《数形结合思想》在解题中的应用

《数形结合思想》在解题中的应用
《数形结合思想》在解题中的应用

浅谈数形结合思想在解题中的应用

一、数形结合思想的提出

在高中数学解析几何这一模块中, 处理问题的方法常见有代数法和几何法。 代数法是从 “数”的角度解决问题、几何法从“形”的角度解决问题,这两种方法相辅相成, 相得益彰。 现举例如下:若直线 y = x ? k 与曲线x - - y 2恰有一个公共点,求 k 的取值范围. 解:(代数法)曲线方程可化为x 2 ? y 2 =1(x _ 0),把y = x ? k 代入x 2 ? y 2二1(x _ 0) 可得:Zx 2 +2kx+k 2 -1 = 0( xZ0),由题意可知方程仅有一个非负根

①当方程有等根时,即厶=(2k)2 -8(k 2 -1)=0,可得k =「丿2,当k =衣2时,方程可化 为2x 2 ^2x ^0,得x = 不合题意;当k - - 2时,方程为2x 2 - 2、、2x ? 1 = 0 得x -符合题意,可知k = -羔2 ;

2

②当方程根为x = 0时,得k 2 -1 =0,k = 一1,当k 二-1时,方程为2x 2 -2x = 0,得方 程两个根为& = 0,X 2 = 1不合题意应舍去;当k = 1时,方程为2x 2 2^ 0,得方程两 个根为捲=0, X 2 = -1适合题意,可知k= 1 ;

综上所述:所求 k 的取值范围为k =或-1 ::: k 乞1。

(几何法)曲线x = ..1 - y 2是单位圆x 2 y 2 =1的右半圆(x - 0), k 是直线

^x k 在y 轴上的截距.在同一坐标系中画出两曲线图像如 图所示知:直线与曲

线相切时,

k 「2, 由图形:可得k = —V2或 一1 : k 乞1。

上述两种解法可以看出利用代数法求解过程较为复杂、繁琐且容易错;而利用几何法即 一种数形结合的思想方法,却能使复杂问题简单化,抽象问题具体化,它在数学解题中具有 极为独特的指导作用。

二、数形结合思想的概述

数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石。在解决数学 问题时,常常根据数学问题的条件和结论之间的内在联系,

将数的问题利用形来观察, 揭示 其几何意义;而形的问题也常借助数去思考,

分析其代数含义,如此将数量关系和空间形式 巧妙地结合起来,并充分利用这种“结合” ,寻找解题思路,使问题得到解决的方法称之为

③当方程根为一正一负时,只需

NX 2 k 2 -1 2

:::0,可得-V k 1。

数形结合的思想方法。

数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其实质是

将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结

论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。

三、数形结合思想解题方法指导

1转换数与形的三条途径:

①通过坐标系的建立,引入数量化静为动,以动求解。

②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股

定理或平面上两点间的距离等。

③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。

2 ?运用数形结合思想解题的三种类型及思维方法:

①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,

反映几何图形内在的属性。

②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应

的数量关系,提示出数与式的本质特征。

③“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分

析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。

四、数形结合思想方法的应用

1化静为动用图像

例1已知:有向线段PQ的起点P与终点Q坐标分别为(-1,1) , (2,2),若直线l : x m^ m = 0与有向线段PQ延长线相交,求实数m的取值范围。

分析:题中直线l: x my m = 0是一条过定点的动直线系,而有向线段PQ是一条定的有向线段,要使直线I与有向线段PQ延长线相交,可先找到I过一个临界点Q,再从运动

观点促使直线I的斜率在某一范围内,从而可求实数m的取值范围。

1

解:直线I的方程I : x my 0可化为点斜式:y ? 1 (x- 0),易知直线I过定

m

1

点M (0,-1)且斜率为,因为I与PQ的延长线相交,由数形结合可得:当过M且与PQ

m

1 平行时,直线的斜率趋近于最小;当过点M,Q时,直线I的斜率趋近于最大,又kp Q二

3

3

k

MQ = 2,设直线l的斜率为k,由k pQ

::: k ::: k“Q

1 13 2

得所以_ 3 ::: m ■■-—

3 m2 3

评注:含有一个变量的直线方程可化为点斜式或化为经过两直线交点的直线系方程?本题是

1

化为点斜式方程后,可看出交点M(0,-1)和斜率,此类题目一般结合图形化静为动,

m

以动求解,可判断出斜率的取值范围。

2、破解疑难构图像

sin x + 2

例2求函数y 的值域。

cosx - 2

分析:本题可以把函数化为关于x的三角函数,然后利用其有界性求值域,但其运算量大,

对学生的运算能力有较高要求,有一定难度。此题可看成过两点M( cosx,si nx),P(2,-2)

构成直线的斜率的范围,又M ( cosx,sinx)在一个单位圆上,故可构造图像求此函数值

域。

解:y二sinx 2

的形式类似于斜率公式

k = y2―y i

COSX-2 血-X i

???函数值域为[二7,土二]

3 3

评注:本题考查了三角函数值域与直线斜率之间的内在联系,考查学生的数形结合的能力。

在解决三角函数的有关问题时,若把三角函数的性质、化简的形式通过构造思想融于函数的

图象之中,将数(量)与图形结合起来进行分析、研究,使抽象复杂的数量关系通过几何图形直观地表现出来,这是解决三角函数问题的一种思维策略。

3、寻求正解配图像

例 3 设A={X| -2 乞x^a},B={y| y = 2x 3,x A},c={z| z = x2,x A},若C B,

求实数a的取值范围。

p

分析:解决本题的关键是依靠二次函数在区间上的值域求法确定集合 C,进而用不等式将

C - B 这一集合语言加以转化。

解:??? y =2x 3在[-2, a ]上是增函数,??? B={y|乞 y 乞 2a ? 3}。

① 当一2乞a < 0时,如图1, a 2乞z 乞4,即{ z| a 2空z 乞4 }o

1

要使C B ,必须且只需2a ? 3 _ 4,解得a ,与-2乞a 乞0矛盾。 2

② 当0 :::a 乞2时,如图2, 0乞z 乞4,即{ z| 0乞z 空4}.

