气开型调节阀和气关型调节阀

气开型调节阀和气关型调节阀
气开型调节阀和气关型调节阀

气开型调节阀和气关型调节阀

气动调节阀分为气开型和气关型两种。

气开型(Air to Open)调节阀是当膜头上空气压力增加时,阀门向增加开度方向动作,当达到输入气压上限时,阀门处于全开状态。反过来,当空气压力减小时,阀门向关闭方向动作,在没有输入空气时,阀门全闭。故有时气开型阀门又称故障关闭型(Fail to Close FC)。

气关型(Air to Close)动作方向正好与气开型相反。当空气压力增加时,阀门向关闭方向动作;空气压力减小或没有时,阀门向开启方向或全开为止。在没有输入空气时,阀门全开。故有时又称为故障开启型(Fail to Open FO)。气动调节阀的气开或气关,通常是通过执行机构的正反作用和阀态结构的不同组装方式实现。

气开气关的选择是根据工艺生产的安全角度出发来考虑。当气源切断时,调节阀是处于关闭位置安全还是开启位置安全?举例来说,一个加热炉的燃烧控制,调节阀安装在燃料气管道上,根据炉膛的温度或被加热物料在加热炉出口的温度来控制燃料的供应。这时,宜选用气开阀更安全些,因为一旦气源停止供给,阀门处于关闭比阀门处于全开更合适。如果气源中断,燃料阀全开,会使加热过量发生危险。又如一个用冷却水冷却的的换热设备,热物料在换热器内与冷却水进行热交换被冷却,调节阀安装在冷却水管上,用换热后的物料温度来控制冷却水量,在气源中断时,调节阀应处于开启位置更安全些,宜选用气关式(即FO)调节阀。

气开式改变为气关式或气关式改变为气开式,如调节阀安装有智能式阀门定位器,在现场可以很容易进行互相切换。

气动薄膜调节阀选择、特点、故障原因及修理方法

气动薄膜调节阀选择、特点、故障原因及修理方法 1、流量特性选择。 在自控系统的设计过程中选择气动薄膜调节阀应着重考虑流量特性。典型的理想特性有直线流量特性、等百分比流量特性(对数流量特性)、快开流量特性和抛物线流量特性四种。直线流量特性在相对开度变化相同的情况下,流量小时流量相对变化值大;流量大时,流量相对变化值小。因此,直线流量调节阀在小开度(小负荷)情况下调节性能不好,不易控制,往往会产生振荡,故直线流量特性调节阀不宜用于小开度的情况,也不宜用于负荷变化较大的调节系统,而适用于负荷比较平稳,变化不大的调节系统。百分比流量特性的调节阀在小负荷时调节作用弱,大负荷调节作用强,它在接近关闭时调节作用弱,工作和缓平稳,而接近全开时调节作用强,工作灵敏有效,在一定程度上,可以改善调节品质,因此它适用于负荷变化较大的场合,无论在全负荷生产和半负荷生产都较好的起调节作用。 2、根据使用要求选择。 气动薄膜调节阀由阀芯和阀体(包括阀座)两部分组成,按不同的使用要求有不同的结构形式。气动薄膜调节阀主要有直通单座阀、双座调节阀和高压角式调节阀。直通单座阀泄漏量小,流体对单座阀芯的推力所形成的不平衡力很大,因此直通单座阀适用于要求泄漏量小、管径小和阀前后压差较低的场合。直通双座阀阀体内有上下两个阀芯,由于流体作用于上下阀芯的推力方向相反而大致抵消;所以双座阀的不平衡力很小,允许阀前后有较大的压差。但由于阀体内流路复杂,用于高压差时对阀体的冲蚀损伤较严重,不宜用于高粘度、含悬浮颗粒或含纤维的介质。此外由于受加工条件的限制,双座阀上下两个阀芯不易同时关严,所以关闭时泄漏量大,尤其是在高温或低温的场合下使用时,因材料的热膨胀系数不同,更易引起严重的泄漏。角式高压阀阀体为直角式,流路简单、阻力小,受高速流体的冲蚀也小,特别适用于高压差、高粘度和含悬浮物颗粒状物质的流体,也可用于修理汽液混相,易闪蒸汽蚀的场合。这种阀体可以避免结焦、粘结和堵塞,便于清洁和自净。 3、根据安全性选择。

气动单座衬氟调节阀

气动单座衬氟调节阀 气动衬氟单座调节阀是一种四氟波纹管密封阀。它由气动薄膜执行机构和直通单座衬氟 塑阀两部分组成。由于该阀接触介质的部位采用高压注塑工艺,衬有能耐腐蚀介质(如盐酸、硫酸、硝酸、氢氟酸等)和耐老化的聚全氟乙烯(简称F46),又采用聚四氟乙烯波纹管密封,因而该阀广 泛适用于化工、石油、冶金、医药、电力等行业中对酸、碱等强腐蚀介质和有毒、易挥发等气体、 液体介质的过程控制。 设计选型注意事项 1、在强腐蚀介质选用阀门时,首先要考虑衬氟阀,我们进行过成本核算以殛多处用户走访-在强腐蚀 环境中若采用316阀体+哈氏合金,其成本至少是同口径衬氰阀门自j3-4倍,而且往往阀内件腐蚀后,而 阀体几乎是全新的,选用村氟阀性价比更合理。 2、尽量不要选气动隔膜阀,因为隔膜阀有一个极不可靠的运动部件隔膜,由于控制阀动作频繁.隔膜既要受介质压力、介质冲刷、介质腐蚀、上下动作膜室增压降压,隔膜很容易折裂,又加上隔膜阀往往没填料,其隐患就更大了。(手动隔膜阀由于动作次数较少上述情况有所改善)。 3、在流通能力允许的情况下,可用衬氟单座调节阀代替衬氟球阀。因为衬氟球阀在转动过程中.若由于存在巨大的摩擦与撕扯,球体与阀座上的F46容易损坏。而衬氟单座调节阀属于接触密封,即使磨损也会自动补偿,保证及时密封。 4、衬氟单座调节阀不能用于真空环境中,因为真空会导致F46吸引松弛。 口允许压差

口特点 1、耐腐蚀:阀体内腔、阀座、阀杆均包衬2.5-3mm厚的F46,能而 2、密封性能好:采用聚四氟乙烯材质的波纹管和填料双重密封,确保良好的密封性。 3、泄漏量小:由于阀芯、阀座是软密封,故泄漏量达GB/T4213-2008/中VI级标准, 甚至无泄漏。

