Cisco snmp配置

Cisco snmp配置
Cisco snmp配置

Cisco snmp配置(2008-12-18 17:49:32)

在IOS的Enable状态下,敲入

config terminal 进入全局配置状态

Cdp run 启用CDP

snmp-server community cisco ro 配置本路由器的只读字串为cisco

snmp-server community secret rw 配置本路由器的读写字串为secret

snmp-server enable traps 允许路由器将所有

snmp-server host IP-address-server traps trapcomm 指定路由器SNMP Trap的接收者IP,发送Trap时采用trapcomm作为字串校验

snmp-server trap-source loopback0 将loopback接口的IP地址作为SNMP Trap的发送源地址

show running

copy running start或write terminal 显示并检查配置

保存配置

配置Cisco设备的SNMP代理

配置Cisco设备上的SNMP代理的步骤如下:

启用SNMP:

configure terminal

snmp-server community rw/ro (example: snmp-server community public ro)

end

copy running-configstartup-config

启用陷阱:

configure terminal

snmp-server enable traps snmp authentication

end

copy running-configstartup-config

配置snmp

#conf t

#snmp-server community cisco ro(只读);配置只读通信字符串

#snmp-server community secret rw(读写);配置读写通信字符串

#snmp-server enable traps ;配置网关SNMP TRAP

#snmp-server host 10.254.190.1 rw ;配置网关工作站地址

在特定主机上使用日志采集软件接收traps信息,traps传送使用162端口

建筑工地扬尘在线监测仪网页配置方法

工地扬尘在线监测仪网页配置 工地扬尘在线监测仪主要由扬尘监测单元、噪声监测单元、气象监测单元、数据采集处理单元、数据传输单元、LED屏显示单元、视频字符叠加单元、数据展示平台组成,实现工地环境参数的监测、展示、数据上传、视频叠加功能,完美对接政府监测平台,从而实现工地环境参数的24小时监管。 1网页配置方法 1.1初次登录 1:设备提供两个功能完全相同的网口(LAN口);配置时可以任意连接一个网口即可; 连接方式一:扬尘主机连接到本地局域网内的交换机或路由器时,用来配置扬尘主机的电脑也需要连接到该局域网内;如果该局域网内已经存在IP为192.168.1.252的设备,请使用连接方式二 连接方式二:将电脑使用一根网线直接连接到扬尘主机的网口;然后将自己电脑的IP配置为192.168.1.1网关配置为:192.168.1.1子网掩码配置为:255.255.255.0, 因针对不同的系统配置电脑IP的方式不一致,可以针对自己的系统通过百度配置电脑IP; 例如:使用的操作系统为win7系统,可以百度搜索:win7修改IP设置 2:设备连接电源,等到RUN灯亮起后; 3:打开浏览器,输入网址:192.168.1.252,出现以下界面;如果没有出现以下界面,几秒钟后重试;

4:输入默认用户名(admin),密码(admin888),点击登录;出现以下界面: 5:给该设备分配空闲有效的IP,及局域网的网关地址,DNS服务器和子网

掩码,点击“提交网络配置”;提示成功后,关闭电源即可,也可以直接进行后续操作,重启需要等待约1分钟; 1.2登录设备 1:设备上电; 2:解压之前下载过的文件,找到服务器搜索软件文件夹,进入,打开扬尘在线监测终端软件 3:点击”搜索设备”,会搜索所有在该局域网中的运行的设备

污水处理厂在线监测系统配置要求

X污水处理厂在线监测系统 配置内容及技术要求 一、建设内容:包括污水处理厂以下子系统 1、进、水口的COD在线监测系统各一套; 2、进、水口的氨氮在线监测系统各一套;(根据当地环保局要求可选); 3、进、水口明渠超声波流量计子系统各一套。 4、数据采集传输系统各一套; 5、进、出水口监测设备用不间断供电(UPS)各一台; 6、进、出水口仪表间安装1.5P空调各一台;(用户自备) 7、进、出水口仪表间各一间;(土建) 8、进、出水口巴歇尔槽制作各一项;(土建) 9、配套管线材料二套。 二、符合相关规范及标准 GB11914-89 《水质化学需氧量测定重铬酸盐法》 HJ/T 15-2007 《环境保护产品技术要求超声波明渠污水流量计》HJ/T 377-2007 《环境保护产品技术要求化学需氧量(CODcr)水 质在线自动监测仪》 HJ/T 353-2007 《水污染源在线监测系统安装技术规范(试行)》HJ/T 354-2007 《水污染源在线监测系统验收技术规范(试行)》HJ/T 355-2007 《水污染源在线监测系统运行与考核技术规范(试 行)》 HJ/T 356-2007 《水污染源在线监测系统数据有效性判别技术规范

(试行)》 HJ/T 212 《污染源在线监控(监测)系统数据传输标准》ZBY120-83 《工业自动化仪表工作条件温度、湿度和大气压力》GB50168-92 《电气装置安装工程电缆线路施工及验收规范》GB50093-2002 《自动化仪表工程施工及验收规范》 三、采用设备技术要求及技术参数 1、仪器类型: ⑴进、出水口COD监测子系统要求采用重铬酸钾消解法,即重铬酸钾、硫酸银、浓硫酸等在消解池中消解氧化水中的有机物和还原性物质,比色法测定剩余的氧化剂,计算出COD值,在满足该方法基础上采用了能克服传统工艺的种种弊端的先进工艺和技术。 ⑵进、出水口流量监测要求可直接安装在室外明渠测量流量,采用超声波回波测距原理,并方便用户和环保主管部门的核对检查。 ⑶数据采集传输子系统要求符合HJ/T 212-2005标准,满足山西省环保厅关于环保监测数据传输技术要求的规定,并具有可扩展多中心传输的功能,模拟量信号采集通道不少于8个。 ⑷不间断电源功率应达3000VA,停电时可延时20分钟,二套。 ⑸进水口仪表间不小于8.4平米,巴歇尔槽符合出水流量要求。 2、主要设备技术参数

