几何中与中点有关的模型,四种常见中点模型辅助线方法

几何中与中点有关的模型,四种常见中点模型辅助线方法
几何中与中点有关的模型,四种常见中点模型辅助线方法

初中几何辅助线技巧大全

初中几何辅助线技巧大全 一初中几何常见辅助线口诀 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 四边形 平行四边形出现,对称中心等分点。梯形问题巧转换,变为△和□。 平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆形 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。 注意点 辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。 二 由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地 去猜想,按一定的规律去尝试。下面就几何中常见的定理所涉及到的辅助线作以介绍。 如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。 例1. 如图1-2,AB//CD ,BE 平分∠BCD ,CE 平分∠BCD ,点E 在AD 上,求证:BC=AB+CD 。 图1-1 B D B C

初中几何做辅助线知识点

初中几何做辅助线知识点 中点问题: 说明:当考试题目中出现了“中点”两个字的时候,同学们可以构造:中位线、倍长中线、斜边中线、三线合一这四种辅助线。当然如果题目非常难,很有可能同时构造这四种辅助线当中的两种甚至三种。 梯形构造辅助线的8种方法: 说明: 平移一腰:当梯形的两个底角互余时,可以选择平移一腰,把一个梯形分割成一个平行四边形和一个直角三角形。 做双高:当梯形的底角出现特殊角时,可以构造高。

构造底边中点:目的构造三个全等等边三角形。 平移对角线:当已知出现“上底加下底”,并且题目中出现对角线时,可选择平移对角线。 取一腰中点:当已知出现“上底加下底”,并且题目中无对角线时,可取一腰中点。 过上底中点平移两腰:目的构造直角三角形。 过腰中点:可构造平行四边形 延长两腰:构造三角形(可能出现三线合一) 三大变换: 说明:三大变换是初中几何的精华所在,在初三的上学期期末,一模考试以及中考中都占有很重要的位置,初二的期末考试开始逐渐向初三过度,同学们在平常的联系中也会感觉到运用三大变换进行解题的方便,故而在此次期末考试复习中,一定要尽快熟悉起三大变换。 1、平移:平移模型有三种。 a)“相等线段相交模型”我们需要通过平移将两条线段构造成共顶点的图形,进而构造出三角形去凸显条件。 b)“相等线段不相交模型”此类模型的辅助线构造方法与第一种类似,都是通过平移线段使得两条线段共顶点,进而解决问题。实际上平移线段就是构造平行四边形,而我们

初二的学习重点就是平行四边形,所以在复习过程中有关平移的题目一定不能马马虎虎。 c)当题当中出现了两条相等的线段并且相等线段共线或平行时,可选择平移。 2、旋转:一般来说旋转的模型都有着“共顶点的等长线短”这个特点,当然有些很难的题目没有这种特点那么我们则需要去将此特点构造出来,例如费马点的证明。当同学们做了很多有关旋转的题目之后可以总结出来哪些题目比较“像”能有旋转做出来的题,要多总结一些模型,例如半角模型,构造等边三角形的模型等等。下面说一些关键点给同学们参考。 a)确定有没有“共顶点等长线短”,没有则需要构造。 b)确定要旋转谁。一般来说旋转对象为等长线短其中一条所在的三角形。 c)确定转多少度。这个度数基本上由等长线短的夹角决定。 d)确定旋转之后的等量关系以及是否需要添加其他辅助线以构成特殊图形。 3、轴对称:轴对称是我们初二上学期的学习内容,期末也会考察希望同学们不要遗忘掉这部分知识。下面给出几种常见考虑要用或作轴对称的基本图形。 a)线段或角度存在2倍关系的,可考虑对称。 b)有互余、互补关系的图形,可考虑对称。 c)角度和或差存在特殊角度的,可考虑对称。

小学数学常见几何模型典型例题及解题思路

* 小学数学常见几何模型典型例题及解题思路(1) 巧求面积 常用方法:直接求;整体减空白;不规则转规则(平移、旋转等);模型(鸟头、蝴蝶、漏斗等模型);差不变 1、ABCG 是边长为12厘米的正方形,右上角是一个边长为6厘米的正方形FGDE ,求阴影部分的面积。答案:72 A H F E C B I D G 思路:1)直接求,但是阴影部分的三角形和四边形面积都无法直接求;2)整体减空白。关键在于如何找到整体,发现梯形BCEF 可求,且空白分别两个矩形面积的一半。 2、在长方形ABCD 中,BE=5,EC=4,CF=4,FD=1。△AEF 的面积是多少答案:20 |