调节阀关试题库

调节阀题库 一、单相选择题 1.在设备安全运行的工况下,能够满足气开式控制阀的是( A )。 A、锅炉的燃烧油(气)调节系统; B、锅炉汽包的给水调节系统; C、锅炉汽包的蒸汽入口压力调节系统; D、锅炉炉膛进口引风压力调节系统; 2.调节阀阀盖四氟填料的工作温度不适用于(D) A.20~150℃ B.-40~250℃ C.-40~450℃(加散热法) D.200~600℃ 3.某调节阀的工作温度为400℃,其上阀盖形状应选择为(B) A.普通型 B.散热型 C.长颈型 D.波纹管密封型 4.压缩机入口调节阀应选(B) A.气开型 B.气关型 C.两位式 D.快开式 5.调节阀口径大或压差高时可选用( C )执行机构。 A、薄膜式; B、活塞式; C、无弹簧气动薄膜; D、气动长行程 6.调节阀的泄漏量就是指( A )。 A.指在规定的温度和压力下,阀全关状态的流量大小 B.指调节阀的最小流量 C.指调节阀的最大量与最小量之比 D.指被调介质流过阀门的相对流量与阀门相对行程之间的比值 7.精小型调节阀具有许多优点,但不具有(C )的特点。 A.流量系数提高30% B.阀体重量减轻30% C.阀体重量增加30% D.阀体高度降低30% 8.执行机构为(A )作用,阀芯为()装,则该调节阀为气关阀。 A、正、正 B、正、反 C、反、正 D、正或反、正 9.低噪音调节阀常用的是(B)。 A.单座阀 B.套筒阀 C.隔膜阀 D.角阀 10.直通双座调节阀不存在( D)的特点。 A.有上下两个阀芯和底阀座 B.阀关闭时,泄漏量大 C.允许阀芯前后压差较大 D.阀关闭时,泄漏量小

ZXP气动薄膜调节阀

ZXP气动薄膜单座调节阀 ■ZXP气动薄膜单座调节阀概述 ZXP气动薄膜调节阀采用顶导向结构,配用多弹簧执行机构。具有结构紧凑、重量轻、动作灵敏、流体通道呈S流线型、压降损失小、阀容量大、流量特性精确、拆装方便等优点。广泛应用于精确控制气体、液体等介质,工艺参数如压力、流量、温度、液位保持在给定值。特别适用于允许泄漏量小阀前后压差不大的工作场合。 本系列产品有标准型、调节切断型、波纹管密封型、 夹套保温型等多种品种。产品公称压力等级有PN10、16、 40、64;阀体口径范围DN20~200。适用流体温度由-200 ℃~+560℃范围内多种档次。泄漏量标准有Ⅳ级或Ⅵ级。 流量特性为线性或等百分比。多种多样的品种规格可供 选择。 ■ZXP气动薄膜单座调节阀特点 · 顶导向单座调节阀,结构紧凑,部件少、易维修。 · 金属阀芯适合多种工作场合,达Ⅳ级泄漏标准,ZXPQ 型软密封结构阀芯Ⅵ级泄漏标准。 · 阀体按流体力学原理设计成等截面低流阻流道,额定 流量系数增大30%。 · 可调范围大,固有可调比为50。 · 执行机构采用多弹簧结构,高度减少30%、重量减轻 30%。 · ZXPV型波纹管密封型调节阀,对移动的阀杆形成完全 的密封,堵绝流体外漏。 · ZXPJ型调节阀带有保温夹套,用于流体冷却后易结晶、凝固造成堵塞的场合。 ■ZXP气动薄膜单座调节阀主要零件材料 阀体、阀盖:HT200,ZG230-450,ZG1Cr18Ni9Ti 阀芯、阀座:1Cr18Ni9Ti,司太莱合金堆焊 软密封阀芯:增强聚四氟乙烯 填 料:聚四氟乙烯、柔性石墨 波 纹 管:1Cr18Ni9Ti 垫 片:橡胶石棉板、10、1Cr18Ni9Ti、石棉缠绕垫片 膜 盖:A3 波 纹 膜片:丁腈橡胶夹增强涤纶织物 弹 簧:60Si2Mn 推杆、阀杆:2Cr13、1Cr18Ni9Ti 衬 套:2Cr13

调节阀的基本知识

气动调节阀工作原理 已有76 次阅读2011-01-27 09:04标签: 气动调节阀电磁阀转换器动力源 气动调节阀 气动调节阀是石油、化工、电力、冶金等工业企业广泛使用的工业过程控制仪表之一。通常由气动执行机构、阀门、**等连接安装调试后形成气动调节阀。 气动调节阀工作原理气动调节阀就是以压缩空气为动力源,以气缸为执行器,并借助于电气阀门**、转换器、电磁阀、保位阀等附件去驱动阀门,实现开关量或比例式调节,接收工业自动化控制系统的控制信号来完成调节管道介质的流量、压力、温度等各种工艺参数。气动调节阀的特点就是控制简单,反应快速,且本质安全,不需另外再采取防爆措施。 结构分类根据阀门动作方式可基本分为:直行程(薄膜调节阀、直行程气缸)和角行程(拨叉式、齿轮齿条式)两种方式。 维修检查气动调节阀准确正常地工作对保证工艺装置的正常运行和安全生产有着十分重要的意义。因此加强气动调节阀的维修是必要的。 一、检修时的重点检查部位 检查间体内壁:在高压差和有腐蚀性介质的场合,阀体内壁、隔膜阀的隔膜经常受到介质的冲击和腐蚀,必须重点检查耐压耐腐情况; 检查阀座:因工作时介质渗入,固定阀座用的螺纹内表面易受腐蚀而使阀座松弛; 检查阀芯:阀芯是调节阀的可动部件之一,受介质的冲蚀较为严重,检修时要认真检查阀芯各部是否被腐蚀、磨损,特别是在高压差的情况下,阀芯的磨损因空化引起的汽蚀现象更为严重。损坏严重的阀芯应予更换;检查密封填料:检查盘根石棉绳是否干燥,如采用聚四氟乙烯填料,应注意检查是否老化和其配合面是否损坏; 检查执行机构中的橡胶薄膜是否老化,是否有龟裂现象。 二、气动用调节阀的日常维护 当调节阀采用石墨一石棉为填料时,大约三个月应在填料上添加一次润滑油,以保证调节阀灵活好用。如发现填料压帽压得很低,则应补充填料,如发现聚四氟乙燥填料硬化,则应及时更换;应在巡回检查中注意调节阀的运行情况,检查阀位指示器和调节器输出是否吻合;对有**的调节阀要经常检查气源,发现问题及时处理;应经常保持调节阀的卫生以及各部件完整好用。 三、常见故障及产生的原因 (一)调节阀不动作。故障现象及原因如下: 1.无信号、无气源。①气源未开,②由于气源含水在冬季结冰,导致风管堵塞或过滤器减压阀堵塞失灵,③压缩机故障;④气源总管泄漏。 2.有气源,无信号。①调节器故障;③**波纹管漏气;④调节网膜片损坏。 3.**无气源。①过滤器堵塞;②减压阀故障I③管道泄漏或堵塞。 4.**有气源,无输出。**的节流孔堵塞。

