欧拉公式的证明

欧拉公式的证明
欧拉公式的证明

欧拉公式的证明(是我摘录的)

2008/10/23 16:49

看到了q239urju空间里关于欧拉公式的证明。本着为人民服务的思想,我在此做一些补充:

方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的)(就是q239urju空间里的那个)

再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy)

用牛顿幂级数展开式

e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+......

把 e^(iy) 展开,就得到

e^z/e^x = e^(iy)

=1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-.....

=(1-y^2/2!+y^4/4!-y^6/6!+.....)

+i(y-y^3/3!+y^5/5!-....)

由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+.....,

siny = y-y^3/3!+y^5/5!-....

所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny)

即 e^(iy) = (cosy+isiny)

方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。

方法一是不严格的。

a^(it)=ρ(cosθ+isinθ) 1

因共轭解适合方程,用-i替换i有:

a^(-it)=ρ(cosθ-isinθ) 2

由1,2得ρ=1,点P[a^(it)]在单位圆上,a^(it)可表达为:

a^(it)=cosθ+isinθ 3

设t=u(θ),对3微商有:

[a^(it)]*(lna)*u'(θ)*i=-sinθ+icosθ整理有:

[a^(it)]*(lna)*u'(θ)*i=(cosθ+isinθ)(cosπ/2+isinπ/2)约去a^(it)有:

u'(θ)=logae 4

4取积分有:

T=(logae)*θ+Ψ 5

θ→0时,t=limt=Ψ,带入3有:

a^(iΨ)=1 即:

Ψ=0 6

6代入5有:

T=(logae)*θ 7

7代入3有:

[a^(logae)]^(iθ)=cosθ+isinθ化简得欧拉公式:

e^(iθ)=cosθ+isinθ

(后两者才是真正让我震惊的!!!!)

欧拉公式的应用

欧拉公式的应用 绪论 本文首先介绍了一下欧拉公式以及推广的欧拉公式,对欧拉公式的特点作了简要的探讨.欧拉公式形式众多,在数学领域内的应用范围很广,本文对欧拉公式在三角函数中的应用作了详细的研究,欧拉公式在求三角级数中的应用中、在证明三角恒等式时、解三角方程的问题时、探求一些复杂的三角关系时,可以避免复杂的三角变换,利用较直观的代数运算使得问题得到解决.另一方面,利用欧拉公式大降幂,能够把高次幂的正余弦函数表示为一次幂函数的代数和,克服了高次幂函数在运算上的不方便. 关键词:欧拉公式三角函数降幂级数三角级数

目录 绪论......................................错误!未定义书签。目录......................................错误!未定义书签。 一、绪论 (1) 二、欧拉公式的证明、特点、作用 (1) 三、欧拉公式在三角函数中的应用 (4) (一) 倍角和半角的三角变换 (4) (二) 积化和差与差化积的三角变换 (4) (三) 求三角表达式的值 (5) (四) 证明三角恒等式 (6) (五) 解三角方程 (7) (六) 利用公式求三角级数的和 (7) (七) 探求一些复杂的三角关系式 (8) (八) 解决一些方程根的问题 (9) (九) 欧拉公式大降幂 (10) 结束语 (15)

一、绪论 欧拉公式形式众多,有多面体欧拉公式、欧拉求和公式、cos sin i e i θθθ=+、欧拉积分等多种形式、立体几何、工程方面等方面.由于欧拉公式有多种形式,在数学领域中的应用范围很广,本文只介绍欧拉公式的一种形式“cos sin i e i θθθ=+”以及这种形式在数学中的应用. 二 、欧拉公式的证明、特点、作用 1748年,欧拉在其著作中陈述出公式cos sin i e i θθθ=+,欧拉公式在数学的许多定理的证明和计算中,有着广泛的应用.它将定义和形式完全不同的指数函数和三角函数联系起来,为我们研究这两种函数的有关运算及其性质架起了一座桥梁.同时我们知道三角函数的恒等变换是中学数学中的一个重要内容,也是一个难点,但由于三角恒等变换所用公式众多,这便给解决三角变换问题带来了诸多不便.下面将通过欧拉公式,将三角函数化为复指数函数,从而将三角变换化为指数函数的代数运算,从而使得问题简单化,并给出了欧拉公式在其它几个方面的应用,在高等数学中的部分应用. 欧拉公式cos sin i e i θθθ =+它的证明有各种不同的证明方法,好多《复变 函数》教科书上,是以复幂级数为工具,定义复变指数函数和复变三角函数来进行证明的.下面我们介绍一种新的证明方法:极限法. 证明 令()1n f z i n θ?? =+ ??? (),R n N θ∈∈. 首先证明 ()lim cos sin n f z i θθ→∞ =+. 因为 arg 1n i narctg n n θθ?? ?? += ? ????? , 所以 2 2 211cos sin n n i i narctg i narctg n n n n θθθθ????????? ?+=++ ? ? ? ???????? ?????. 从而2 2 2lim 1lim 1cos sin n n n n i narctg i narctg n n n n θθθθ→∞→∞????????? ?+=++ ? ? ? ???????? ?????.