各种缓冲液的配制方法

各种缓冲液的配制方法(总5 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

1.甘氨酸–盐酸缓冲液(L ) X 毫升 mol/L 甘氨酸+Y 毫升 mol/L HCI ,再加水稀释至200毫升 甘氨酸分子量 = , mol/L 甘氨酸溶液含克/升。 2.邻苯二甲酸–盐酸缓冲液( mol/L ) X 毫升 mol/L 邻苯二甲酸氢钾 + mol/L HCl ,再加水稀释到20毫升 邻苯二甲酸氢钾分子量 = , mol/L 邻苯二甲酸氢溶液含克/升 3.磷酸氢二钠–柠檬酸缓冲液 Na 2HPO 4分子量 = , mol/L 溶液为克/升。 Na 2HPO 4-2H 2O 分子量 = , mol/L 溶液含克/升。 C 4H 2O 7 ·H 2O 分子量 = , mol/L 溶液为克/升。 4.柠檬酸–氢氧化钠-盐酸缓冲液

①使用时可以每升中加入1克克酚,若最后pH值有变化,再用少量50% 氢氧化钠溶液或浓盐酸调节,冰箱保存。 ② 5.柠檬酸–柠檬酸钠缓冲液( mol/L) 柠檬酸C6H8O7·H2O:分子量, mol/L溶液为克/升。 柠檬酸钠Na3 C6H5O7·2H2O:分子量, mol/L溶液为克/毫升。 6.乙酸–乙酸钠缓冲液( mol/L) Na2Ac·3H2O分子量 = , mol/L溶液为克/升。 7.磷酸盐缓冲液 (1)磷酸氢二钠–磷酸二氢钠缓冲液() Na2HPO4·2H2O分子量 = , mol/L溶液为克/升。 Na2HPO4·2H2O分子量 = , mol/L溶液为克/升。 Na2HPO4·2H2O分子量 = , mol/L溶液为克/升。

配置管理系统

配置管理系统(北大软件 010 - 61137666) 配置管理系统,采用基于构件等先进思想和技术,支持软件全生命周期的资源管理需求,确保软件工作产品的完整性、可追溯性。 配置管理系统支持对软件的配置标识、变更控制、状态纪实、配置审核、产品发布管理等功能,实现核心知识产权的积累和开发成果的复用。 1.1.1 组成结构(北大软件 010 - 61137666) 配置管理系统支持建立和维护三库:开发库、受控库、产品库。 根据企业安全管理策略设定分级控制方式,支持建立多级库,并建立相关控制关系;每级可设置若干个库;配置库可集中部署或分布式部署,即多库可以部署在一台服务器上,也可以部署在单独的多个服务器上。 1. 典型的三库管理,支持独立设置产品库、受控库、开发库,如下图所示。 图表1三库结构 2. 典型的四库管理,支持独立设置部门开发库、部门受控库、所级受控库、所级产品库等,如下图所示。

图表2四级库结构配置管理各库功能描述如下:

以“三库”结构为例,系统覆盖配置管理计划、配置标识、基线建立、入库、产品交付、配置变更、配置审核等环节,其演进及控制关系如下图。 图表3 配置管理工作流程 1.1.2主要特点(北大软件010 - 61137666) 3.独立灵活的多级库配置 支持国军标要求的独立设置产品库、受控库、开发库的要求,满足对配置资源的分级控制要求,支持软件开发库、受控库和产品库三库的独立管理,实现对受控库和产品库的入库、出库、变更控制和版本管理。

系统具有三库无限级联合与分布部署特性,可根据企业管理策略建立多控制级别的配置库,设定每级配置库的数量和上下级库间的控制关系,并支持开发库、受控库和产品库的统一管理。 4.产品生存全过程管理 支持软件配置管理全研发过程的活动和产品控制,即支持“用户严格按照配置管理计划实施配置管理—基于配置库的实际状况客观报告配置状态”的全过程的活动。 5.灵活的流程定制 可根据用户实际情况定制流程及表单。 6.支持线上线下审批方式 支持配置控制表单的网上在线审批(网上流转审批)和网下脱机审批两种工作模式,两种模式可以在同一项目中由配置管理人员根据实际情况灵活选用。 7.文档管理功能 实现软件文档的全生命周期管理,包括创建、审签、归档、发布、打印、作废等,能够按照项目策划的软件文档清单和归档计划实施自动检查,并产生定期报表。 8.丰富的统计查询功能,支持过程的测量和监控 支持相关人员对配置管理状态的查询和追溯。能够为领导层的管理和决策提供准确一致的决策支持信息,包括配置项和基线提交偏差情况、基线状态、一致性关系、产品出入库状况、变更状况、问题追踪、配置记实、配置审核的等重要信息; 9.配置库资源的安全控制 1)系统采用三员管理机制,分权管理系统的用户管理、权限分配、系统操 作日志管理。 2)系统基于角色的授权机制,支持权限最小化的策略; 3)系统可采用多种数据备份机制,提高系统的数据的抗毁性。 10.支持并行开发 系统采用文件共享锁机制实现多人对相同配置资源的并行开发控制。在系统共享文件修改控制机制的基础上,采用三种配置资源锁以实现对并行开发的