"2a + 3Z4

1 要使C 5 B ,必须且只需 ,解得 a 乞2。 QEa 兰

2 2

③ 当 a - 2时,如图 3, 0 — z — a 2,即{ z| 0 - z — a 2}。

a 2

兰2勺+ 3 要使C B ,必须且只需 ,解得2 ::: a 乞3。

12

④ 当 a ::: -2 时,A=〔r ,此时 B =C =_ , C 二 B 成立。

— —1

综上所述,a 的取值范围是(-::,-2)一.[ ,3]。

评注:解决集合问题首先要看清元素究竟是什么, 然后再把集合语言“翻译”为数学语言, 进而分析条件与结论的特点,再将其转化为图形语言,利用数形结合的思想来解决。

对于二次函数在闭区间上的最值问题,

应抓住对称轴与所给区间的相对位置关系, 借助

图象的直观形象,达到解决问题的目的。

4、观其意义想图像

例4已知复数z 满足z-2-2i ,求z 的模的最大值、最小值。 分析:由复数z 满足z-2-2i = J2,可知有明显的几何意义,即复数z 在以(2,2)为圆心, 作出函数z ^x 2的图象,其定义域右端点 x = a 有三种不同的位置关系

:

以,2为半径的圆上,通过数形结合,进而可求 z 的模的最大值、最小值。

评注:二元一次不等式组与二元函数的对应实质上是简单线性规划问题, 利用可行域可以求 目标函数的最值,属于典型的数形结合的案例。 值得注意的是,目标函数对应的直线与边界 直线斜率的大小关系用于确定最优解的正确位置应仔细观察各直线的倾斜程度,

准确判定可 行域内的最优解。

总之,数形结合思想是数学中基本而又重要的思想, 是解答数学试题的的一种常用方法

与技巧,特别是在解决选择、填空题是发挥着奇特功效。数学家华罗庚曾指出:

“数缺形时 少直观,形少数时难入微;数形结合百般好,隔裂分家万事非。 ”可见数形结合的思想可以 使某些抽象的数学问题直观化、 生动化,能够变抽象思维为形象思维,有助于把握数学问题 的本质。在高考复习时, 同学们必须随时注意运用数形结合思想,

复习中要以熟练技能、方

法为目标,加强这方面的训练,以提高解题能力和速度。 解:由条件可知复数z 有明显的几何意义,它表示复数z 对应的点到复数2 2i 对应的点之 间的距离,因此满足z-2-2i = J2的复数z 对应的点Z ,应在以(2,2)为圆心,以为 半径的圆上,如图所示:而 z 表示复数z 对应的点Z 到原点0的距离,显然,当点 Z 、圆 心C 、点0三点共线时,z 取得最值,此时図斷「2, |z|ma x = 3、、2,

评注:本题还可以令 z = a bi ,利用代数思想求解模的最值。但是 利用复

数的几何意义,借助图形利用数形结合是解决复数最值问题最有 效的途径,

它将代数问题转化为几何问题,求解直观、形象,优化了解 题过程。

5、结论模糊画图像

x_1,

一 I ' 例5 (08年高考湖南卷理3改编)已知变量x 、y 满足条件 X-y^O, x 2y _9 _ 0,

求x y 的最大值.

分析:本题实质是线性规划问题,运用图像画平面区域,再求线性目标函数的最值。 解:如图所示,可行域为图中阴影部分(包括边界线) ,贝U z=x ? y 在A 点处取得最大值,

f x - v = 0

由《 y 得A (3, 3),故最大值为3+ 3=6.

x 2y-9=0

中考常考的旋转、折叠、翻转等几种经典类型

中考常考题型 (一)正三角形类型 在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转600,使得AB与AC 重合。经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP中,此时ΔP'AP也为正三角形。 例1. 如图:(1-1):设P是等边ΔABC内的一点,PA=3,PB=4,PC=5,∠APB的度数是________.

(二)正方形类型 在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向 旋转900,使得BA与BC重合。经过旋转变化,将图(2-1-a)中的PA、PB、PC 三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。 例2. 如图(2-1):P是正方形ABCD内一点,点P到正方形的三个顶点A、 B、C的距离分别为PA=1,PB=2,PC=3。求此正方形ABCD面积。

(三)等腰直角三角形类型 在等腰直角三角形ΔABC中,∠C=Rt∠, P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转900,使得AC与BC重合。经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。

例3.如图,在ΔABC中,∠ACB =900,BC=AC,P为ΔABC内一点,且PA=3,PB=1,PC=2。求∠BPC的度数。 平移、旋转和翻折是几何变换中的三种基本变换。所谓几何变换就是根据确定的法则,对给定的图形(或其一部分)施行某种位置变化,然后在新的图形中分析有关图形之间的关系.这类实体的特点是:结论开放, 注重考查学生的猜想、探索能力;便于与其它知识相联系,解题灵活多 变,能够考察学生分析问题和解决问题的能力.在这一理念的引导下, 近几年中考加大了这方面的考察力度,特别是2006年中考,这一部分 的分值比前两年大幅度提高。

中考数学十大解题思路之反证法

中考数学十大解题思路之反证法 一、选择题 1否定结论“至多有两个解”的说法中,正确的是() A.有一个解 B.有两个解 C .至少有三个解D .至少有两个解 [答案]C [解析]在逻辑中“至多有n个”的否定是“至少有n+ 1个”,所以“至多有两个解”的否定为“至 少有三个解” 故应选C. 2?否定“自然数a、b、c中恰有一个偶数”时的正确反设为() A. a、b、c都是奇数 B . a、b、c或都是奇数或至少有两个偶数 C. a、b、c都是偶数 D . a、b、c中至少有两个偶数 [答案]B [解析]a, b, c三个数的奇、偶性有以下几种情况:①全是奇数;②有两个奇数,一个偶数;③有一 个奇数,两 个偶数;④三个偶数.因为要否定②,所以假设应为“全是奇数或至少有两个偶数”.故应选B. 3.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反设正确的是() A.假设三内角都不大于60° B .假设三内角都大于60 ° C.假设三内角至多有一个大于60° D .假设三内角至多有两个大于60° [答案]B [解析]“至少有一个不大于”的否定是“都大于60°”.故应选B. 4.用反证法证明命题:“若整系数一元二次方程ax2+ bx+ c = 0(a工0)有有理根,那么a, b, c中至少 有一个是偶 数” 下列假设正确的是() 时, A.假设a, b, c都是偶数 B .假设a、b, c都不是偶数