电磁阀电动阀和气动阀的区别

电磁阀和电动阀的区别 1.开关形式: 电磁阀通过线圈驱动,只能开或关,开关时动作时间短。 电动阀的驱动一般是用电机,开或关动作完成需要一定的时间模拟量的,可以做调节。 2.工作性质: 电磁阀一般流通系数很小,而且工作压力差很小。比如一般25口径的电磁阀流通系数比15口径的电动球阀小很多。电磁阀的驱动是通过电磁线圈,比较容易被电压冲击损坏。相当于开关的作用,就是开和关2个作用。 电动阀的驱动一般是用电机,比较耐电压冲击。电磁阀是快开和快关的,一般用在小流量和小压力,要求开关频率大的地方电动阀反之。电动阀阀的开度可以控制,状态有开、关、半开半关,可以

控制管道中介质的流量而电磁阀达不到这个要求。 电磁阀一般断电可以复位,电动阀要这样的功能需要加复位装置。 3.适用工艺: 电磁阀适合一些特殊地工艺要求,比如泄漏、流体介质特殊等,价格较贵。 电动阀一般用于调节,也有开关量的,比如:风机盘管末端。 气动阀和电动阀的区别, 各有什么优、缺点,都适合用在什么场合? 一电动阀使用电机做动力,气动阀使用压缩空气作动力。 (1)电动阀优点:对液体介质和大管径气体效果好,不受气候影

响。不受空压气的压力影响。缺点:成本高、在潮湿环境不好。 (2)气动阀优点:对气体介质和小管径液体效果好,成本低,维护方便。缺点:受空压气压力波动的影响, 在北方冬季易受空压气含水影响,造成传动部分冻结、不动作。二一般气动要比电动快,电动的都是手电两用的。而气动要手、气两用的价格比较高。 三电动阀门用于一些大管径的地方 因为气动很难做到但是电动阀门的稳定性不如气动开关速度慢执行机构长时间会出现卡齿现象气动阀门开关速度快精度高但是需要稳定的气源。 四电动阀动作慢电动阀能做到防爆的品牌不是很多;气动阀动作迅速,防爆相对来说价格比电动底(关键气动阀配什么附件,配大品牌附件就会比电动阀贵)。 涉及到连锁的阀门也用电动的,为什么? (1)根据当地天气气候,如果气候潮湿气动阀就不能使用,因为气源带水。 (2)电动阀也可以实现联锁功能不会额外增加费用,气动实现联锁就会增加

气动调节阀气开气关选择

气动调节阀气开、气关方式的选择 上海沪贡阀门制造有限公司 气动调节阀气开、气关方式的选择主要是从生产安全角度出发来考虑的。当调节阀上信号或气源中断时,应避免损坏设备和伤害人员。如事故情况下,调节阀处于关闭位置危害小,则应选用气开式调节阀;反之,应选用气关式调节阀。举例来说,如加热炉的燃料气或燃料油调节阀,应选用气开式,以保证事故时能切断燃料,以免烧坏炉子。对于塔、储罐等设备,它们的压力控制若是通过排出物料来操纵,则调节阀应选用气关式;若是通过进入物料来进行操纵,则调节阀应选用气开式,以防事故时设备超压损坏。 对供气安全系数特别高的大型石油化工厂,因为它们除有足够容量的储气罐以外,还设有备用压缩机、外接气源等,而且工厂的供电等级也很高,所以供气系统的不安全度极小。在这种情况下,一般用途的调节阀可以根据操作习惯与方便、统一的原则来选择调节阀的气开、气关方式。对于少数极重要的调节阀,则不仅需要合理选择气开、气关方式,还需要考虑设置保位阀、事故用储气罐等专有的附属装置,以确保其在任何清况下的安全、可靠,并有利于事故后恢复生产。 气动调节阀的气开、气关方式,可以通过气动执行机构的正、反作用与阀芯正、反装的组合来实现。 确定调节阀的一些参数 一.调节阀 ⑴确定计算流量:根据生产能力,设备负荷及介质状况,确定Qmax和Qmin. ⑵确定计算压差:根据系数特点选定S值,然后确定计算压差。 ⑶计算流量系数:选择合适的计算公式或图表,求取最大和最小流量时的Cmax和Cmin。 ⑷C值的选取:根据Cmax,在所选产品型式的标准系列中,选取大于Cmax并最接近的那 一级C值。 ⑸调节阀开度验算:要求最大流量时,阀开度不大于90%,最小流量时开度不小于10%,(根据《自动化选型规定》HG/T20507-92). 对于直线特性阀,最大开度≦80%,最小开度应≧10%; 等百分比特性阀,最大开度≦90%,最小开度应≧30%. ⑹实际可调比的验算:一般要求,实际可调比不小于10.(一般选取30左右自认为) ⑺口径的确定:验证合适后,根据C值决定。 二 S值的定义 S值是调节阀全开时,阀上的压差△P v与系统中压力损失总和(在最大流量时)之比, 简称阀阻比(压降比)。 对于液体:常选S=0.3~0.5,对于高压系统,考虑到节约动力消耗允许S值到0.15,若 S<0.15,只能选用新型低S值调节阀。 对于气体:阻力损失小,S值都大于0.5,但在低压以及真空系统中,由于允许压损较小,仍在0.3~0.5之间为宜。 三.气开/气关的选择 ㈠①设备安全②减少原料和动力消耗③考虑介质特性 举例如下: ⑴加热炉的进料系统:气关式