OSPF快速重路由配置举例

组网需求 如图1-31所示,Router S 、Router A和Router D属于同一OSPF区域,通过OSPF协议实现网络互连。要求当Router S和Router D之间的链路出现故障时,业务可以快速切换到链路B上。 2. 组网图 图1-31 OSPF快速重路由配置举例(路由应用) 配置步骤 (1)配置各路由器接口的IP地址和OSPF协议 请按照上面组网图配置各接口的IP地址和子网掩码,具体配置过程略。 配置各路由器之间采用OSPF协议进行互连,确保Router S、Router A和Router D之间能够在网络层互通,并且各路由器之间能够借助OSPF协议实现动态路由更新。 具体配置过程略。 (2)配置OSPF快速重路由 OSPF支持快速重路由配置有两种配置方法,一种是自动计算,另一种是通过策略指定,两种方法任选一种。 方法一:使能Router S和Router D的OSPF协议的自动计算快速重路由能力 # 配置Router S。 system-view [RouterS] bfd echo-source-ip 1.1.1.1 [RouterS] ospf 1

[RouterS-ospf-1] fast-reroute auto [RouterS-ospf-1] quit # 配置Router D。 system-view [RouterD] bfd echo-source-ip 4.4.4.4 [RouterD] ospf 1 [RouterD-ospf-1] fast-reroute auto [RouterD-ospf-1] quit 方法二:使能Router S和Router D的OSPF协议的指定路由策略快速重路由能力 # 配置Router S。 system-view [RouterS] bfd echo-source-ip 1.1.1.1 [RouterS] ip ip-prefix abc index 10 permit 4.4.4.4 32 [RouterS] route-policy frr permit node 10 [RouterS-route-policy] if-match ip-prefix abc [RouterS-route-policy] apply fast-reroute backup-interface ethernet 1/1 backup-nexthop 12.12.12.2 [RouterS-route-policy] quit [RouterS] ospf 1 [RouterS-ospf-1] fast-reroute route-policy frr [RouterS-ospf-1] quit # 配置Router D。 system-view

软件配置管理计划

软件配置管理计划示例 计划名国势通多媒体网络传输加速系统软件配置管理计划 项目名国势通多媒体网络传输加速系统软件 项目委托单位代表签名年月日 项目承办单位北京麦秸创想科技有限责任公司 代表签名年月日 1 引言 1.1 目的 本计划的目的在于对所开发的国势通多媒体网络传输加速系统软件规定各种必要的配置管理条款,以保证所交付的国势通多媒体网络传输加速系统软件能够满足项目委托书中规定的各种原则需求,能够满足本项目总体组制定的且经领导小组批准的软件系统需求规格说明书中规定的各项具体需求。 软件开发单位在开发本项目所属的各子系统(其中包括为本项目研制或选用的各种支持软件)时,都应该执行本计划中的有关规定,但可以根据各自的情况对本计划作适当的剪裁,以满足特定的配置管理需求。剪裁后的计划必须经总体组批准。 1.2 定义 本计划中用到的一些术语的定义按GB/T 11457 和GB/T 12504。 1.3 参考资料

◆GB/T 11457 软件工程术语 ◆GB 8566 计算机软件开发规范 ◆GB 8567 计算机软件产品开发文件编制指南 ◆GB/T 12504 计算机软件质量保证计划规范 ◆GB/T 12505 计算机软件配置管理计划规范 ◆国势通多媒体网络传输加速系统软件质量保证计划 2 管理 2.1 机构 在本软件系统整个开发期间,必须成立软件配置管理小组负责配置管理工作。软件配置管理小组属项目总体组领导,由总体组代表、软件工程小组代表、项目的专职配置管理人员、项目的专职质量保证人员以及各个子系统软件配置管理人员等方面的人员组成,由总体组代表任组长。各子系统的软件配置管理人员在业务上受软件配置管理小组领导,在行政上受子系统负责人领导。软件配置管理小组和软件配置管理人员必须检查和督促本计划的实施。各子系统的软件配置管理人员有权直接向软件配置管理小组报告子项目的软件配置管理情况。各子系统的软件配置管理人员应该根据对子项目的具体要求,制订必要的规程和规定,以确保完全遵守本计划规定的所有要求。 2.2 任务

标准溶液的配制方法及基准物质

你标准溶液的配制方法及基准物质 2.2.1标准溶液的配制方法及基准物质 标准溶液是指已知准确浓度的溶液,它是滴定分析中进行定量计算的依据之一。不论采用何种滴定方法,都离不开标准溶液。因此,正确地配制标准溶液,确定其准确浓度,妥善地贮存标准溶液,都关系到滴定分析结果的准确性。配制标准溶液的方法一般有以下两种: 2.2.1.1直接配制法 用分析天平准确地称取一定量的物质,溶于适量水后定量转入容量瓶中,稀释至标线,定容并摇匀。根据溶质的质量和容量瓶的体积计算该溶液的准确浓度。 能用于直接配制标准溶液的物质,称为基准物质或基准试剂,它也是用来确定某一溶液准确浓度的标准物质。作为基准物质必须符合下列要求: (1)试剂必须具有足够高的纯度,一般要求其纯度在99.9%以上,所含的杂质应不影响滴定反应的准确度。

(2)物质的实际组成与它的化学式完全相符,若含有结晶水(如硼砂Na2B4O7?10H2O),其结晶水的数目也应与化学式完全相符。 (3)试剂应该稳定。例如,不易吸收空气中的水分和二氧化碳,不易被空气氧化,加热干燥时不易分解等。 (4)试剂最好有较大的摩尔质量,这样可以减少称量误差。常用的基准物质有纯金属和某些纯化合物,如Cu, Zn, Al, Fe 和K2Cr2O7,Na2CO3 , MgO , KBrO3等,它们的含量一般在99.9%以上,甚至可达99.99% 。 应注意,有些高纯试剂和光谱纯试剂虽然纯度很高,但只能说明其中杂质含量很低。由于可能含有组成不定的水分和气体杂质,使其组成与化学式不一定准确相符,致使主要成分的含量可能达不到99.9%,这时就不能用作基准物质。一些常用的基准物质及其应用范围列于表2.1中。 表2.1 常用基准物质的干燥条件和应用