C.假设a, b, c至多有一个偶数 D .假设a, b, c至多有两个偶数 [答案]B 9.用反证法证明命题在直角三角形中,至少有一个锐角不大于45 °”时,应先假设()

高中数学解题基本方法 换元法

高中数学解题基本方法--换元法 高中数学解题基本方法--换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4+2-2≥0,先变形为设2=t(t 0),而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=+

的值域时,易发现x∈[0,1],设x=sinα,α∈[0,],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x+y=r(r 0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=+t,y=-t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t 0和α∈[0,]。 Ⅰ、再现性题组: 1.y=sinx??cosx+sinx+cosx的最大值是_________。 2.设 f x+1 =log 4-x (a 1),则 f x 的值域是_______________。 3.已知数列 a 中,a=-1,a??a=a-a,则数列通项a=___________。 4.设实数x、y满足x+2xy-1=0,则x+y的取值范围是___________。 5.方程=3的解是_______________。 6.不等式log 2-1 ??log 2-2 〈2的解集是_______________。 【简解】1小题:设sinx+cosx=t∈[-,],则y=+t-,对称轴t=-1,当t=,y=+; 2小题:设x+1=t t≥1 ,则f t =log[- t-1 +4],所以值域为-∞,log4];

反证法在数学解题中的应用

反证法在数学解题中的应用 我们在解决数学问题时,一般是从正面入手,这就是所谓的正向思维,但往往也会遇到从正面入手困难,或出现一些逻辑上的困境的情形,这时就要从辩证思维的观点出发,运用逆向思维克服思维定势的消极面,从习惯思路的反方向去分析问题,运用反证法解决问题。 一、反证法的逻辑基础 证明命题“A B”时如果用这种方法:假设A∧B为真,在A且B的条件下,合乎逻辑地推出一个矛盾的结果(不论是与A矛盾还是与其他已知正确的结论矛盾或自相矛盾),从而B成立(即A B成立),这种方法就是反证法。 二、反证法的解题步骤 第一步审题,弄清命题的前提和结论; 第二步否定原命题,由假设条件及原命题构成推理的基础; 第三步由假设出发,根据公理、定义、定理、公式及命题的条件,正确逻辑推理,导出逻辑矛盾; 第四步肯定原命题的正确性。 三、什么情况下考虑应用反证法 1待证命题的结论是唯一存在性命题 例1设方程x=p sin x+a有实根(0<p<1,a是实数),求证实根唯一。 证明:假设方程存在两个不同实根x1,x2,则有 x1=p sin x1+a,x2=p sin x2+a x1-x2=p sin x1-sin x2=2p cos x1+x22sin x1-x22 由于cos x1+x22│≤1,从而有│x1-x2│≤2p│sin x1-x22│又sin x1-x22≤x1-x22,故x1-x2≤p x1-x2,但x1≠x2,于是p≥1,与0<p<1矛盾。所以方程若有实根,则根唯一。 2采取直接证法,无适宜的定理作为根据,甚至无法证明。 例2已知A、B、C、D是空间的四点,ABGN CD是导向直线,求证AC和BD、AD和BC也都是异面直线。 分析:证AC和BD是异面直线,即证明AC和BD不在同一平面内,考虑反证法。 证明:假定AC和BD不是异面直线,那么AC和BD在同一平面内,因此A、B、C、D不是异面直线,这与已知条件矛盾。所以AC和BD是异面直线。 3待证命理的结论是以“至少存在”的形式出现的,“至少存在”的反面是“必定不存在”,所以只要证明“必定不存在”不成立即可。 例3设p1p2=2(q1+q2)求证方程x2+p1x+q1=ox2+p2x+q2=0中至少有一个方程有实根。 证明:假设两方程都无实根,则 p12-4q1<0,p22-4q2<0,两式相加,有p21+p22<4(q1+q2)(1) 而p1p2=2(q1+q2)代入(1)得p21+p22<2p1p2,这与p21+p22≥2p1p2矛盾。 故假设不成立,原命题正确。 4待正命题含有涉及各种“无限形式”的结论,由于中学没有直接证明“无限”的手段。而结论的反面却是“有限”,故常常借助于反证法。 例4证明实数lg3是无理数。 证明:假设lg3是有理数。则它可以表示成lg3=mn(m,n是互质的正整数,由对数的定义,得10=3″)。但10是偶数,而3″是奇数,矛盾。因此实数lg3是无理数。

应用统计学习题:方差分析

第五章方差分析 序号:5-004 题型:名词解释题 章节:方差分析 题目:方差分析的任务 答案:①求参数μ、μj 、α 1、α 2 ……αm的估计值(参数估计) ②分析观测值的偏差 ③检验各水平效应α 1、α 2 ……αm(等价μ 1 、μ 2 ……μm)有无显著差异 难度:高 评分标准:每题2分,少一条扣去1分。 序号:5-002 题型: 判断题 章节:方差分析 题目:方差分析是一种比较总体方差差异的统计方法。() 答案:错误 难度:中 评分标准:1分 序号:5-003 题型:综合题 章节:方差分析 题目:设有三个车间以不同的工艺生产同一种产品,为考察不同工艺对产品产量的影响,现对每个车间各纪录5天的日产量,如表所示,问三个车间的日产量是否有显著差异? (取α=0.05)。 将最终的计算结果填入下表:

F >)12,2(05.0F 存在显著差异。 解:(1)计算各水平均值和总平均值,465 46 484745441=++++= X , 同理46,5232==X X ,483 46 5246=++=X (2’分) (2)计算总离差平方和S T ,组内平方和S E ,组间平方和S A 。 S T =(44-48)2+(46-48)2+……(45-48)2=172 (1’分) S A =Σ120)4846(5)4852(5)4846(5)(2222j =-+-?+-=-X X (1’分) S E =S T -S A =172-120=52(1’分) (3)计算方差 MS A = 601 3120 =- MS E = 33.43 1552 =-(1’分) (4)作F 检验 85.1333 .460 === E A MS MS F (1’分) 89.3)21,2(),1(05.02==--F m n m F (1’分) 难度:中 评分标准: 每题8分 序号:5-004 题型:综合题 章节:方差分析 题目: 有重复双因素方差分析,A 因素有3个水平,B 因素有3个水平,在A i 、B j 所有可能组合条件下,重复观测2次。试用观测值X ijk 、均值??i X 、??j X ……, i =1、2……n , j =1、2……m , k =1、2…… l 制表。并指定Excel 单元格对应。 有重复双因素方差分析数据表

反证法在数学中的应用

论文 反证法在数学中的应用 开封县八里湾镇第一初级中学 杨继敏

反证法在数学中的应用 摘要反证法是数学教学中所涉及的基本论证方法,它为一些从正面入手,无法使已知条件和结论找出联系的问题,提供了一条解题途径,它通过给出合理的反设,来增加演绎推理的前提,从而使那种只依靠所给前提而变的山穷水尽的局面,有了柳暗花明又一村的境地,使学生看到增加演绎推理前提的方便功效。在过去的数学学习中,许多人拘泥于传统的推理方法,常常使问题复杂化,尽管最后能达到目的,但往往费时费力,因为数学的研究往往体现一种思维转换,我们可以用一种“换位”思想来处理我们日常遇到的数学问题。 【关键词: 逆向思维;假设;归谬;数学逻辑推理;矛盾;结论。】 1.引言 反证法是数学中一种重要的解题方法,对数学解题有着重要作用。其基本思想是通过求证对立面的不成立从而推出正面的正确。因为这种方法推理严密,说服性强,所以除了在数学中应用反证法,在实际生活中的应用也比较广泛。 在不同的数学情境下,反证法的前提假设不同。因此,在数学中应用反证法,一定要具体问题提出相应具体正确的假设。这就需要熟练掌握反证法的反设词,除此,还应熟记反证法的证题步骤——假设,归谬,结论。有关这个课题的研究,以及涉及到各种文章说明其步骤,适用范围,并附以大量例题。但对反证法在数学中的应用,文字讲解与反证法适宜的数学题型的归纳总结还欠缺。本文就基于这方面的考虑,根据反证法在数学中适宜的命题应用进行了详细的文字讲解及归纳总结。 2. 反证法初探 2.1 反证法的含义及逻辑依据 含义:所谓反证法就是从反面证明命题的正确性,即欲证明“p则q”,则从反面推导出“若p非q”不能成立,从而证明“若p则q”成立。它从否定结论出发,经过正确的严格推理,得到与已知(假设)或已成立的数学命题相矛盾的结果,从而验证产生矛盾的原因,推出原命题的结论不容否定的正确结论。

高中数学解题方法-换元法

高中数学解题方法 2013年高考数学二轮复习 换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:代数换元、三角换元、均值换元等。例如解不等式:0224≥-+x x ,先变形为设)0(2>=t t x ,而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y =x +1-x 的值域时,易发现[]1,0∈x ,设 α2sin =x ?? ????∈22,0α,问题变成了熟悉的求三角函数值域。如变量y x ,适合条件 )0(222>=+r r y x 时,则可作三角代换θθsin ,cos r y r x ==化为三角问题。 均值换元,如遇到S y x =+形式时,设t S y t S x -=+=2 ,2等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。 题型一:代数换元 例1:(1)方程1313 ++-x x =3的解是_______________ (2)x x x f --=2)(的值域是___________.

旋转解题技巧

巧旋转妙解题 1.理解旋转变换的作用是什么? 旋转可以移动图形的位置而不改变图形的形状、大小 2.在什么情况下需要利用旋转变换?图形具备什么条件时可以实现旋转? 当图形过于分散或集中,无法有效利用时,需要移动图形,而移动图形的手段就是三种变换.当图形中只要存在共顶点的等线段时就可以实施旋转变换. 3.怎么旋转? 确定旋转中心、旋转方向、旋转角度

60 ° 一等边三角形 90 ° ―等腰直命三用形 4.旋转之后怎 么办? 利用旋转的性 质. 对基本图形的 认识: 以等边三角 举例1:如图, 120°,以 BC 边厶ABC 把厶 方向旋转 若 BW 2, MC 形为背景的旋转问题 △ BCM 中,/ BMC= 为边向三角形外作等 ABM 绕着点A 按逆时针 60°到 厶CAN 的位置. =3. 求:①/ AMB 勺度数;②求 AM 的长. 练习1.如图,o 是等 边三角形ABC 内一 点, 已知: /AOB =115 , /BOC =125,则以线 段OA ,OB ,OC 为边 构成三角形的各角度 数是多少? 2?如图,P 是等边「ABC 内一点,若 AP=3 , PB =4 , PC =5 , 求/ APB 的度数 . A B C