A D B F C E 思路:1)直接求,无法直接求;2)由于知道了各个边的数据,因此空白部分的面积都可求 3、如图所示的长方形中,E 、F 分别是AD 和DC 的中点。 (1)如果已知AB=10厘米,BC=6厘米,那么阴影部分面积是多少平方厘米答案: (2)如果已知长方形ABCD 的面积是64平方厘米,那么阴影部分的面积是多少平方厘米答案:24 B C D F E 思路(1)直接求,无法直接求;2)已经知道了各个边的数据,因此可以求出空白的位置;3)也可以利用鸟头模型 4、正方形ABCD 边长是6厘米,△AFD (甲)是正方形的一部分,△CEF (乙)的面积比△AFD (甲)大6平方厘米。请问CE 的长是多少厘米。答案:8 @

A B D C F 思路:差不变 5、把长为15厘米,宽为12厘米的长方形,分割成4个三角形,其面积分别为S 1、S 2、S 3、S 4,且S 1=S 2=S 3+S 4。求S 4。答案:10 D C E F S 1 S 2 S 3 S 4 思路:求S4需要知道FC 和EC 的长度;FC 不能直接求,但是DF 可求,DF 可以由三分之一矩形面积S1÷AD ×2得到,同理EC 也求。最后一句三角形面积公式得到结果。 6、长方形ABCD 内的阴影部分面积之和为70,AB=8,AD=15。求四边形EFGO 的面积。答案10。 A B C D F O E G 思路:看到长方形和平行四边形,只要有对角线,就知道里面四个三

初中数学9大几何模型

初中数学九大几何模型 一、手拉手模型----旋转型全等 (1)等边三角形 【条件】:△OAB 和△OCD 均为等边三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形 【条件】:△OAB 和△OCD 均为等腰直角三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形 【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB 【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AED O D E 图 1 O A B C D E 图 2 O A B C D E 图 1 O A C D E 图 2 O A B C D E O C D E 图 1 图 2

二、模型二:手拉手模型----旋转型相似 (1)一般情况 【条件】:CD ∥AB , 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEA=∠BOA (2)特殊情况 【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BE=∠BOA ; ③ ===OA OB OC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有22 22CD AB B C AD +=+;⑥BD AC 2 1 S △BCD ?= 三、模型三、对角互补模型 (1)全等型-90° 【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 2 1 S S S =+= 证明提示: ①作垂直,如图2,证明△CDM ≌△CEN ②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21 S S =- O C O C D E O B C D E O C D A O B C D E 图 1 A O B C D E M N 图 2 A O B C D E F 图 3 A O B C D E M N 图 4

初中几何辅助线大全 最全

三角形中作辅助线的常用方法举例 一、延长已知边构造三角形: 例如:如图7-1:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 分析:欲证 AD =BC ,先证分别含有AD ,BC 的三角形全等,有几种方案:△ADC 与△BCD ,△AOD 与△BOC ,△ABD 与△BAC ,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。 证明:分别延长DA ,CB ,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD (已知) ∴∠CAE =∠DBE =90° (垂直的定义) 在△DBE 与△CAE 中 ∵?? ???=∠=∠∠=∠)()() (已知已证公共角AC BD CAE DBE E E ∴△DBE ≌△CAE (AAS ) ∴ED =EC EB =EA (全等三角形对应边相等) ∴ED -EA =EC -EB 即:AD =BC 。 (当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。) 二 、连接四边形的对角线,把四边形的问题转化成为三角形来解决。 三、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图9-1:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 分析:要证BD =2CE ,想到要构造线段2CE ,同时CE 与 ∠ABC 的平分线垂直,想到要将其延长。 证明:分别延长BA ,CE 交于点F 。 ∵BE ⊥CF (已知) ∴∠BEF =∠BEC =90° (垂直的定义) 在△BEF 与△BEC 中, 1 9-图D C B A E F 1 2 A B C D E 1 7-图O

与中点有关的辅助线与模型

题型切片(三个)对应题目 题型目标三角形中位线例1,例2,例7,练习1,练习2,练习3;中点四边形例3,练习4; 直角三角形斜边中线例4,例5,例6,练习5. 题型切片 知识互联网 与中点有关的几何辅助线与模型