调节阀正确安装方法

调节阀正确安装方法 电动调节阀与气动调节阀安装前须知: 1.遵守正确的电动调节阀和气动调节阀安装技术应始终遵守控制阀(调节阀)制造商的安装指导和注意点。这里对典型的安装指导作简单归纳。 2.阅读操作手册在安装阀门之间,先阅读指导手册。指导手册介绍该产品以及安装前和安装时应注意的安全事项及预防措施。按照手册中的指南去做有助于保证安装的简易和成功。 3.确认管道清洁管道中的异物可能会损坏阀门的密封表面或甚至阻碍阀芯、球或蝶板的运动而造成阀门不能正确地关闭。为了减小危险情况发生的可能性,需在安装阀门前清洗所有的管道。确认已清除管道污垢,金属碎屑、焊渣和其它异物。另外,要检查管道法兰以确保有一个光滑的垫片表面。如果阀门有螺纹连接端,要在管道阳螺纹上涂上高等级的管道密封剂。不要在阴螺纹上涂密封剂,因为在阴螺纹上多余的密封剂会被挤进阀体内。多余的密封剂会造成阀芯的卡塞或脏物的积聚,进而导致阀门不能正常关闭。电动调节阀和气动调节阀如何正确的安装 4.检查控制阀(调节阀) 虽然阀门制造商们会采取某些步骤防止运输损坏,但这种损坏还是有可能发生的,且可以在安装之前发现和通报。不要安装已经知道在运输和存放时已损坏的阀门。安装之前,检查并除去所有运输挡块、防护用堵头或垫片表面的盖子,检查阀体内部以确保不存在异物。 5.采用良好的管接实践绝大部分的控制阀(调节阀)可以安装在任何位置,但是,最通常用的方法是将执行机构垂直放置并位于阀门的上部。如果执行机构水平安装是必须的,则考

虑对执行机构增加一个额外的垂直支撑。应确保这样安装阀体:流体流向与流向箭头或指导手册所指示的方向一致。 6.确保在阀门的上面和下面留有足够的空间以便在检查和维护时容易地拆卸执行机构或阀芯。空间距离通常可以从阀门制造商认定的外形尺寸图上找到。对于法兰连接的阀体,确保法兰面准确地对准以使垫片表面均匀地接触。在法兰对中后,轻轻地旋紧螺栓,最后以交错形式旋紧这些螺栓。正确地旋紧能避免产生不均匀的垫片负载,并有助于防止泄漏,也有助于避免法兰损坏或甚至裂开的可能性。当连接法兰和阀门法兰材质不一样时,衬氟蝶阀这种预防措施就显得尤为重要。安装于控制阀(调节阀)上游和下游的引压管有助于检查流量或压力降。将引压管接到远离弯头、缩径或扩径的直管段处。这种位置可将由于流体紊流而导致的不精确性减到最小。用1/4或3/8英寸(6-10mm)的管子把执行机构上的压力接口连接到控制器上。保持较短的连接距离,并尽量减少管件和弯头的数量以减少系统时间滞后。如果该距离必须很长,那么可以在控制阀(调节阀)上使用一个定位器或增压器。 气动调节阀的安装细节与技巧 气动调节阀通常由气动执行机构和调节阀连接安装调试后形成的组合的。气动调节阀的安装调试极为重要,: 1.安装过程中应始终遵守气动调节阀安装指导和注意点; 2.调节阀的工作环境温度要在(-30~+60)相对湿度不大于95%95%,相对湿度不大于95%; 3.调节阀前后位置应有直管段,长度不小于10倍的管道直径(10D),以避免阀的直管段太短而影响流量特性;

气动调节阀知识

气动调节阀知识 气动调节阀就是以压缩空气为动力源,以气缸为执行器,并借助于电气阀门定位器、转换器、电磁阀、保位阀等附件去驱动阀门,实现开关量或比例式调节,接收工业自动化控制系统的控制信号来完成调节管道介质的:流量、压力、温度等各种工艺参数。气动调节阀的特点就是控制简单,反应快速,且本质安全,不需另外再采取防爆措施。 ◆◆◆ 气动调节阀工作原理(图)

气动调节阀通常由气动执行机构和调节阀连接安装调试组成,气动执行机构可分为单作用式和双作用式两种,单作用执行器内有复位弹簧,而双作用执行器内没有复位弹簧。其中单作用执行器,可在失去起源或突然故障时,自动归位到阀门初始所设置的开启或关闭状态。 气动调节阀根据动作形式分气开型和气关型两种,即所谓的常开型和常闭型,气动调节阀的气开或气关,通常是通过执行机构的正反作用和阀态结构的不同组装方式实现。 ◆◆◆ 气动调节阀作用方式: 气开型(常闭型)是当膜头上空气压力增加时,阀门向增加开度方向动作,当达到输入气压上限时,阀门处于全开状态。反过来,当空气压力减小时,阀门向关闭方向动作,在没有输入空气时,阀门全闭。顾通常我们称气开型调节阀为故障关闭型阀门。 气关型(常开型)动作方向正好与气开型相反。当空气压力增加时,阀门向关闭方向动作;空气压力减小或没有时,阀门向开启方向或全开为止。顾通常我们称气关型调节阀为故障开启型阀门。

气开气关的选择是根据工艺生产的安全角度出发来考虑。当气源切断时,调节阀是处于关闭位置安全还是开启位置安全。 举例来说,一个加热炉的燃烧控制,调节阀安装在燃料气管道上,根据炉膛的温度或被加热物料在加热炉出口的温度来控制燃料的供应。这时,宜选用气开阀更安全些,因为一旦气源停止供给,阀门处于关闭比阀门处于全开更合适。如果气源中断,燃料阀全开,会使加热过量发生危险。又如一个用冷却水冷却的的换热设备,热物料在换热器内与冷却水进行热交换被冷却,调节阀安装在冷却水管上,用换热后的物料温度来控制冷却水量,在气源中断时,调节阀应处于开启位置更安全些,宜选用气关式(即FO)调节阀。 ◆◆◆ 阀门定位器 阀门定位器是调节阀的主要附件,与气动调节阀大大配套使用,它接受调节器的输出信号,然后以它的输出信号去控制气动调节阀,当调节阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位状况通过电信号传给上位系统。阀门定位器按其结构形式和工作原理可以分成气动阀门定位器、电-气阀门定位器和智能式阀门定位器。

气动薄膜调节阀的原理及维护

中化二建集团有限公司 工程系列专业技术职务任职资格参评论文论文题目:气动薄膜调节阀的原理及维护单位中化二建电仪公司 姓名武斌 现专业 技术职务助理工程师 申报专业 技术职务工程师

目录 摘要 (03) 关键词 (03) 绪论 (03) 一、气动调节阀的特点 (03) 二、常用气动调节阀的分类 (03) 三、气动薄膜调节阀的工作原理 (04) 1、气动薄膜调节阀的组成 (04) 2、气动薄膜调节阀的工作原理 (04) 3、执行器的工作原理 (05) 4、阀门的流量特性 (06) 四、调节阀的主要附件 (06) 五、气动薄膜调节阀的常见故障及维护 (08) 总结 (11) 参考文献 (11)