3.如图所示,P 是等边 ABC 内部一点,PC =3 , PA=4 , PB =5,求 ABC 的边长? 6.如图所示,JABD 是等边三角形,在.\ABC 中,BC =a , CA =b ,问:当.ACB 为何值 时,C 、D 两点的距 离最大?最大值是多少? 以等腰直角三角形或正方形为背景的旋转问题 举例1:已知,△ ABC 中,A D 丄BC 于 D,且AD=BD,C 是AD 上一点,OD=CD 连结B0并延长交 AC 解答下列问题: (1)如果 AB=AC ,/ BAC=90 o . ① 当点D 在线段BC 上时(与点B 不重合),如图乙,线段CF 、BD 之间的位置关系为 _________________ 数量关系为 ________ . ② 当点D 在线段BC 的延长线上时,如图丙,①中的结论是否仍然成立,为什么? 【MeiWei 81重点借鉴文档】 4.如图所示,P 是等边 ABC 中的一点,PA =2 , PB = 2 3, PC =4,试求ABC 的边长. 的一点,PA =3 ,PB =4 , PC =5 , C 5.如图,P 是等边.:ABC 外 求 三APB 的度数. 于E.求证:AC=OB 如图甲,在△ ABC 中, 为锐角.点D 为射线BC 上一动点,连接 AD ,以AD 为一边且在 AD 的右侧作正方形 ADEF .

初中数学旋转解题几何

旋转基础练习一 一、选择题 1.在26 个英文大写字母中,通过旋转180°后能与原字母重合的有()A.6 个B.7 个C.8 个D.9 个 2.从 5 点15 分到 5 点20 分,分针旋转的度数为()A.20°B.26°C.30°D.36° 3.如图1,在Rt△ABC 中,∠ACB=90°,∠A=40°,以直角顶点 C 为旋转中心,将△ABC 旋转到△A′B′的C位置,其中A′、B′分别是A、B 的对应点,且点 B 在斜边A′B上′,直角边CA′交AB 于D,则旋转角等于()A.70°B.80°C.60°D.50° (图1) (图2) (图3) 二、填空题. 1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________. 2.如图2,△ABC 与△ADE 都是等腰直角三角形,∠ C 和∠AED 都是直角,点 E 在AB 上,如果△ABC 经旋转后能与△ADE 重合,那么旋转中心是点_________;旋转的度数是__________. 3.如图3,△ABC 为等边三角形, D 为△ABC 内一点,△ABD 经过旋转后到达△ACP 的位置,则,(1)旋转中心是________;(2)旋转角度是________;(3)△ADP 是________ 三角形. 三、解答题. 1.阅读下面材料: 如图4,把△ABC 沿直线BC 平行移动线段BC 的长度,可以变到△ECD 的位置. 如图5,以BC 为轴把△ABC 翻折180°,可以变到△DBC 的位置. (图4) (图5) (图6) (图7) 如图6,以A 点为中心,把△ABC 旋转90°,可以变到△AED 的位置,像这样,其中 一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置, 不改变形状和大小的图形变换,叫做三角形的全等变换.

数学解题方法换元法详解

二、换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4x +2x -2≥0,先变形为设2x =t (t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y =x +1-x 的值域时,易发现x ∈[0,1],设x =sin 2α ,α∈[0,π2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x 、y 适合条件x 2+y 2=r 2(r>0) 时,则可作三角代换x =rcos θ、y =rsin θ化为三角问题。 均值换元,如遇到x +y =S 形式时,设x =S 2+t ,y =S 2 -t 等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t>0和α∈[0,π2 ]。 例1. 实数x 、y 满足4x 2-5xy +4y 2=5 ( ①式) ,设S =x 2+y 2,求 1S m a x +1S min 的值。(93年全国高中数学联赛题) 【分析】 由S =x 2+y 2联想到cos 2α+sin 2 α=1,于是进行三角换元,设x S y S ==???? ?cos sin αα代入①式求S max 和S min 的值。 【解】设x S y S ==?????cos sin αα 代入①式得: 4S -5S ·sin αcos α=5 解得 S =10852-sin α ;

遵义专版2017届中考数学总复习第三编综合专题闯关篇专题三图形变换问题的基本类型和解题策略第三节图形旋转

第三节图形旋转变换问题 ,中考重难点突破) 旋转是图形的一种重要变换.在实际解题中,若我们能恰当地运用图形的旋转变换,往往能起到集中条件、开阔思路、化难为易的效果.图形的旋转变换,既要借助于推理,但更要借助于直觉和观察,变换的意识与变换的视角,会使这种直觉更敏锐,使这种观察更具眼力.

【例1】(2015莱芜中考)如图,已知△ABC 是等腰三角形,顶角∠BAC=α(α<60°),D 是BC 边上的一点,连接AD ,线段AD 绕点A 顺时针旋转α到AE ,过点E 作BC 的平行线,交AB 于点F ,连接D E ,BE ,DF. (1)求证:BE =CD ; (2)若AD⊥BC,试判断四边形BDFE 的形状,并给出证明. 【解析】全等三角形的判定与性质;菱形的判定;旋转的性质. 【学生解答】证明:(1)∵△ABC 是等腰三角形,顶角∠BAC=α(α<60°),线段AD 绕点A 顺时针旋转α到AE ,∴∠DAE =α,AE =AD ,∴∠BAE =∠CAD ,又∵等腰△ABC ,∴AB =AC.在△ABE 和△ACD 中, ?????AB =AC ,∠BAE =∠CAD,AE =AD , ∴△ACD ≌△ABE(SAS ),∴BE =CD ;(2)∵AD⊥BC,∴BD =CD ,∴BE =BD =CD ,∠BAD =∠CAD,∴∠BAE =∠BAD,在△ABD 和△ABE 中,?????AE =AD ,∠BAE =∠BAD,AB =AB , ∴△ABD ≌△ABE(SAS ),∴∠EBF =∠DBF,∵EF ∥BC ,∴∠DBF =∠EFB,∴∠EBF =∠EFB,∴EB =EF ,∴BD =BE =EF ,∴四边形BDFE 为菱形. 【例2】(2016吉林中考)(1)如图①,在Rt △ABC 中,∠ABC =90°,以点B 为中心,把△ABC 逆时针旋转90°,得到△A 1BC 1;再以点C 为中心,把△ABC 顺时针旋转90°,得到△A 2B 1C.连接C 1B 1,则C 1B 1与BC 的位置关系为________; (2)如图②,当△ABC 是锐角三角形,∠ABC =α(α≠60°)时,将△ABC 按照(1)中的方式旋转α.连接C 1B 1,探究C 1B 1与BC 的位置关系,写出你的探究结论,并加以证明; (3)如图③,在图②的基础上,连接B 1B ,若C 1B 1=23 BC ,△C 1BB 1的面积为4,则△B 1BC 的面积为________.