E D C B A F A B C E G E D C B A F E D C B A 三角形中位线 定义:连接三角形两边中点的线段; 定理:三角形中位线平行于三角形的第三边且等于第三边的一半. 如图:若DE 为ABC △的中位线,则DE BC ∥,且1 2 DE BC = 三角形中位线中隐含的重要性质: ①一个三角形有三条中位线. ②三角形的三条中位线将原三角形分割成四个全等的三角形. ③三角形的三条中位线将原三角形划分出三个面积相等的平行四边形. ④三角形的三条中位线组成一个三角形,其周长为原三角形周长的一半,其面积为原三角形面积的四分之一. 如图:EF 、GE 、GF 是ABC △的三条中位线,则有 ①AEG EBF GFC FGE △≌△≌△≌△ ②AEFG EBFG EFCG S S S ==平行四边形平行四边形平行四边形 ③12EFG ABC C C =△△,1 4 EFG ABC S S =△△ 【引例】 如图,已知ABC △,D E 、分别是AB AC 、的中点,求证:DE BC ∥且1 2 DE BC =. 【解析】 延长DE 到点F ,使EF=DE ,连接FC ,DC ,AF . ∵AE=EC ∴四边形ADCF 是平行四边形 ∴CF//DA 且CF=DA , CF //BD 且CF=BD 例题精讲 思路导航 题型一:三角形中位线

全等三角形常见的几何模型

1、绕点型(手拉手模型) (1)自旋转:?????? ?,造中心对称遇中点旋 全等遇等腰旋顶角,造旋转 ,造等腰直角 旋遇,造等边三角形旋遇自旋转构造方法00 00018090906060 (2 )共旋转(典型的手拉手模型) 例1、在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC ( 3) AE 与DC 的夹角为60。 (4) △AGB ≌△DFB (5) △ EGB ≌△CFB (6) BH 平分∠AHC (7) GF ∥AC 变式练习1、如果两个等边三角形△ABD 和△BCE ,连接 AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC (3) AE 与DC 的夹角为60。 (4) AE 与DC 的交点设为H,BH 平分∠AHC 变式练习2、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1)△ABE ≌△DBC (2)AE=DC (3)AE 与DC 的夹角为60。 (4)AE 与DC 的交点设为H,BH 平分∠AHC

3、(1)如图1,点C 是线段AB 上一点,分别以AC ,BC 为边在AB 的同侧作等边△ACM 和△CBN ,连接AN ,BM .分别取BM ,AN 的中点E ,F ,连接CE ,CF ,EF .观察并猜想△CEF 的形状,并说明理由. (2)若将(1)中的“以AC ,BC 为边作等边△ACM 和△CBN ”改为“以AC ,BC 为腰在AB 的同侧作等腰△ACM 和△CBN ,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由. 例4、例题讲解: 1. 已知△ABC 为等边三角形,点D 为直线BC 上的一动点(点D 不与B,C 重合),以AD 为边作菱形ADEF(按A,D,E,F 逆时针排列),使∠DAF=60°,连接CF. (1) 如图1,当点D 在边BC 上时,求证:① BD=CF ? ②AC=CF+CD. (2)如图2,当点D 在边BC 的延长线上且其他条件不变时,结论AC=CF+CD 是否成立?若不成立,请写出AC 、CF 、CD 之间存在的数量关系,并说明理由; (3)如图3,当点D 在边BC 的延长线上且其他条件不变时,补全图形,并直接写出AC 、CF 、CD 之间存在的数量关系。 2、半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。 例1、如图,正方形ABCD 的边长为1,AB,AD 上各存在一点P 、Q ,若△APQ 的周长为2, 求PCQ 的度数。 Q

初中几何辅助线大全(很详细哦)