变电站在线监测配置方案

变电站状态监测系统解决方案 许继昌南通信设备有限公司 2011.11

目录 1、配置表 (1) 2、系统整体方案 (1) 3、产品介绍 (2) 3.1GIS监测相关装置 (3) 3.2变压器监测相关装置 (6) 3.3开关柜监测装置 (10) 3.4避雷器在线监测系统 (14) 3.5站内状态监测主站系统 (14)

1、配置表 根据110kV及以上变电站设备配置监测设备如下: 2、系统整体方案 设备状态监测和诊断的关键是在线监测技术,在线监测技术是实现智能设备状态可视化的必要手段,是状态维修的实现基础,为其提供了实时连续的监测数据和分析依据。有效的在线监测系统可以随时掌握设备的技术状况和劣化程度,避免突发性事故和控制渐发故障的发生,从而提高高压电气设备的利用率,有助于从周期性、预防性维修向状态检修的转变,改善资产管理和设备寿命评估,加强故障原因分析。 在线监测、故障诊断、实施维修整个一系列过程构成了电气设备状态检修工作的内涵。因此,积极发展和应用变电站设备在线监测系统的最终目的就是为了以状态检修取代目前的定期维修,为其提供了分析诊断的依据,是状态维修策略不可或缺的组成部分。智能变电站监测总体方案如下图:

IEC61850-8-1 IEC61850-8-1 智能组件 柜 变电站状态监测典型方案架构 状态监测系统系统结构 1)状态监测系统结构应为网络拓扑的结构形式,变电站内状态监测系统向上作为远方主站的网络终端,同时又相对独立,站内自成系统,层与层之间应相对独立,采用分层、分布、开放式网络系统实现各设备间连接。 2)站控层由状态监测系统综合平台组成,提供站内运行的人机界面,实现监视查看间隔层和过程层设备等功能,形成全站状态监测中心,并与远方主站状态监测系统进行通信。 3)间隔层由计算机网络连接的若干个综合数据集成单元组成(针对专业性较强,数据分析较为复杂的监测项目)。过程层由若干个监测功能组IED及状态监测传感器组成。 站控层综合数据单元均与过程层监测功能组主IED整合为状态监测IED,以减少装置数量,节约场地布置空间。过程层传感器由一次厂家成套。 4)状态监测IED采用IEC61850协议与站控层综合平台通信,各监测IED的评价结果通过站控层网络传输至综合平台,综合平台汇总并综合分析,监测数据文件仅在召唤时传送。 5)站控层综合平台设备与状态监测IED连接采用以太网,通信速率满足技术要求。 6)状态监测IED与过程层传感器的连接采用现场总线,通信速率满足技术要求。

基于MicroBlaze的FPGA重配置系统设计

第7卷第23期2007年12月1671—1819(2007)23—6190—03科学技术与工程 ScienceTechnologyandEngineering V01.7No.23Dec.2007 ⑥2007Sci.Tech.Engng. 基于MicroBlaze的FPGA重配置系统设计 李炜 Jl’ (电子科技大学自动化工程学院,成都610054) 摘要介绍了XilinxFPGA的配置模式和配置原理,提出一种基于MicroBlaze软核处理器的FPGA重配置系统设计方案。该方案灵活简便,具有很高的应用价值。 关键词XilinxFPGAMicroBlaze微处理器重配置 中图法分类号TN919.3;文献标识码A 基于SRAM工艺的FPGA集成度高,逻辑功能强,可无限次重复擦写,被广泛应用于现代数字系统的设计中。基于SRAM工艺的FPGA在掉电后数据会丢失,当系统重新上电时,需要对其重新配置。在系统重构或更换系统工作模式时,往往也需要对FPGA进行在线重配置,以获得更加灵活的设计和更加强大的功能。在这些过程中,如何根据系统的需求,快速高效地将配置数据写入FPGA,对FPGA进行在线重配置,是整个系统重构的关键。 在FPGA的重配置系统设计中,通过外部控制器对FPGA进行在线重配置的方案是上佳选择。在这种方案中,可以由外部控制器模拟FPGA的配置时序,并采用串行化,或者并行化的方式发送FPGA所需要的配置时钟和数据。同时,在配置过程中控制器可以监控配置进程,很好地保证在线重配置的实时陛和高效性。现基于MicroBlaze软核处理器,提出了一种灵活简便的FPGA在线重配置系统设计方案。 1XilinxFPGA配置方式及配置流程实现FPGA的数据配置方式比较多,以Xilinx公司的Virtex-4系列FPGA为例,主要有从串模式、主串模式、8位从并模式、32位从并模式、主并模式及JTAG模式这六种配置方式。这些模式是通过 2007年7月313收到 第一作者简介:李炜(1983一),男,成都电子科技大学自动化 工程学院研究生,研究方向:基于FPGA的嵌入式系统开发。E—mail:kevinway@163.corn。FPGA模式选择引脚M2、M1、M0上设定的电平组合来决定的。 Virtex-4的配置流程主要由四个阶段组成。当系统复位或上电后,配置即开始,FPGA首先清除内部配置存储器,然后采样模式选择引脚M2、M1、M0以确定配置模式,之后下载配置数据并进行校验,最后由一个Start—up过程激活FPGA,进入用户状态。在配置过程中,通过置低Virtex-4的PROG—B引脚可以重启配置过程。在FPGA清除内部配置存储器完毕后,INIT—B引脚会由低电平变高,如果通过外部向INIT_B引脚置低电平,则可以暂停FPGA的配置过程,直到INIrll一B变为高电平。在配置数据下载完毕且FPGA经过Start—up过程启动成功后,其DONE引脚将会由低电平变高。 2从串配置模式及时序 在Virex-4的配置模式中,从串配置模式是最为简便和最容易控制的,本设计就采用从串模式对Virtex-4进行重配置。在从串模式下需要使用到Virtex-4FPGA的几个相应配置管脚,其管脚功能和方向如表1所示。 在从串配置模式下,当MicroBlaze微处理器通过GPIO口输出将PROG_B引脚置为低电平后,Vir.tex-4FPGA将开始复位片内的配置逻辑,这一复位过程持续时间大约为330ns。在PROG_B输入低电平的同时,FPGA将置低INIT_B和DONE信号,表明其正处于配置过程中。片内配置逻辑复位完毕后,