“反证法”在物理解题中的应用

“反证法”在物理解题中的应用 府谷县前石畔九年制学校贾占雄 在物理解题时,当从正面难以解决时可以转向反面思考,当用直接方法难以奏效时可以采用间接方法,这种正面突破有困难而转向反面寻求解法的策略,称为正难则反,或者称为逆向思维原则。反证法就是正难则反解题原则的一种形式。 所谓反证法,是指通过证明论题结论的反面不正确来得出论题的正确结论的一种证明方法。反证法的证题步骤有三: 反设——归谬———存真 第一步:反设。即先提出与欲证结论相反(或相斥)的假设。第二步:归谬。在反设成立的前提条件下推出矛盾。这个矛盾可以是与已知条件、客观事实的矛盾,可以是与物理概念定义、物理规律的矛盾,可以是与命题题设矛盾,或与所做假设矛盾,甚至可以是从两个不同角度进行推理得出的结论自相矛盾。第三步,存真。反证法的逻辑依据是形式逻辑的“排中律”与“矛盾律”。排中律可以简洁地表述为:两个相互矛盾的思想不能同假,必有一真。矛盾律可以表述为:一个思想及其否定不能同真,必有一假。这样,欲证结论的正面与反面不可能同真,也不可能同假,二者必居其一。 例如:物体在空中下落的现象极为普遍,那么物体下落的快慢与哪些因素有关呢?古代的学者认为:物体下落的快慢是由它们所受的重力决定的,物体越重,下落的越快。公元前4世纪希腊哲学家亚里士多德最早阐述了这种观点。由于这种观点与人们日常所见十分吻合,在其后两千多年的时间里,人们一直信奉他的学说。最早向亚里士多德学说挑战的是伟大的物理学家伽利略。如何证明亚里士多德的学说是错误的呢?伽利略以著名的比萨斜塔实验给予正面冲击,同时也以反证法奇妙的向亚里士多德发起迂回冲击。假设亚里士多德的学说是正确的,物体越重,下落的越快,重物体要比轻物体下落的快。那么,把一个轻物体与一个重物体系在一起下

Excel在方差分析中的应用

Excel在方差分析中的应用 摘要:方差分析是一种重要和常用的统计分析方法, 使用常规方法进行方差分析是相当复杂的,而利用Excel 进行方差分析则可以轻松、快速地得出分析结果,使得我们可以把主要精力投入到实验设计和数据处理上,在教学时则可以腾出时间多讲授一些实验设计方面的内容而不必为复杂的计算伤脑筋。 关键词:方差分析;Excel;实验教学 The application of Excel in variance analysis Yin Dezhong Beijing normal university, Beijing, 100875, China Abstract: Anova is a kind of important and common statistical analysis method, and using a conventional methods for analysis of variance is very complicated, but using Excel can easily and quickly conclude the results of analysis, so than we can focus the experimental design and data collation and make more time for teaching the content of experimental design, not necessary to take the trouble doing the complex calculations. Key words: Anova; Excel; experimental teaching 方差分析在推断统计分析中是很常用也很重要的一种 统计分析方法,20 世纪20 年代由英国的统计学家R.A.Fisher 首先提出,并以其姓的第一个字母F命名其统计量,故方差

高中数学解题基本方法——换元法

高中数学解题基本方法——换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通 过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉 的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1-x的值域时,易发现x∈[0,1],设x =sin2α,α∈[0,π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中 主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=S 2 +t,y= S 2 -t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例 中的t>0和α∈[0,π 2 ]。 Ⅰ、再现性题组: 1.y=sinx·cosx+sinx+cosx的最大值是_________。 2.设f(x2+1)=log a (4-x4) (a>1),则f(x)的值域是_______________。 3.已知数列{a n }中,a 1 =-1,a n+1 ·a n =a n+1 -a n ,则数列通项a n =___________。 4.设实数x、y满足x2+2xy-1=0,则x+y的取值范围是___________。 5.方程13 13 + + -x x =3的解是_______________。 6.不等式log 2(2x-1) ·log 2 (2x+1-2)〈2的解集是_______________。

圆和旋转压轴题解题技巧与近几年中考试题汇总

圆和旋转压轴题解题技巧与近几年中考试题汇 总 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

如何短时间突破数学压轴题 还有不到一个月的时间就要进行期中考试了,期中考试的重要性不必多说。各区期中考试的范围相信学生们都已经非常清楚。 个人觉得现在大部分学生的困难在于旋转、圆,由于时间比较紧张,给大家一些复习资料和学习方法,希望能够帮到大家。 一、旋转: 纵观几年的数学试卷,最难的几何题几乎都是旋转,在此给出旋转中最常见的几何模型和一些解题技巧。 旋转模型: 1、三垂直全等模型 三垂直全等构造方法:从等腰直角三角形的两个锐角顶点出发向过直角顶点的直线作垂线。 2、手拉手全等模型 手拉手全等基本构图: 3、等线段、共端点 (1) 中点旋转(旋转180°) (2) 等腰直角三角形(旋转90°) (3) 等边三角形旋转(旋转60°) (4) 正方形旋转(旋转90°) 4、半角模型 半角模型所有结论:在正方形ABCD中,已知E、F分别是边BC、CD上的点,且满足∠EAF=45°,AE、AF分别与对角线BD交于点M、N.求证:

M E D C B A (1) BE +DF =EF ; (2) S △ABE +S △ADF =S △AEF ; (3) AH =AB ; (4) C △ECF =2AB ; (5) BM 2+DN 2=MN 2; (6) △DNF ∽△ANM ∽△AEF ∽△BEM ;相似比为1:2(由△AMN 与△AEF 的高之比AO : AH =AO :AB =1:2而得到); (7) S △AMN =S 四边形MNFE ; (8) △AOM ∽△ADF ,△AON ∽△ABE ; (9) ∠AEN 为等腰直角三角形,∠AEN =45°.(1. ∠EAF =45°;:AN =1:2) 解题技巧: 1.遇中点,旋180°,构造中心对称 例:如图,在等腰ABC △中,AB AC =,ABC α∠=,在四边形BDEC 中,DB DE =,2BDE α∠=,M 为CE 的中点,连接AM ,DM . ⑴ 在图中画出DEM △关于点M 成中心对称的图形; ⑵ 求证:AM DM ⊥; ⑶ 当α=___________时,AM DM =. [解析]⑴ 如图所示; ⑵ 在⑴的基础上,连接AD AF , 由⑴中的中心对称可知,DEM FCM △≌△, ∴DE FC BD ==,DM FM =,DEM FCM ∠=∠, ∵360ABD ABC CBD BDE DEM BCE α∠=∠+∠=+?-∠-∠-∠ 360DEM BCE α=?--∠-∠, 360360ACF ACE FCM BCE FCM α∠=?-∠-∠=?--∠-∠, ∴ABD ACF ∠=∠, ∴ABD ACF △≌△,∴AD AF =, ∵DM FM =,∴AM DM ⊥. ⑶ 45α=?. 2.遇90°。旋90°,造垂直; F B

中考数学解题方法及提分突破训练:反证法专题(含解析)

解题方法及提分突破训练:反证法专题 对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。从而推出命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探索新知识的能力都是非常必要的。 一 真题链接 1.用反证法证明:圆的两条不是直径的相交弦不能互相平分。 已知:如图,在⊙O 中,弦AB 、CD 交于点P ,且AB 、CD 不是直径.求证:弦AB 、CD 不被P 平分 . 2.平面内有四个点,没有三点共线, 证明:以任意三个点为顶点的三角形不可能都是锐角三角形 3. 平面内有四个点,没有三点共线 证明:以任意三个点为顶点的三角形不可能都是锐角三角形 二 名词释义 反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n 个/至多有(n 一1)个;至多有一个/至少有两个;唯一/至少有两个。 归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。例如: 已知:a 是整数,2能整除2 a 。试证:2能整除a ① 探究:问题实际上是在讨论a 是奇数,还是偶数。已知中:说明2 a 是偶数,则 () 22a m m N =∈,此时)a m N =∈ ② 反思:条件已用完,结论还不能明确得证,可能结论自身有问题。 ③ 若结论有问题,则“2不能整除a ”应该成立,此时会发生怎样的情况,进行推理 引出反证法。 总结:在上题由“2不能整除a ”这个假设下,推理出了矛盾,肯定了原题的结论,从而 说明了这种思想可以作为一种证明问题的方法,再通过问题2继续认识。 三 典型例题 反证法的证题步骤: ① 假设。假设结论的反面成立,重点完成对假设的等价转化 ② 归结矛盾。矛盾来源:与已知,定理,公理,已证,已作,矛盾。 ③ 否定假设,肯定结论。 例1.是无理数 是有理数,那么它就可以表示成两个整数之比, 设 ,0,q p p = ≠且,p q q =。 所以,2 2 2p q =。---------① 故2 q 是偶数,q 也必然为偶数。 不妨设2q k =,代入①式,则有22 24p k =,

SPSS17.0在生物统计学中的应用-实验五、方差分析报告 六、简单相关与回归分析报告

SPSS在生物统计学中的应用 ——实验指导手册 实验五:方差分析 一、实验目标与要求 1.帮助学生深入了解方差及方差分析的基本概念,掌握方差分析的基本思想和原理 2.掌握方差分析的过程。 3.增强学生的实践能力,使学生能够利用SPSS统计软件,熟练进行单因素方差分析、两因素方差分析等操作,激发学生的学习兴趣,增强自我学习和研究的能力。 二、实验原理 在现实的生产和经营管理过程中,影响产品质量、数量或销量的因素往往很多。例如,农作物的产量受作物的品种、施肥的多少及种类等的影响;某种商品的销量受商品价格、质量、广告等的影响。为此引入方差分析的方法。 方差分析也是一种假设检验,它是对全部样本观测值的变动进行分解,将某种控制因素下各组样本观测值之间可能存在的由该因素导致的系统性误差与随即误差加以比较,据以推断各组样本之间是否存在显著差异。若存在显著差异,则说明该因素对各总体的影响是显著的。 方差分析有3个基本的概念:观测变量、因素和水平。 ●观测变量是进行方差分析所研究的对象; ●因素是影响观测变量变化的客观或人为条件; ●因素的不同类别或不通取值则称为因素的不同水平。在上面的例子中,农作物的产量和商品的销 量就是观测变量,作物的品种、施肥种类、商品价格、广告等就是因素。在方差分析中,因素常常是某一个或多个离散型的分类变量。 ?根据观测变量的个数,可将方差分析分为单变量方差分析和多变量方差分析; ?根据因素个数,可分为单因素方差分析和多因素方差分析。 在SPSS中,有One-way ANOV A(单变量-单因素方差分析)、GLM Univariate(单变量多因素方差分析);GLM Multivariate (多变量多因素方差分析),不同的方差分析方法适用于不同的实际情况。本节仅练习最为常用的单变量方差分析。 三、实验演示内容与步骤 ㈠单变量-单因素方差分析 单因素方差分析也称一维方差分析,对两组以上的均值加以比较。检验由单一因素影响的一个分析变量由因素各水平分组的均值之间的差异是否有统计意义。并可以进行两两组间均值的比较,称作组间均值的多重比较。主要采用One-way ANOV A过程。 采用One-way ANOV A过程要求:因变量属于正态分布总体,若因变量的分布明显是非正态,应该用非参数分析过程。若对被观测对象的实验不是随机分组的,而是进行的重复测量形成几个彼此不独立的变量,应该用Repeated Measure菜单项,进行重复测量方差分析,条件满足时,还可以进行趋势分析。 【例6.1】欲比较四种饲料对仔猪增重效果的优劣,随机选取了性别、年龄、体重相同,无亲缘关系的20头猪,随机分为4组,每组5头,分别饲喂一种饲料所得增重数据如下在。试利用这些数据对4种饲料对仔猪