初中几何辅助线一克胜秘籍 等腰三角形 1?作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法; 2?作一腰上的高; 3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。梯形 1. 垂直于平行边 2. 垂直于下底,延长上底作一腰的平行线 3. 平行于两条斜边 4. 作两条垂直于下底的垂线 5. 延长两条斜边做成一个三角形 菱形 1. 连接两对角 2.做高 平行四边形 1. 垂直于平行边 2. 作对角线一一把一个平行四边形分成两个三角形 3. 做高一一形内形外都要注意 矩形 1. 对角线 2.作垂线 很简单。无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB, 就好了。还有一些关于平方的考虑勾股,A字形等。 三角形 图中有角平分线,可向两边作垂线(垂线段相等)。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。 解几何题时如何画辅助线? ①见中点引中位线,见中线延长一倍 在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。 ②在比例线段证明中,常作平行线。 作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。 ③对于梯形问题,常用的添加辅助线的方法有 1、过上底的两端点向下底作垂线 2、过上底的一个端点作一腰的平行线 3、过上底的一个端点作一对角线的平行线 4、过一腰的中点作另一腰的平行线 5、过上底一端点和一腰中点的直线与下底的延长线相交 6、作梯形的中位线 7、延长两腰使之相交 四边形 平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。 平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线 初中数学辅助线的添加浅谈 人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件 不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立 已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用

初中几何常见九大模型解析(完美版)

初中几何常见九大模型解析(完美版) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初中几何常见九大模型解析 模型一:手拉手模型-旋转型全等 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。 (2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②; ?③平分。 (3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②; ?③平分 模型二:手拉手模型-旋转型相似 (1)一般情况 ?条件:,将旋转至右图位置 ?结论: ?右图中①; ?②延长AC交BD于点E,必有

(2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有;③; ④; ⑤连接AD、BC,必有; ⑥(对角线互相垂直的四边形) 模型三:对角互补模型 (1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE;②; ③ ?证明提示: ①作垂直,如图,证明; ②过点C作,如上图(右),证明; ?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变); ②;③ 此结论证明方法与前一种情况一致,可自行尝试。 (2)全等型-120° ?条件:①; ?②平分; ?结论:①;②; ?③

?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等边三角形。 (3)全等型-任意角 ?条件:①;②; ?结论:①平分;②; ?③. ?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①;②;③; 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 ?对角互补模型总结: ①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线; ②初始条件“角平分线”与“两边相等”的区别; ③两种常见的辅助线作法; ④注意平分时,相等如何推导? 模型四:角含半角模型90° (1)角含半角模型90°-1 ?条件:①正方形;②; ?结论:①;②的周长为正方形周长的一半; 也可以这样: ?条件:①正方形;② ?结论:

中考数学常见几何模型简介精编版

几何问题 初中几何常见模型解析 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。(2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②;③平分。(3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②;③平分。?

(1)一般情况 ?条件:,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有 (2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有; ③;④;⑤连接AD、BC,必有 ; ⑥(对角线互相垂直的四边形) ?

(1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE; ②;③ ?证明提示: ①作垂直,如图,证明; ②过点C作,如上图(右),证明;?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变);②;③此结论证明方法与前一种情况一致,可自行尝试。

(2)全等型-120° ?条件:①;②平分; ?结论:①;②;③ ?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等边三角形。 ?当的一边交AO的延长线于点D时(如上图右): 原结论变成:①; ②; ③; 可参考上述第②种方法进行证明。 (3)全等型-任意角 ?条件:①;②; ?结论:①平分;②;③ . ?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①; ②; ③; 可参考上述第②种方法进行证明。 ◇请思考初始条件的变化对模型的影响。

? 如图所示,若将条件“平分”去掉,条件①不变,平分,结论变化如下: 结论:①;②;③.

几何辅助线之手拉手模型初

手拉手模型教学目标: 1:理解手拉手模型的概念,并掌握其特点 2:掌握手拉手模型的应用 知识梳理: 1、等边三角形 条件:△OAB,△OCD均为等边三角形 结论:;; 导角核心: 2、等腰直角三角形 条件:△OAB,△OCD均为等腰直角三角形 结论:;; 导角核心: 3、任意等腰三角形 条件:△OAB,△OCD均为等腰三角形,且∠AOB = ∠COD 结论:;;

核心图形: 核心条件:;; 典型例题: 例1:在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC;(2)AE=DC; (3)AE与DC的夹角为60°;(4)△AGB≌△DFB; (5)△EGB≌△CFB;(6)BH平分∠AHC;GF∥AC 例2:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明: (1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°; (4)AE与DC的交点设为H,BH平分∠AHC 例3:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明: (1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°; (4)AE与DC的交点设为H,BH平分∠AHC 例4:如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H 问:(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等? (3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE?