变压器在线监测装置配置分析

分析主变压器的油色谱、温度(光纤测温)、铁芯接地、局部放电、套管介损等五种在线监测,得出配置主变压器在线监测是安全,可靠、经济的结论。 1.前言 大型电力变压器的安全稳定运行日益受到各界的关注,尤其越来越多的大容量变压器进网运行,一旦造成变压器故障,将影响正常生产和人民的正常生活,而且大型变压器的停运和修复将带来很大的经济损失,在这种情况下实时监测变压器的绝缘数据,使变压器长期在受控状态下运行,避免造成变压器损坏,对变压器安全可靠运行具有一定现实意义。 主变压器在线监测主要包括:油色谱、温度(光纤测温)、铁芯接地、局部放电、套管介损监测。 2.变压器油色谱在线监测 变压器油中溶解气体分析是诊断充油电气设备最有效的方法之一,能够及早发现潜在性故障。由于试验室分析的取样周期较长,且脱气误差较大及耗时较多等问题,因此不能做到实时监测、及时发现潜伏性故障,很难满足安全生产和状态检修的要求。油色谱在线监测采用与实验室相同的气相色谱法。能够对变压器油中溶解故障气体进行实时持续色谱分析,可以监测预报变压器油中七种故障气体,包括氢气(H2),二氧化碳(CO2),一氧化碳(CO),甲烷(CH4),乙烯(C2H4),乙烷(C2H6)和乙炔(C2H2)。 该系统目前已广泛应用于变压器的在线故障诊断中,并且建立起模式识别系统可实现故障的自动识别,是当前在变压器局部放电检测领域非常有效的方法。 3.变压器光纤测温在线监测 变压器寿命的终结能力最主要因素是变压器运行时的绕组温度。传统的绕组温度指示仪(WTI)是利用"热像"原理间接测量绕组温度的仪表,安装在变压器油箱顶部感测顶层油温,WTI指示的温度是基于整个变压器的油箱内平均油温的变化,很难反映出绕组温度的快速变化。 光纤测温系统能实时直接地测量绕组热点温度,分布型光纤传感系统测温精度可达1度,非常适合于大型变压器绕组在线测量。其基本原理是将具有一定能量和宽度的激光脉冲耦合到光纤,它在光纤中传输,同时不断产生背向信号。因背向散射光状态受到各点物理、化学效应调制,将散射回来的光波经检测器解调后,送入信号处理系统,便可获得各点温度信息,并且由光纤中光波的传输速度和背向光回波的时间对这些信息定位。这根光纤可数公里长,光纤可进入变压器绕组内。 4.变压器铁芯接地在线监测 变压器铁芯是电—磁—电转换的重要环节,是变压器最重要的部件之一。变压器在运行中,因铁芯叠装工艺欠佳、振动摩擦、导电杂质等原因,造成铁芯片间短路,而导致放电过热和

建筑工地扬尘在线监测仪——网页配置方法

工地扬尘在线监测仪使用方法 ——网页配置方法 工地扬尘在线监测仪主要由扬尘监测单元、噪声监测单元、气象监测单元、数据采集处理单元、数据传输单元、LED屏显示单元、视频字符叠加单元、数据展示平台组成,实现工地环境参数的监测、展示、数据上传、视频叠加功能,完美对接政府监测平台,从而实现工地环境参数的24小时监管。 1网页配置方法 1.1初次登录 1:设备提供两个功能完全相同的网口(LAN口);配置时可以任意连接一个网口即可; 连接方式一:扬尘主机连接到本地局域网内的交换机或路由器时,用来配置扬尘主机的电脑也需要连接到该局域网内;如果该局域网内已经存在IP为192.168.1.252的设备,请使用连接方式二 连接方式二:将电脑使用一根网线直接连接到扬尘主机的网口;然后将自己电脑的IP配置为192.168.1.1网关配置为:192.168.1.1子网掩码配置为:255.255.255.0, 因针对不同的系统配置电脑IP的方式不一致,可以针对自己的系统通过百度配置电脑IP; 例如:使用的操作系统为win7系统,可以百度搜索:win7修改IP设置 2:设备连接电源,等到RUN灯亮起后; 3:打开浏览器,输入网址:192.168.1.252,出现以下界面;如果没有出现以下界面,几秒钟后重试;

4:输入默认用户名(admin),密码(admin888),点击登录;出现以下界面: 5:给该设备分配空闲有效的IP,及局域网的网关地址,DNS服务器和子网掩码,点击“提交网络配置”;提示成功后,关闭电源即可,也可以直接进

行后续操作,重启需要等待约1分钟; 1.2登录设备 1:设备上电; 2:解压之前下载过的文件,找到服务器搜索软件文件夹,进入,打开扬尘在线监测终端软件 3:点击”搜索设备”,会搜索所有在该局域网中的运行的设备