摘要:调节阀是自动调节系统中不可缺少的重要组成部分,接受来自调节器的输出信号,从而改变介质的流量,完成调节功能。随着时代的发展和自动化程度的提高,调节阀起着越来越重要的作用,它的性能和完成动作的好坏,直接影响调节的作用和效果,是自动调节系统的重要环节。气动薄膜调节阀是经常使用的调节器,因此了解其原理及及时的排除故障是保证整个系统顺利完工及正常投用的重要保障。关键词:气动薄膜调节阀、阀门定位器、电磁阀 绪论:调节阀是自动调节系统中不可缺少的重要组成部分,而气动薄膜调节阀是常见的调节器,在我所参与的大唐煤制气气化装置中,气动薄膜调节阀多达86台,我有幸参与了全部调节阀的安装、接线及调试工作。本人结合自己的一点经验来谈谈气动薄膜调节阀的原理及其常见故障。 一、气动薄膜调节阀的特点 结构简单,操作方便,运行可靠,防火防爆,广泛的应用于石油化工、冶金、电力等行业。 二、常用的气动薄膜调节阀分类 常用的气动薄膜调节阀一般分为九个大类: (1)单座调节阀; (2)双座调节阀; (3)套筒调节阀; (4)角形调节阀;

气动调节阀工作原理图文详解

气动调节阀工作原理图文详解(附图) 气动调节阀工作原理简单地说是通过压缩空气实现的,在实际应用中,了解气动调节阀工作原理有很大的意义。下面,世界工厂泵阀网综合运用图文为大家详细介绍气动调节阀工作原理。 气动调节阀是石油、化工、电力、冶金等工业企业广泛使用的工业过程控制仪表之一。通常由气动执行机构、阀门、定位器等连接安装调试后形成气动调节阀。 气动调节阀工作原理 气动调节阀就是以压缩空气为动力源,以气缸为执行器,并借助于电气阀门定位器、转换器、电磁阀、保位阀等附件去驱动阀门,实现开关量或比例式调节,接收工业自动化控制系统的控制信号来完成调节管道介质的流量、压力、温度等各种工艺参数。气动调节阀的特点就是控制简单,反应快速,且本质安全,不需另外再采取防爆措施。 气动调节阀动作分气开型和气关型两种。气开型(Air to Open) 是当膜头上空气压力增加时,阀门向增加开度方向动作,当达到输入气压上限时,阀门处于全开状态。反过来,当空气压力减小时,阀门向关闭方向动作,在没有输入空气时,阀门全闭。 故有时气开型阀门又称故障关闭型(Fail to Close FC)。气关型(Air to Close)动作方向正好与气开型相反。当空气压力增加时,阀门向关闭方向动作;空气压力减小或没有时,阀门向开启方向或全开为止。故有时又称为故障开启型(Fail to Open FO)。气动调节阀的气开或气关,通常是通过执行机构的正反作用和阀态结构的不同组装方式实现。 气开气关的选择是根据工艺生产的安全角度出发来考虑。当气源切断时,调节阀是处于关闭位置安全还是开启位置安全? 举例来说,一个加热炉的燃烧控制,调节阀安装在燃料气管道上,根据炉膛的温度或被加热物料在加热炉出口的温度来控制燃料的供应。这时,宜选用气开阀更安全些,因为一旦气源停止供给,阀门处于关闭比阀门处于全开更合适。 如果气源中断,燃料阀全开,会使加热过量发生危险。又如一个用冷却水冷却的的换热设备,热物料在换热器内与冷却水进行热交换被冷却,调节阀安装在冷却水管上,用换热后的物料温度来控制冷却水量,在气源中断时,调节阀应处于开启位置更安全些,宜选用气关式(即FO)调节阀。 阀门定位器

气动调节阀动作分气开型和气关型

气动调节阀动作分气开型和气关型 气动调节阀动作分气开型和气关型两种。气开型(Air to Open)是当膜头上空气压力增加时,阀门向增加开度方向动作,当达到输入气压上限时,阀门处于全开状态。反过来,当空气压力减小时,阀门向关闭方向动作,在没有输入空气时,阀门全闭。故有时气开型阀门又称故障关闭型(Fail to Cl ose FC)。气关型(Air to Cl ose)动作方向正好与气开型相反。当空气压力增加时,阀门向关闭方向动作;空气压力减小或没有时,阀门向开启方向或全开为止。故有时又称为故障开启型(Fail to Open FO)。气动调节阀的气开或气关,通常是通过执行机构的正反作用和阀态结构的不同组装方式 实现。 气开气关的选择是根据工艺生产的安全角度出发来考虑。当气源切断时,调节阀是处于关闭位置安全还是开启位置安全?举例来说,一个加热炉的燃烧控制,调节阀安装在燃料气管道上,根据炉膛的温度或被加热物料在加热炉出口的温度来控制燃料的供应。这时,宜选用气开阀更安全些,因为一旦气源停止供给,阀门处于关闭比阀门处于全开更合适。如果气源中断,燃料阀全开,会使加热过量发生危险。又如一个用冷却水冷却的的换热设备,热物料在换热器内与冷却水进行热交换被冷却,调节阀安装在冷却水管上,用换热后的物料温度来控制冷却水量,在气源中断时,调节阀应处于

开启位置更安全些,宜选用气关式(即FO)调节阀。气开式改变为气关式或气关式改变为气开式,如调节阀安装有智能式阀门定位器,在现场可以很容易进行互相切换。 但也有一些场合,故障时不希望阀门处于全开或全关位置,操作不允许,而是希望故障时保持在断气前的原有位置处。这时,可采取一些其它措施,如采用保位阀或设置事故 专用空气储缸等设施来确保。 阀门定位器 阀门定位器是调节阀的主要附件,与气动调节阀大大配套使用,它接受调节器的输出信号,然后以它的输出信号去控制气动调节阀,当调节阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位状况通过电信号传给上位系统。阀门定位器按其结构形式和工作原理可以分成气动阀门定位器、电-气阀门定位器和智能式阀门定位器。 阀门定位器能够增大调节阀的输出功率,减少调节信号的传递滞后,加快阀杆的移动速度,能够提高阀门的线性度,克服阀杆的磨擦力并消除不平衡力的影响,从而保证调节阀的 正确定位。 常用执行机构分气动执行机构,电动执行机构,有直行程、角行程之分。用以自动、手动开闭各类伐门、风板等。下地址是气动阀动作效果,模拟了气动薄膜调节阀工作原理

