,则应适当减小w R 。

相关主题
相关文档
最新文档