污水处理厂在线监测系统配置要求

污水处理厂在线监测系 统配置要求 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

X污水处理厂在线监测系统 配置内容及技术要求 一、建设内容:包括污水处理厂以下子系统 1、进、水口的COD在线监测系统各一套; 2、进、水口的氨氮在线监测系统各一套;(根据当地环保局要求可选); 3、进、水口明渠超声波流量计子系统各一套。 4、数据采集传输系统各一套; 5、进、出水口监测设备用不间断供电(UPS)各一台; 6、进、出水口仪表间安装空调各一台;(用户自备) 7、进、出水口仪表间各一间;(土建) 8、进、出水口巴歇尔槽制作各一项;(土建) 9、配套管线材料二套。 二、符合相关规范及标准 GB11914-89 《水质化学需氧量测定重铬酸盐法》 HJ/T 15-2007 《环境保护产品技术要求超声波明渠污水流量计》 HJ/T 377-2007 《环境保护产品技术要求化学需氧量(CODcr)水质在 线自动监测仪》 HJ/T 353-2007 《水污染源在线监测系统安装技术规范(试行)》 HJ/T 354-2007 《水污染源在线监测系统验收技术规范(试行)》 HJ/T 355-2007 《水污染源在线监测系统运行与考核技术规范(试 行)》

HJ/T 356-2007 《水污染源在线监测系统数据有效性判别技术规范(试 行)》 HJ/T 212 《污染源在线监控(监测)系统数据传输标准》 ZBY120-83 《工业自动化仪表工作条件温度、湿度和大气压力》GB50168-92 《电气装置安装工程电缆线路施工及验收规范》 GB50093-2002《自动化仪表工程施工及验收规范》 三、采用设备技术要求及技术参数 1、仪器类型: ⑴进、出水口COD监测子系统要求采用重铬酸钾消解法,即重铬酸钾、硫酸银、浓硫酸等在消解池中消解氧化水中的有机物和还原性物质,比色法测定剩余的氧化剂,计算出COD值,在满足该方法基础上采用了能克服传统工艺的种种弊端的先进工艺和技术。 ⑵进、出水口流量监测要求可直接安装在室外明渠测量流量,采用超声波回波测距原理,并方便用户和环保主管部门的核对检查。 ⑶数据采集传输子系统要求符合HJ/T 212-2005标准,满足山西省环保厅关于环保监测数据传输技术要求的规定,并具有可扩展多中心传输的功能,模拟量信号采集通道不少于8个。 ⑷不间断电源功率应达3000VA,停电时可延时20分钟,二套。 ⑸进水口仪表间不小于平米,巴歇尔槽符合出水流量要求。 2、主要设备技术参数 ⑴ DL2001A COD cr在线监测子系统

VNX初始化配置工具VIA介绍和配置指南

VNX初始化配置工具VIA介绍和配置指南 VIA工具是VNX Installation Assist的简写,顾名思义就是VNX的安装配置工具,用来完成对VNX Block或者Unified存储系统进行初始化配置或者升级安装。 VIA是一个运行在笔记本上的Jave编写的图形化工具,主要用途有: ●VNX系统安装完毕后,配置Control station,Data Movers和存储系统 ●支持从Block系统升级Unified存储系统的安装 ●激活License enabler,如CIFS,NFS,Replicator,File Level Retention和SnapSure 等 对于Unified存储系统的配置安装一定要使用VIA工具,如果是单独的Block系统安装配置,可以不使用VIA工具。 对于一套完整的Unified存储系统,在完成连线和加电后,一般使用VIA,可以完成如下的配置工作。 ●设置网络参数(CS和SP有不同的网络参数设置) ●修改缺省的密码等 ●设置Data Mover ●配置远程支持,也就是ESRS,这个在中国客户这里一般很少使用 ●激活各种license ●系统的健康检查 下面是一个利用VIA进行存储系统配置的step by step例子,供大家学习使用。 1.在笔记本桌面启动VIA, 连接VIA和Control station,并配置CS网络和笔记本在同 一子网内。VIA自动搜索没有配置的VNX系统。如下图所示:

2.搜索到没有配置的VNX系统,开始配置File部分,如下图所示,配置Control station 的网络部分。 3.正确配置完毕CS后,系统给出成功提示,如下图所示:

变电站在线监测配置方案

变电站状态监测系统解决方案许继昌南通信设备有限公司

目录 1、配置表 (1) 2、系统整体方案 (1) 3、产品介绍 (3) GIS监测相关装置 (3) 变压器监测相关装置 (6) 开关柜监测相关装置 (11) 避雷器在线监测系统ALM-800 (14) 站内状态监测主站系统CBS-8000 (14)

1、配置表 根据110kV及以上变电站设备配置监测设备如下: 监测对象监测设备名称型号功能单 位数 量 备注 GIS 断路器储能机 构监测 BSM-800 断路器储能机构监测台GIS局放监测DTM-800 GIS局部放电监测台 SF6微水密度 监测 SF6-800 SF6密度、微水监测台 变压器变压器油色谱 监测单元TS3000 监测主变油中6种故障 气体:H2、CO、CH4、 C2H4、C2H6、C2H2; 台 铁芯接地监测单元TIM-800 变压器铁芯接地电流监 测; 台 在线油过滤TOF 有载分接开关油过滤台 变压器局放监 测 PD-MAT400 变压器局部放电监测台套管监测CIM-800 套管监测 开关柜开关真空泡监 测VM-100 真空断路器真空泡真空 度在线监测 台 无线测温监测XJCW-900 开关柜触头附近温度监 测 台 储能机构监测BSM-800 台 避雷器在线 监测系统 避雷器监测ALM-800 避雷器在线监测只 变电站主站 系统 后台分析系统CBS-8000 集中监视及数据上传套 2、系统整体方案 设备状态监测和诊断的关键是在线监测技术,在线监测技术是实现智能设备状态可视化的必要手段,是状态维修的实现基础,为其提供了实时连续的监测数据和分析依据。有效的在线监测系统可以随时掌握设备的技术状况和劣化程度,避免突发性事故和控制渐发故障的发生,从而提高高压电气设备的利用率,有助于从周期性、预防性维修向状态检修的转变,改善资产管理和设备寿命评估,加强故障原因分析。 在线监测、故障诊断、实施维修整个一系列过程构成了电气设备状态检修工作的内涵。因此,积极发展和应用变电站设备在线监测系统的最终目的就是为了以状态检修取代目前的定期维修,为其提供了分析诊断的依据,是状态维修策略不可或缺的组成部分。智能变电站监测总体方案如下图:

重配置学习心得

动态部分可重配置——学习心得2008-03-0323:48 在xup v2p板子上进行动态部分可重配置开发已经有一段时间了,但是进展甚缓。而仔细回想, 发现我们大多数时间浪费了在工具的版本问题上。 ISE软件功能非常强大,然而其自身各种版本之间的兼容性却让人不敢恭维,尤其是在不常用的一 些功能上(例如动态部分可重配置)。 网上以及xilinx提供的参考设计xapp290都是基于ise的较低版本来实现的,我们最初设计却选择了ISE9.1,在实现动态部分可重配置时遇到了许多问题。 首先的问题是有关动态部分可重配置的资料太少了,想要找点参考来实现都是很困难。 其次,经过在网路上的仔细搜索,找到一些参考设计,然而直接想要按照参考设计来实现是不行的, 最大的问题在于总线宏(busmacro)不兼容。 第三,于是使用fpga editor来打开参考例子中的.nmc文件,却被告知数据被损坏,无法打开。 第四,然后想到使用fpga editor来实现自己的总线宏,于是按照总线宏(busmacro)的有关约束和定义,在fpga editor中使用TBUF来实现了一个自己设计的4bits总线宏。 第五,想要和参考例子相比较,看自己的设计是否有误。使用xdl-ncd2xdl将nmc文件转换为xdl文件,参考xdl的语法将其改为相应的设计,但是再次转化为nmc文件,通过fpga editor打开却发现有些连接被改得不像正确的。所以,我对ISE9.1版本xdl语法是否有所更新心存疑问。 第六,先不管总线宏是否设计正确,先做一个设计实现一下。按照module based的设计流程开发,按照其说明,全局资源时钟是可以不用在初始预算中进行位置约束的,但是在最后实现阶段,无论如何也过不了DRC检查。报告称全局时钟及全局逻辑1没有完全被布线。很是疑惑,global_logic1设计中似乎 并没有使用。 总之,由于软件的版本问题,我们在此耗费了很多时间。 希望对这方面有所研究的高手,给予指点。谢谢! 时间越来越紧,然而项目的进展却缓慢异常,局部动态可重配置的困难主要还停留在工具的问题上。 可以说,XILINX近年来对局部动态可重配置(Partial Dynamic Reconfiguration)是越来越重视了。这主要体现在其局部动态可重配置的开发流程以及开发工具的更新速度上。ISE6.3版本的局部动态可重配置开发流程是以XAPP290为参考设计,实现Module based和Increment based的两种开发流程,这两种开发流程对设计者来说是苛刻的,有很多限制条件,如面积约束的限制、总线宏(Bus Macro)的实现及约束、脚本文件的编译等等。8.1版本以后,XILINX提出了新的局部动态可重配置开发流程EAPR (Early Access Partial Reconfiguration),相应的推出了对应的辅助开发工具PlanAhead以及可重配置patch。 软件的更新本是无可厚非的,然而对于我们项目来说却不是什么好事。我们使用的是校园网,基本

智能变电站二次系统配置工具

Q/GDW XXXXX—XXXX 目次 目次....................................................................................................................................................... I 前言...................................................................................................................................................... II 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 缩略语 (1) 5 总则 (2) 6 配置工具技术要求 (2) 7 一致性测试 (4) 附录 A 配置工具测试用例(规范性附录) (6) A.1 系统配置工具测试用例 (6) A.2 IED配置工具测试用例 (8) A.3 装置测试用例 (9) 附录 B 测试用例步骤(资料性附录) (10) B.1 SCD文件导入测试 (10) I

前言 本标准规范了智能变电站二次系统配置工具的功能,同时给出了配置工具一致性测试方法及测试用例,便于智能变电站设计、配置、调试、运行和维护。本标准的制定主要是依据DL/T 860《变电站通信网络和系统》、Q/GDW 1396《IEC 61850工程继电保护应用模型》等标准的有关规定,以及国内智能变电站二次设备设计、配置、调试、运行和维护的工程经验与相关要求。 本标准由国家电力调度控制中心提出并解释。 本标准由国家电网公司科技部归口。 本标准主要起草单位:。 本标准主要起草人:。 本标准首次发布。 本标准在执行过程中的意见或建议反馈至国家电网公司科技部。