气动调节阀的结构和工作原理

气动调节阀的结构和工作原理

气动调节阀常见于钢铁行业,尤其广泛应用于加热炉、卷取炉等燃烧控制系统。本文根据气动调节阀的结构和工作原理对在气动调节阀在日 常使用的常规维护和常见故障进行了分析研究,为设备维护和故障维修提供了参考。 本文以美国博雷(BARY)厂家生产的 S92/93系列的气动执行机构为例,结合现场实际使用情况,进行了分析和总结。阀门公称直径DN250,介质为混合煤气,气源为仪表压空,压力为3-5Bar,电磁阀为24V。 1、气动调节阀的结构和工作原理 1.1、气动调节阀的结构 气动调节阀由执行机构和阀体两部分组成。 1.2、气动调节阀的工作原理 气动调节阀的工作原理:气动调节阀由执行机构和调节机构组成。执行机构是调节阀的推力

部件,当调节器或定位器得到4-20mA信号时,控制电磁阀24V信号到,打开,使得仪表压空进入执行机构汽缸,转动阀杆使阀体动作,当到达需要指定开度时,位置反馈使得定位器停止信号输出,维持当前位置。当需要关闭阀门时,定位器得到关闭信号,使电磁阀停止供气,汽缸靠内部弹簧反作用力,使阀门关闭。当需要从满度减少开度时,定位器输出气源压力会减弱,弹簧自身反作用力致使阀门向关闭方向动作,直至信号压力与弹簧压力平衡,到达指定开度,以此来控制该介质流量。 2、气动调节阀的日常维护 在对气动调节阀日常点巡检中,要注意以下几点:一是检查仪表气源是否正常,检查过滤器、减压阀是否正常,观察压力是否在3-5Bar;二是观察汽缸有无漏气现象,尤其是阀杆连接处和两端盖处;三是检查电磁阀是否工作正常,有无漏气现象;四是检查定位器工作是否正常,有无漏气现象;五是检查所有连接部件固定螺丝是否紧牢;六是尽量避免过多浮灰覆盖到执行机构上,要市场保持工作环境清洁。 3、气动调节阀常见故障原因分析

气动薄膜调节阀常见故障及处理方法

气动薄膜调节阀常见故障及处理方法 张瑞玺(山东阳煤恒通化工股份公司山东郯城276100) 【摘要】本文在实践的基础上,讨论了调节阀在自动控制系统中常见的故障原因和排除方法,通过对各种具体故障的原因进行分析、判断,给出相应的处理方法、改进措施。 【关键词】自动控制系统;调节阀;故障处理 科气动薄膜调节阀作为自动控制系统中的终端执行元件,与其他仪表配套使用,可实现生产过程中液位、压力、温度、流量等工艺参数与其他介质如液体、气体、蒸汽等的自动调节和远程控制。作为最终控制过程介质各项质量及安全生产指标的调节阀,它在稳定生产、优化工况、产品质量控制等方面都起到非常重要的作用,特别在化工流程装置性生产中,随着装置高负荷运行,调节阀的腐蚀、冲刷、磨损、内漏等问题不断发生,从而导致调节阀的使用寿命缩短、工作性能下降,进而引起工况不稳,装置的生产效率大幅下降,严重时可导致系统瘫痪。从现实的维护维修数据来看,调节系统的故障大部分出自调节阀。本文针对几种常见的故障现象进行分析总结,并提出相应的解决办法。 1外漏与内漏 对调节阀出现外漏情形,如果调节阀经常在低温环境中工作且其填料未使用密封油脂的,可以考虑增加密封油脂,如果条件许可时,可将其密封填料取出换成新的油脂填料,提高阀杆密封性能。在装备或装置的大修时,及时的增加填料盒中的填料,以延长调节阀的有效工作时间。对于调节阀工作温度波动大、工作环境变化幅度大情形,使用四氟填料进行填充的,如果密封性能下降快。还可以考虑更换为石墨填料,由于石墨填料柔软,使用寿命长。如果调节阀的密封垫片是石棉板材料的,在高温高压下,其密封性能较差,寿命也较短,特别在装备停车后,温度、压力降低,如果再运行容易引起介质外泄。现在改用金属缠绕垫片等其他耐用垫片,也可以减少外泄。在实际工作中,改变调节阀的介质流向,置P2在阀杆端,也能很有效地防止外漏事故。对调节阀的内漏情形,由于调节阀经常作为减压阀使用,长时间的控制高压减低压,调节阀的阀头经常长时间的受到冲刷,阀头磨损严重、变细,从而导致冲刷变形,针对这种情况,可以考虑使用耐磨材质的阀头或用研磨法减小或消除密封间隙,提高密封面的光洁度,提高密封性能。如果是单座阀的调节阀前后压差过大引起的内漏,可已考虑改用双座阀或角阀,其双座阀尽量采用软密封,以保证工作中的稳定性。在维护维修中,提高执行机构密封力,也是保证阀关闭,防止内漏的常用方法,具体的包括增加气源压力、改用大推力的执行机构、改小零点弹簧的予紧力、使用定位器或转换器等。 2动作迟钝 在系统的运行过程中,阀杆的正常工作是关键关节,但是由于长时间没有合理维护或者清洗等原因,阀杆容易发生动作迟钝现象。常见的有阀杆往复行程迟钝与单方向行程迟钝两种故障现象。当阀体内有泥浆或颗粒性大的物质,容易产生堵塞或结焦现象,会影响往复行程的流利性,针对这种,故障可在阀前安装管道过滤器,并定期冲刷清洗或增大节流间隙,也可将直通阀门改为角形阀门,从而使阀杆运行更加顺畅。如果阀门中的四氟填料由于长时间的使用而硬化变质,需要更换填料。如果阀门中的阀杆只在某单方向行程中动作迟钝,则考虑阀门气室中薄膜破损漏气,从而导致输出力达不到要求,而引起阀杆动作迟钝,这时应及时更换薄膜。导致动作迟钝的原因还有阀杆单程定位器与气室连接管线漏气或气源压力不足等,如果定位器的输出压力不足,则应增加气源压力,然后连接好气源管线,并进一步地检查定位器。 3阀门定位器无输出故障 在仪表的工作过程中,由于一些原因导致放大器不能正常工作或仪表不能正常显示工作状态,会导致阀门定位器无输出现象。这种故障的原因很多,应根据具体故障根源进行维