换元法

换元法

运用换元法解题时,要引入什么样的“新元”和怎样引入“新元”,不同的问题有不同的方法和技巧。 换元的方法有:局部换元、三角换元、均值换元等。换元的种类有:等参量换元、非等量换元。 局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如:解不等式:4x +2x -2≥0,先变形为设2x =t (t>0),而变为熟悉的一元二次不等式:2t +t-2≥0求解得:t ≥1,t ≤-2指数函数的单调性求解2x ≥1, 2x ≤-2的问题。 x ≥0,x ≤ 1 4 三角换元:应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=21x -的值域时,若x ∈[-1,1],设x=sin α ,sin α∈[-1,1 ],问题变成了熟悉的求三角函数值域。如变量x 、y 适合条件222x y r +=时(r>0),则可作三角代换x=rcos θ、y=rsin θ化为三角问题。 均值换元:如遇到x+y=2S 形式时,设x= S+t ,y= S -t 等等。 例1. 分解因式 分析:从式子的特征来看,可把各看作一个整体使问题简化,事实上,本题解法较多,下面提供三种方法,供同学们学习参考。 解:法一:对和换元,用换元法解 设 则原式 法二:用换元法来解

设,则 原式 法三:将原式整理成关于x的二次三项式 原式 在函数中的应用 1、求函数的定义域 例2、设函数y=f(x)的定义域是[2,3],求函数y=f(x2)的定义域。 解:设x2=t,则y=f(t)的定义域上[2,3],即2≦t≦3,因此2≦x2≦3,所以 -√3≦x≦-√2或√2≦x≦√3,所求定义域是[-√3,-√2]∪[√2,√3] 2、求函数的解析式 例3、已知f(x+1)=x2-2x,求f(x)的解析式 解:设x+1=t,则x=t-1, 所以 f(t)=(t-1)2-2(t-1)=t -4t-1,即f(x)=x2-4x-1。 例4、已知f(x+1/x)=x2+1/x2, 求f(x)的解析式 解:设x+1/x =t,则x2+1/x2=(x+1/x)2-2,即x2+1/x2=t2-2 故f(t)=t2-2, 因此f(x)=x2-2 化简求值:

中考数学专项训练--图形旋转变换问题

中考数学专项训练--图形旋转变换问题 旋转是图形的一种重要变换.在实际解题中,若我们能恰当地运用图形的旋转变换,往往能起到集中条件、开阔思路、化难为易的效果.图形的旋转变换,既要借助于推理,但更要借助于直觉和观察,变换的意识与变换的视角,会使这种直觉更敏锐,使这种观察更具眼力. 【例1】(莱芜中考)如图,已知△ABC 是等腰三角形,顶角∠BAC=α(α<60°),D 是BC 边上的一点,连接AD,线段AD 绕点A 顺时针旋转α到AE,过点E 作BC 的平行线,交AB 于点F,连接DE,BE,DF. (1)求证:BE =CD ; (2)若AD⊥BC ,试判断四边形BDFE 的形状,并给出证明. 【解析】全等三角形的判定与性质;菱形的判定;旋转的性质. 【答案】解:(1)∵△ABC 是等腰三角形,顶角∠BAC=α(α<60°),线段AD 绕点A 顺时针旋转α到AE, ∴∠DAE =α,AE =AD,∴∠BAE =∠CAD , 又∵△ABC 是等腰三角形,∴AB =AC. 在△ABE 和△ACD 中,???AB =AC , ∠BAE =∠CAD,AE =AD , ∴△ACD ≌△ABE(SAS ),∴BE =CD ; (2)∵AD⊥BC ,AB =AC,∴BD =CD. ∴BE =BD =CD,∠BAD =∠CAD ,

∴∠BAE =∠BAD , 在△ABD 和△ABE 中,???AE =AD , ∠BAE =∠BAD,AB =AB , ∴△ABD ≌△ABE(SAS ), ∴∠EBF =∠DBF , ∵EF ∥BC,∴∠DBF =∠E FB, ∴∠EBF =∠EFB ,∴EB =EF, ∴BD =BE =EF, ∴四边形BDFE 为菱形. 【例2】(吉林中考)(1)如图①,在Rt △ABC 中,∠ABC =90°,以点B 为中心,把△ABC 逆时针旋转90°,得到△A 1BC 1;再以点C 为中心,把△ABC 顺时针旋转90°,得到△A 2B 1C.连接C 1B 1,则C 1B 1与BC 的位置关系为____________; (2)如图②,当△ABC 是锐角三角形,∠ABC =α(α≠60°)时,将△ABC 按照(1)中的方式旋转α.连接C 1B 1,探究C 1B 1与BC 的位置关系,写出你的探究结论,并加以证明; (3)如图③,在图②的基础上,连接B 1B,若C 1B 1=2 3BC,△C 1BB 1的面积为4,则△B 1BC 的面积 为______. 【解析】(1)根据旋转的性质得到∠C 1BC =∠B 1BC =90°,BC 1=BC =B 1C,根据平行线的判定得到CB 1∥BC 1,推出四边形BCB 1C 1是平行四边形,根据平行四边形的性质即可得到结论;(2)过点C 1作C 1E ∥B 1C 于E,于是得到∠C 1EB =∠B 1CB,由旋转性质得到BC 1=BC =B 1C,∠C 1BC =∠B 1CB,等量代换得到∠C 1BC =∠C 1EB,根据等腰三角形的判定得到C 1B =C 1E,等量代换得到C 1E

相关文档
最新文档