例5:如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者相交于H.问(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等? (3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE? 例6:两个等腰三角形ABD与BCE,其中AB=BD,CB=EB,∠ABD=∠CBE,连接AE与CD. 问(1)△ABE≌△DBC是否成立? (2)AE是否与CD相等?(3)AE与CD之间的夹角为多少度? (4)HB是否平分∠AHC? 例7:如图,分别以△ABC 的边AB、AC 同时向外作等腰直角三角形,其中 AB =AE , AC =AD,∠BAE =∠CAD=90°,点G为BC中点,点F 为BE 中点,点H 为CD中点。探 索GF 与GH 的位置及数量关系并说明理由。 例8:如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD任意一点(P与A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD 于点E. (1)如图1,猜想∠QEP=_______°; (2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明; (3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.

盘点小升初平面几何常考五大模型

盘点小升初平面几何常考五大模型 (一)等积变换模型性质与应用简介 导读:平面几何问题,是历年小升初的必考题目,也在各大杯赛中占有很大比例,这些题目都是以等积变形为主导思想,结合五大模型的变化应用交织而成的,这一期我们讲解了解一下五大模型第一块——等积变换模型。 等积变换模型例题讲解与课后练习题 (一)例题讲解与分析 ?【例1】:如右图,在△ABC中,BE=3AE,CD=2AD.若△ADE的面积是1平方厘米,那么三角形ABC的面积是多少 【解答】连接BD,S△ABD和S△ AED同高,面积比等于底边比,所以三角形ABD的面积是4, S△ABD和S△ABC同高面积比等于底边比,三角形ABC的面积是ABD的3倍,是12. 【总结】要找准那两个三角形的高相同。 【例2】:如图,四边形ABCD中,AC和BD相交于O点,三角形ADO的面积=5,三角形DOC的面积=4,三角形AOB的面积=15,求三角形BOC的面积是多少

【解答】S△ADO=5,S△DOC=4根据结论2,△ADO与△DOC同高所以面积比等于底的比,即AO/OC=5:4同理S△AOB/S△BOC=AO/OC=5:4,因为S△AOB=15所以S△BOC=12。 【总结】从这个题目我们可以发现,题目的条件和结论都是三角形的面积比,我们在解题过程中借助结论2,先把面积比转化成线段比,再把线段比用结论2转化成面积比,解决了问题。事实上,这2次转化的过程就相当于在条件和结论中搭了一座“桥梁”,请同学们体会 一下。 (二)课后练习题讲解与分析 (二)鸟头定理(共角定理)模型 导语:平面几何问题,是历年小升初的必考题目,也在各大杯赛中占有很大比例,这些题目都是以等积变形为主导思想,结合五大模型的变化应用交织而成的,第二期我们讲解了解一下五大模型第二块——鸟头定理(共角定理)模型。

(完整版)中考数学常见几何模型简介

初中几何常见模型解析 模型一:手拉手模型-旋转型全等 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。 (2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②; ?③平分。 (3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②; ?③平分 模型二:手拉手模型-旋转型相似 (1)一般情况 ?条件:,将旋转至右图位置 ?结论: ?右图中①; ?②延长AC交BD于点E,必有 (2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有; ③; ④; ⑤连接AD、BC,必有; ⑥(对角线互相垂直的四边形)

模型三:对角互补模型 (1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE; ②;③ ?证明提示: ①作垂直,如图,证明; ②过点C作,如上图(右),证明; ?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变); ②;③ 此结论证明方法与前一种情况一致,可自行尝试。 (2)全等型-120° ?条件:①; ?②平分; ?结论:①;②; ?③ ?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明 为等边三角形。 (3)全等型-任意角 ?条件:①;②; ?结论:①平分;②; ?③. ?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①; ②; ③; 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 ?对角互补模型总结: ①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线; ②初始条件“角平分线”与“两边相等”的区别; ③两种常见的辅助线作法; ④注意平分时,相等如何推导?