调节阀的组成及作用

调节阀的组成及作用 一:调节阀的组成与分类 调节阀又称控制阀,是执行器的主要类型,通过接受调节控制单元输出的控制信号,借助动力操作去改变流体流量。调节阀一般由执行机构和阀门组成。如果按其所配执行机构使用的动力,调节阀可以分为气动、电动、液动三种,即以压缩空气为动力源的气动调节阀,以电为动力源的电动调节阀,以液体介质(如油等)压力为动力的电液动调节阀,另外,按其功能和特性分,还有电磁阀、电子式、智能式、现场总线型调节阀等。调节阀的产品类型很多,结构也多种多样,而且还在不断更新和变化。一般来说阀是通用的,既可以与气动执行机构匹配,也可以与电动执行机构或其他执行机构匹配。 二:调节阀的作用方式选择 调节阀的作用方式只是在选用气动执行机构时才有,其作用方式通过执行机构正反作用和阀门的正反作用组合形成。组合形式有4种即正正(气关型)、正反(气开型)、反正(气开型)、反反(气关型),通过这四种组合形成的调节阀作用方式有气开和气关两种。对于调节阀作用方式的选择,主要从三方面考虑:a)工艺生产安全;b)介质的特性;c)保证产品质量,经济损失最小。 三:调节阀流,特性的选择 调节阀的流量特性是指介质流过阀门的相对流量与位移(阀门的相对开度)间的关系,理想流量特性主要有直线、等百分比(对数)、抛物线和快开等4种,特性曲线和阀芯形状如图1和图2所示。常用的理想流量特性只有直线、等百分比(对数)、快开三种。抛物线流量特性介于直线和等百分比之间,一般可用等百分比特性来代替,

而快开特性主要用于二位调节及程序控制中,因此调节阀特性的选择实际上是直线和等百分比流量特性的选择。 调节阀流量特性的选择可以通过理论计算,但所用的方法和方程都很复杂。目前多采用经验准则,具体从下几方面考虑:①从调节系统的调节质量分析并选择; ②从工艺配管情况考虑;③从负荷变化情况分析。 选择好调节阀的流量特性,就可以根据其流量特性确定阀门阀芯的形状和结构,但对于像隔膜阀、蝶阀等,由于它们的结构特点,不可能用改变阀芯的曲面形状来达到所需要的流量特性,这时,可通过改变所配阀门定位器的反馈凸轮外形来实现。

气动调节阀阀门关不死的原因及解决方法

气动调节阀阀门关不死的原因及解决方法 当遇到气动阀门关不死的情况时,这个时候我们就需要先来找出原因,然后阀门都有一定的泄漏量,要看阀门的泄漏量是否超过标准规定值,超过就是质量问题了。其次,电气转换器输出是否与阀门膜头压力匹配。 1.阀门是否被杂物卡住。 2.阀门的弹簧力是否合适。 3.阀杆是否被卡住。 4.阀芯、阀座磨损严重膜头膜片漏气。 5.定位器故障。 6.气开阀,零点弹簧预紧力过大。 7.阀杆调的太短。 8.调节阀前后压差过大,选型有问题。 我们可以先从以上描述找出原因,在施以解决方案。 气动调节阀 气动阀门关不死的几点解决方案如果你的气动阀有手动,那就每次停止了,让人手动摇死,或者让仪表人员,重新调校一下,把零点和定位器重新调校一下;关位的行程不到位,阀杆磨损严重,压缩空气的压力是否达标,原因很多,先阀门定位器整定一下,再调一下关位的行程累;阀门是气开还是气关阀门。如果是气关阀门,可以看气源压力,定位器零位量程调整是否正常,还有就是阀芯有无卡的情况等。如果是气开阀门,将气源断开,阀门应该关死如果关不死,就可能是

阀门阀体有无异物卡住的问题了;如果阀门出现随机性的关不死现象,建议查看仪表风压是否足够,即定位器输出的风压是否能够达到调节阀关闭状态下的压力;看看气源压力是否足够,再看看阀门是否有卡的情况,或者是内漏,这也关不死。最好先调调定位器试试。气开阀: 1、弹簧的预紧力不够,可以适当加大一些; 2、工况允许的时候,阀门要拆下做一下打压试验,借此可以检查阀芯阀座的密封情况,以及阀芯与阀座是否有损伤。 3、如果再次发生关不死的情况下,可以将该阀门切出来,检查阀芯阀座处是否有异物。。 4、检查阀门的零点是否偏高。 气关阀: 1、弹簧的预紧力太大,可以适当减小一点预紧力。 2、工况允许的时候,阀门要拆下做一下打压试验,借此可以检查阀芯阀座的密封情况,以及阀芯与阀座是否有损伤。 3、如果再次发生关不死的情况下,可以将该阀门切出来,检查阀芯阀座处是否有异物。 4、检查一下该阀门的气源压力是否正常。 5、检查膜片是否有破损。 6、检查阀门的零点是否偏高。 如果以上工作进行之后还出现关不死的情况,建议核对该阀门的相关参数,看看设计的相关参数与实际工况是否有出入。

如何正确选择调节阀种类参考资料解读

如何正确选择调节阀种类 调节阀种类繁多,如何正确选择是一个重要的问题。上海沪工阀门教你如何选择调节阀! 阀型的选择: (1)确定公称压力,不是用Pmax 去套PN ,而是由温度、压力、材质三个条件从表中找出相应的PN 并满足于所选阀之PN 值。 (2)确定的阀型,其泄漏量满足工艺要求。 (3)确定的阀型,其工作压差应小于阀的允许压差,如不行,则须从特殊角度考虑或另选它阀。 (4)介质的温度在阀的工作温度范围内,环境温度符合要求。 (5)根据介质的不干净情况考虑阀的防堵问题。 (6)根据介质的化学性能考虑阀的耐腐蚀问题。 (7)根据压差和含硬物介质,考虑阀的冲蚀及耐磨损问题。 (8)综合经济效果考虑的性能、价格比。需考虑三个问题: a .结构简单(越简单可靠性越高)、维护方便、备件有来源; b .使用寿命; c .价格。 (9)优选秩序。 蝶阀-单座阀-双座阀-套筒阀-角形阀-三通阀-球阀-偏心旋转阀-隔膜阀。