RRC连接重配置

5.3.5 RRC 连接重配置 5.3.5.1 概述 该过程 旨在修改RRC连接,例如,建立/修改/释放RB,进行切换,准备/修改/释放测量。作为该过程的部分,NAS 专用信息可以从E-UTRAN 传输给UE。 5.3.5.2 初始化 E-UTRAN对处在RRC_CONNECTED状态下的UE发起RRC连接重配置过程,如下: - 仅当AS安全已经被激活时,才包含mobilityControlInfo,并建立SRB2以及至少一个DRB,且不会挂起; - 仅当AS安全已经被激活时,才包含RB的建立(与SRB1不同,在RRC连接建立时就建立过了); 5.3.5.3 UE接收不包含mobilityControlInfo的RRCConnectionReconfiguration 如果RRCConnectionReconfiguration消息不包含mobilityControlInformation,且UE遵守消息中的配置,UE应: 1> 如果在RRC 连接重建立成功完成之后,如果这是第一条RRCConnectionReconfiguration消息,那么: 2> 如果存在,为SRB2和所有DRB重建PDCP; 2> 如果存在,为SRB2和所有DRB重建PDCP; 2> 如果RRCConnectionReconfiguration消息中包含fullConfig: 3> 根据5.3.5.8,执行无线配置流程; 2> 如果RRCConnectionReconfiguration消息包含radioResourceConfiguration: 3> 执行5.3.10节中描述的无线资源配置过程; 2> 如果存在,恢复挂起的SRB2和所有DRB; 注1:PDCP重建成功后,处理RB,如重传没有确认的PDCP SDU(以及关联的状态报告)如TS 36.323 [8]中有描述。 1> 否则: 2> 如果RRCConnectionReconfiguration消息包括radioResourceConfigDedicated: 3> 执行5.3.10节所述的无线资源配置过程; 注2:如果RRCConnectionReconfiguration消息包含除SRB1外的RB建立,UE可立即使用这些RB,无需等待SecurityModeComplete消息的确认。 1> 如果RRCConnectionReconfiguration消息包含dedicatedInfoNASList: 2> 按其顺序将dedicatedInfoNASList每个元素发送给上层; 1> 如果RRCConnectionReconfiguration消息包含measConfig: 2> 根据5.5.2节描述进行测量配置过程; 1>如果RRCConnectionReconfiguration消息包含reportProximityConfig: 2> 根据接收到的reportProximityConfig执行邻近指示; 1> 使用新的配置,将RRCConnectionReconfigurationComplete消息提交给底层传输,此过程结束。

FPGA器件的在线配置方法

摘要:介绍基于sram lut结构的fpga器件的上电配置方式;着重介绍采用计算机串口下载配置数据的方法和at89c2051单片机、串行eeprom组成的串行配置系统的设计方法及实现多任务电路结构中配置的方法,并从系统的复杂度、可靠性和经济性等方面进行比较和分析。关键词:配置可编程逻辑器件 fpga 在线配置引言 在当今变化的市场环境中,产品是否便于现场升级,是否便于灵活使用成为产品能否进入市场的关键因素。在这种背景下,altera公司的基于sram lut结构的fpga器件得到了广泛的应用。虽然这些器件应用广泛,但由于其内部采用sram工艺,它的配置数据存储在sram中。由于sram的易失性,每次系统上电时,必须重新配置数据,即icr(in-circuit reconfigurability),只有在数据配置正确的情况下系统才能正常工作。在线配置方式一般有两类:一是通过下载电缆由计算机直接对其进行配置,二是通过配置芯片对其进行配置。通过pc机对fpga进行在系统重配置,虽然在调试时非常方便,但在应用现场是很不现实的。上电后,自动加载配置对fpga应用来说是必需的。altera公司提供的配置芯片有一次可编程型和可擦除编程型两种:一次可编程型芯片只能写入一次,不适合开发阶段反复调试、修改及产品的方便升级;可擦除编程型价格昂贵,且容量有限,对容量较大的可编程逻辑器件,需要多片配置芯片组成菊花链形进行配置,增加系统设计的难度。为了降低成本,目前在开发阶段多用可擦除型配置芯片;最终产品用不可擦写的配置芯片,但一次简单的代码更换就需要更换一次器件,这在产品升级时很不实用。至今还没有低成本的配置芯片出现,而我们采用的这套配置方案充分考虑了在fpga实际使用中,对设计的保密性和设计的可升级的要求,不但可以实现代替价格昂贵的不可擦写和可擦写配置芯片,而且可以实现多任务电路结构重配置。该方案有pc机控制程序、单片机和外部串行存储器组成,只要通过替换外部串行存储器,就可实现对不同容量的多种配置芯片的代替。pc机是用来将配置数据写入存储器的,在写好数据后该配置系统不再需要pc机的控制,在单片机的控制下实现icr或多任务电路结构重配置。多任务电路结构重配置即将多个配置文件分区存储到外部存储器中,然后由单片机接收不同的命令,以选择读取不同存储器区的数据下载到fpga器件,实现在线配置成多种不同的工作模式。 图1 1 fpga器件的配置方式和配置文件altera公司生产的具有icr功能的fpga器件有flex6000、flex10k、apex和acex等系列。它们的配置方式可分为ps(被动串行)、pps(被动并行同步)、ppa(被动并行异步)、psa(被动串行异步)和jtag(joint test action group)等五种方式。这五种方式都能适用于单片机配置。ps方式因电路简单,对配置时钟的要求相对较低,而被广泛应用。我们的配置方案也采用ps配置方式来实现icr功能,图1是ps配置方式的时序图。被动串行工作过程:当nconfig产生下降沿脉冲时启动配置过程,在dclk上升沿,将数据移入目标芯片。在配置过程中,系统需要实时监测,一旦出现错误,nstatus将被拉低,系统识别到这个信号后,立即重新启动配置过程。配置数据全部正确地移入目标芯片内部后,conf_done信号跳变为高,此后,dclk必须提供几个周期的时钟(具体周期数与dclk的频率有关),确保目标芯片被正确初始化,进入用户工作模式。altera 的max+plus ii或quartus ii开发工具可以生成多种配置或编译文件,用于不同配置方法的配置系统,而对于不同系列的目标器件配置数据的大小也不同,配置文件的大小一般有.rbf 文件决定。.rbf文件即二进制文件。该文件包括所有的配置数据,一个字节的 .rbf文件有8位配置数据,每一字节在配置时最低位最先被装载。微处理器可以读取这个二进制文件,并把它装载到目标器件中。altera提供的软件工具不自动生成 .rbf文件,须按照下面的步骤生成:①在max+plus ii编译状态,选择文件菜单的变换sram目标文件命令;②在变换sram目标文件对话框,指定要转换的文件并且选择输出文件格式为 .rbf(sequential),然后确定。 3.2 icr控制电路软件在图3介绍的icr控制电路中,其存储fpga配置数据的

相关文档
最新文档