1初中数学《几何辅助线秘籍》中点模型的构造1倍长中线法;构造中位线法

学生姓名学生年级学校 上课时间辅导老师科目 教学重点中点模型的构造(倍长中线法;构造中位线法;构造斜边中线法) 教学目标系统有序掌握几何求证思路,掌握何时该用何种方法做辅助线 开场:1.行礼;2.晨读;3.检查作业;4.填写表格 新 课 导 入 知识点归纳 1.已知任意三角形(或者其他图形)一边上的中点,可以考虑:倍长中线法(构造全等三角形);2.已 知任意三角形两边的中点,可以考虑:连接两中点形成中位线; 3.已知直角三角形斜边中点,可以考虑:构造斜边中线; 4.已知等腰三角形底边中点,可以考虑:连接顶点和底边中点利用“三线合一”性质. 新 课 内 容 做辅助线思路一:倍长中线法 经典例题1:如图所示,在△ABC中,AB=20,AC=12,求BC边上的中线AD的取值范围. 【课堂训练】 1.如图,已知CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论: ①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE,则以上结论正确的是 ( ) A.①②④ B.①③④ C.①②③ D.①②③④ 第1题图第2题图 2.如图,在正方形ABCD中,E为AB边的中点,G、F分别为AD,BC边上的点,若AG=1, BF=2,∠GEF=90°,则GF的长为() A. 2 B. 3 C. 4 D. 5 3.如图,在△ABC中,点D、E为边BC的三等分点,则下列说法正确的有( ) ①BD=DE=EC;②AB+AE>2AD;③AD+AC>2AE;④AB+AC>AD+AE。 A. 1个B. 2个 C. 3个 D. 4个

4.如图,在△ABC 中,A B>BC,E 为BC 边的中点,AD为∠BAC 的平分线,过E 作AD 的平行线,交AB 于F ,交C A的延长线于G,求证:BF=CG. 5.如图所示,已知在△ABC 中,AD 是BC 边上的中线,F 是AD 上的一点,连接BE 并延长交AC 于点F,AE =EF ,求证:AC =B F. 6.如图所示,在△ABC 中,分别以AB 、AC为直角边向外做等腰直角三角形△ABD 和△ACE,F 为BC 边上中点,FA 的延长线交DE 于点G ,求证:①DE=2AF ;②FG ⊥DE . F G E D B C A F D B C A E G F B C A D E

小学数学常见几何模型典型例题及解题思路

小学数学常见几何模型典型例题及解题思路(1) 巧求面积 常用方法:直接求;整体减空白;不规则转规则(平移、旋转等);模型(鸟头、蝴蝶、漏斗等模型);差不变 1、ABC G是边长为12厘米的正方形,右上角是一个边长为6厘米的正方形FGDE,求阴影部分的面积。答案:72 A H F E C B I D G 思路:1)直接求,但是阴影部分的三角形和四边形面积都无法直接求;2)整体减空白。关键在于如何找到整体,发现梯形BCEF 可求,且空白分别两个矩形面积的一半. 2、在长方形ABCD 中,B E=5,EC =4,CF=4,FD =1。△AEF 的面积是多少?答案:20

A D B F C E 思路:1)直接求,无法直接求;2)由于知道了各个边的数据,因此空白部分的面积都可求 3、如图所示的长方形中,E、F 分别是AD 和DC 的中点。 (1)如果已知AB=10厘米,BC=6厘米,那么阴影部分面积是多少平方厘米?答案:22。5 (2)如果已知长方形ABC D的面积是64平方厘米,那么阴影部分的面积是多少平方厘米?答案:24 B C D F E 思路(1)直接求,无法直接求;2)已经知道了各个边的数据,因此可以求出空白的位置;3)也可以利用鸟头模型 4、正方形A BCD 边长是6厘米,△AF D(甲)是正方形的一部分,△CEF(乙)的面积比△AFD (甲)大6平方厘米。请问C E的长是多少厘米.答案:8

A B D C F 思路:差不变 5、把长为15厘米,宽为12厘米的长方形,分割成4个三角形,其面积分别为S 1、S2、S 3、S4,且S1=S 2=S 3+S 4。求S4.答案:10 D C E F S 1S 2 S 3S 4 思路:求S4需要知道FC 和EC 的长度;FC不能直接求,但是DF 可求,DF 可以由三分之一矩形面积S 1÷AD ×2得到,同理EC 也求.最后一句三角形面积公式得到结果。 6、长方形ABCD 内的阴影部分面积之和为70,AB=8,A D=15。求四边形E FGO 的面积.答案10。 A B C D F O E G 思路:看到长方形和平行四边形,只要有对角线,就知道里面四个三

初中几何辅助线大全

初中数学辅助线的添加浅谈人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。 一.添辅助线有二种情况: 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线 (2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形:

出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 (7)相似三角形:

几何中常见的辅助线添加方法

几何专题——辅助线 平面几何是初中教学的重要组成部分,它的基础知识在生产实践和科学研究中有着广泛的应用,又是继续学习数学和其他学科的基础,但许多初中生对几何证实题感到困难,尤其是对需要添加辅助线的证实题,往往束手无策。 一、辅助线的定义: 为了证实的需要,在原来图形上添画的线叫做辅助线。 二、几种常用的辅助线:连结、作平行线、作垂线、延长等 注意:1)添加辅助线是手段,而不是目的,它是沟通已知和未知的桥梁,不能见到题目,就无目的地添加辅助线。一则没用、二则辅助线越多,图形越乱,反而妨碍思考问题。 2)添加辅助线时,一条辅助线只能提供一个条件 三、正确添加辅助线歌 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。

直接证实有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证实是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆假如碰到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证实题目少困难。 辅助线,是虚线,画图注重勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时把握要熟练。解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。几何证题难不难,关键常在辅助线; 知中点、作中线,中线处长加倍看;底角倍半角分线,有时也作处长线; 线段和差及倍分,延长截取证全等;公共角、公共边,隐含条件须挖掘; 全等图形多变换,旋转平移加折叠;中位线、常相连,出现平行就好办; 四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线; 两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便; 非凡角、非凡边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙; 圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,碰到直径周角连; 切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦; 切割线,连结弦,两圆三圆连心线;基本图形要熟练,复杂图形多分解;以上规律属一般,灵活应用才方便。

初中几何模型及常见结论的总结归纳

初中几何模型及常见结论的总结归纳 三角形的概念 三角形边、角之间的关系:①任意两边之和大于第三边(任意两边之差小于第三边);②三角形内角和为0180(外角和为0 360);③三角形的外角等于不相邻的两内角和。 三角形的三线:(1)中线(三角形的顶点和对边中点的连线);三角形三边中线交于一点(重心) 如);DE 之到?S 如图,已知AB ,AC 的长,求AF 的取值范围时。我们可以通过倍长 中线。利用三角形边的关系在三角形ABD 中构建不等关系。(AC AB AF AC AB +- 2). (2)角平分线(三角形三内角的角平分线);三角形的三条内角平分线交于一点(内心)

如等 OE ; r = 2

(3)垂线(三角形顶点到对边的垂线);三角形三条边上的高交于一点(垂心) 如图,O为三角形ABC的垂心,我们可以得到比较多的锐角相等如 COD ABC ACO ABO∠ = ∠ ∠ = ∠;等。因此垂线(或高)这样的条件在题目中出现,我们往往可以得出比较多的锐角相等。(等角或同角的余角相等),此外,如果要求垂线段的长度或与垂线段有关的长度问题,我们通常用面积法求解。在上图中,若已知CE AC AB, ,的长度,求BE的长。 特别注意:在等腰三角形中,我们通常所指的三线合一就是指中线、角平分线、高线。三线合一:已知三角形三线中的任意两个条件是重合的,那么就可以得出第三条线也是重合的。在具体运用时,我们往往时把三线合一的等腰三角形补充完整再加以运用。 三角形全等 三角形全等我们要牢记住它的五个判定方法。(SSS,SAS,ASA,AAS,HL) 在具体运用时,我们需要找出判定三角形全等的各种条件,不外乎是关于边相等或相等的问题。 对于寻找角相等:常有四种方法:①两条平行线被第三条直线所截得出的“三线八角”的结论;②对顶角相等;③锐角互余;④三角形的外角等于不相邻的两内角和。 对于寻找边相等:常有三种方法:①特殊图形中隐含的条件(如等腰三角形、等边三角形、菱形、正方形。。。。。);②利用三线合一的正逆定理;③通过已有的全等三角形性质得出。对于证明角相等,证明边相等,我们都要优先考虑边或角所在的三角形全等。(一定要注意对应)如果不能直接通过全等证明,我们就要转化角或转化边(用上面的几种方法)然后再考虑全等。 全等三角形的基本图形: 平移类全等;对称类全等;旋转类全等;

初中数学中考几何如何巧妙做辅助线大全

初中数学中考几何如何巧妙做辅助线大全人教版北师大初中数学中考几何如何巧妙做辅 助线大全 人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。 一(添辅助线有二种情况: 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90?;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”~这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等 第三条直线 (2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 1

出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当

相关文档
最新文档