此为常规选择,蝶阀(一般为快开特性)满足不了调节特性,则选择单座阀,满足不了流通能力以及减小驱动力则选择双座阀,满足不了噪声则采用套筒阀。 如安装以及特殊需要则继续选择其他类型的阀门。。。 总体而言:套筒阀适合于高压,球阀切断功能强,内漏少,偏心旋转阀特别适合于有颗粒介质,隔膜阀特别适合于腐蚀性介质。 执行机构的选择: (1)最简单的是气动薄膜式,其次是活塞式,最后是电动式。 (2)电动执行机构主要优点是驱动源(电源)方便,但价格高,可靠性、防水防爆不如气动执行机构,所以应优先选用气动式。 (3)老电动执行机构笨重,我们已有电子式精小型高可靠性的电动执行机构提供(价格相应高)。 (4)老的ZMA 、ZMB 薄膜执行机构可以淘汰,由多弹簧轻型执行机构代之(性能提高,重量、高度下降约30%)。 (5)活塞执行机构品种规格较多,老的、又大又笨的建议不再选用,而选用轻的新的结构。 材料的选择: (1)阀体耐压等级、使用温度和耐腐蚀性能等方面应不低于工艺连接管道的要求,并应优先选用制造厂定型产品。 (2)水蒸汽或含水较多的湿气体和易燃易爆介质,不宜选用铸铁阀。 (3)环境温度低于-20℃时(尤其是北方),不宜选用铸铁阀。

气动调节阀气开气关选择

一、气动调节阀气开、气关的选择 1)气动调节阀气开、气关的选择原则主要是根据具体工艺情况来考虑,即要分析使用气开或气关时对工艺的影响(气开或气关为气源出现事故状况时控制阀的情况),并且主要考虑的问题是安全问题。 2)在生产过程中,调节阀气开、气关形式的选择,主要是从工艺生产的安全来考虑。例:蒸气加热器选用气开阀;锅炉进水的调节阀则选用气关式。 3)应该指出,气动调节阀的气开、气关的选择不是一个单纯的自控专业的设计选型问题,这是个涉及到两个专业,即工艺、自控俩专业之间协调的问题,更确切的说,应该是工艺专业确定的,有经验的工艺设计人员在确定气关、气开的时候,几乎可以做到张口就有,用简单、形象、通俗的一句话来形容气开气关就是:“气来了开(无气源则关)就是气开阀,气来了关(无气源则开)就是气关阀。”,无气源可以理解为事故状态、或者停车检修状态,一般意义上,气开、气关的选择更多的是从工艺操作“安全”的角度出发去选择的,这个“安全”非常重要,要从工艺、设备、操作上通盘考虑,当然也有特殊的情况。 举两个例子: 1、比如蒸汽加热器(比如精镏塔塔釜再沸器),其加热介质为水蒸汽,一般的原则,一旦出现操作不正常,如塔压、塔釜温度过高等极其不利的情况出现,在事故状态或者不正常操作的状态下,这个调节阀应该处于关闭状态,比如仪表气源突然没了,压缩机事故、仪表空气缓冲罐压力失常等,处于关闭状态有利于切断高温水蒸汽继续进入加热器,也就是切断了热源,从而保证设备的安全,“无气源则关”,很显然,这个调节阀应该选气开阀(气来了才能开嘛)。 拓展一下思维,塔顶的冷凝器的冷却水上水调节阀,应该是气开、气关呢?为了保证冷凝器不处于高温下,或者说在调节阀出现失去气源的情况下,为了塔顶压力、温度正常,这个时候是不允许冷却水出现停水状况的,那么这个调节阀在事故状态下就应该是处于开启状态,恰恰和加热器的调节阀相反,道理都一样,就是为了维持这个精镏塔的正常、稳定操作,事故状态下不会有恶劣的影响,为了安全,这个阀“无气源则开”,很显然,这个调节阀应该选气关阀(气来了才能关

调节阀压差的确定

调节阀压差的确定 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

调节阀压差的确定 一、概述 在化工过程控制系统中,带调节阀的控制回路随处可见。在确定调节阀压差的过程中,必须考虑系统对调节阀操作性能的影响,否则,即使计算出的调节阀压差再精确,最终确定的调节阀也是无法满足过程控制要求的。 从自动控制的角度来讲,调节阀应该具有较大的压差。这样选出来的调节阀,其实际工作性能比较接近试验工作性能(即理想工作性能),即调节阀的调节品质较好,过程容易控制。但是,容易造成确定的调节阀压差偏大,最终选用的调节阀口径偏小。一旦管系压降比计算值大或相当,调节阀就无法起到正常的调节作用。实际操作中,出现调节阀已处于全开位置,所通过的流量达不到所期望的数值;或者通过调节阀的流量为正常流量值时,调节阀已处于90%开度附近,已处于通常调节阀开度上限,若负荷稍有提高,调节阀将很难起到调节作用。这就是调节阀压差取值过大的结果。 从工艺系统的角度来讲,调节阀应该具有较小的压差。这样选出来的调节阀,可以避免出现上述问题,或者调节阀处于泵或压缩机出口时能耗较低。但是,这样做的结果往往是选用的调节阀口径偏大,由于调节阀压差在管系总压降中所占比例过小,调节阀的工作特性发生了严重畸变,调节阀的调节品质不好,过程难于控制。实际操作中,出现通过调节阀的流量为正常流量值时,调节阀已处于10%开度附近,已处于通常调节阀的开度下限,若负荷稍有变化,调节阀将难以起到调节作用,这种情况在低负荷开车时尤为明显。这就是调节阀压差取值过小的结果。同时,调节阀口径偏大,既是调节阀能力的浪费,使调节阀费用增高;而且调节阀长期处于小开度运行,流体对阀芯和阀座的冲蚀作用严重,缩短调节阀的使用寿命。 正确确定调节阀的压差就是要解决好上述两方面的矛盾,使根据工艺条件所选出的调节阀能够满足过程控制要求,达到调节品质好、节能降耗又经济合理。 关于调节阀压差的确定,常见两种观点。其一认为根据系统前后总压差估算就可以了;其二认为根据管系走向计算出调节阀前后压力即可计算出调节阀的压差。这两种方法对于估算国内初步设计阶段的调节阀是可以的,但用于详细设计或施工图设计阶段的调节阀选型是错误的,常常造成所选的调节阀口径偏大或偏小的问题。正确的做法是对调节阀所在管系进行水力学计算后,结合系统前后总压差,在不使调节阀工作特性发生畸变的压差范围内合理地确定调节阀压差。 有人会问,一般控制条件在流程确定之后即要提出,而管道专业的配管图往往滞后,而且配管时还需要调节阀的有关尺寸,怎样在提调节阀控制条件时先进行管系的水力学计算呢?怎样进行管系的水力学计算,再结合系统前后总压差,最终在合理范围内确定调节阀压差,这就是本文要解决的问题。 二、调节阀的有关概念 为了让大家对调节阀压差确定过程有一个清楚的认识,我们需要重温一下与调节阀有关的一些基本概念。 1、调节阀的工作原理

相关文档
最新文档