欧拉函数公式及其证明

欧拉函数公式及其证明 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

欧拉函数: 欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n)。 完全余数集合:定义小于n且和n互质的数构成的集合为Zn,称呼这个集合为n的完全余数集合。显然|Zn|=φ(n)。 有关性质:对于素数p,φ(p)=p-1。对于两个不同素数p,q,它们的乘积n=p*q满足φ(n)=(p-1)*(q-1)。 这是因为Zn={1,2,3,...,n-1}-{p,2p,...,(q-1)*p}-{q,2q,...,(p-1)*q},则φ(n)=(n-1)-(q-1)-(p-1)=(p-1)*(q-1)=φ(p)*φ(q)。 欧拉定理:对于互质的正整数a和n,有aφ(n)≡1m o d n。 证明:(1)令Zn={x1,x2,...,xφ(n)},S={a*x1mo d n,a*x2m o dn,...,a*xφ(n)m od n},则Z n=S。 ①因为a与n互质,x i(1≤i≤φ(n))与n互质,所以a*x i与n互质,所以a*x i modn∈Zn。 ②若i≠j,那么x i≠x j,且由a,n互质可得a*x i m o d n≠a*x j m o d n(消去律)。

(2)aφ(n)*x1*x2*...*xφ(n)m o d n ≡(a*x1)*(a*x2)*...*(a*xφ(n))m o d n ≡(a*x1m o d n)*(a*x2m o d n)*...*(a*xφ(n)m o d n)m o d n ≡x1*x2*...*xφ(n)m o d n 对比等式的左右两端,因为x i(1≤i≤φ(n))与n互质,所以aφ(n)≡1modn(消去律)。 注:消去律:如果g c d(c,p)=1,则a c≡b c m o d p?a≡b m o d p。 费马定理:若正整数a与素数p互质,则有a p-1≡1m o d p。证明这个定理非常简单,由于φ(p)=p-1,代入欧拉定理即可证明。 ******************************************************************** ********* 补充:欧拉函数公式 (1)p k的欧拉函数 对于给定的一个素数p,φ(p)=p-1。则对于正整数n=p k, φ(n)=p k-p k-1 证明: 小于p k的正整数个数为p k-1个,其中 和p k不互质的正整数有{p*1,p*2,...,p*(p k-1-1)}共计p k-1-1个

多面体欧拉公式的发现(一)

●教学时间 第九课时 ●课题 §9.9.1 研究性课题:多面体欧拉公式的发现(一) ●教学目标 (一)教学知识点 1.简单多面体的V、E、F关系的发现. 2.欧拉公式的猜想. 3.欧拉公式的证明. (二)能力训练要求 1.使学生能通过观察具体简单多面体的V、E、F从中寻找规律. 2.使学生能通过进一步观察验证所得的规律. 3.使学生能从拓扑的角度认识简单多面体的本质. 4.使学生能通过归纳得出关于欧拉公式的猜想. 5.使学生了解欧拉公式的一种证明思路. (三)德育渗透目标 1.通过介绍数学家的业绩,培养学生学习数学大师的献身科学、勇于探索的科学研究精神、激发学生对科学的热爱和对理想的追求. 2.培养学生寻求规律、发现规律、认识规律,并利用规律解决问题的能力. ●教学重点 欧拉公式的发现. ●教学难点 使学生从中体会和学习数学大师研究数学的方法. ●教学方法 指导学生自学法 首先通过问题1利用具体实物,从观察入手,培养学生对简单多面体V、E、F关系的感性认识从中寻找规律,问题2让学生作进一步观察、验证得出规律,问题3让学生在认识简单多面体的基础上,通过归纳,得出关于欧拉公式的猜想,再通过问题4让学生了解欧拉公式的证明思路,即从理论上探索对发现规律的证明. 以上4个问题逐步深入地展开,旨在不仅使学生在知识上有新的收获,同时应体会和学习研究数学的思想和方法. ●教具准备 投影片三张 第一张:课本P56的问题1及表1(记作§9.9.1 A) 第二张:课本P57的问题2及表2(记作§9.9.1 B) 第三张:课本P57的问题3及P58的问题4(记作§9.9.1 C) ●教学过程 Ⅰ.课题导入 瑞士著名的数学家,是数学史上的最多产的数学家,他毕生从事数学研究,他的论著几乎涉及18世纪所有的数学分支.比如,在初等数学中,欧拉首先将符号正规化,如f(x)表示函数,e表示自然对数的底,a、b、c表示△ABC的三边等;数学中的欧拉公式、欧拉方 程、欧拉常数、欧拉方法、欧拉猜想等.其中欧拉公式的一个特殊公式e iπ+1=0,将数学上的5个常数0、1、i、e、π联在一起;再如就是多面体的欧拉定理V-E+F=2,V、E、F分别

欧拉公式的证明和应用

数学文化课程报告 欧拉公式的证明与应用 一.序言------------------------------------------------------------------------2 二.欧拉公式的证明--------------------------------------3 极限法 --------------------------------------3 指数函数定义法-------------------------------4 分离变量积分法-------------------------------4 复数幂级数展开法-----------------------------4 变上限积分法---------------------------------5 类比求导法-----------------------------------7 三.欧拉公式的应用 求高阶导数-----------------------------------7 积分计算------------------------------------8 高阶线性齐次微分方程的通解------------------9 求函数级数展开式----------------------------9 三角级数求和函数----------------------------10 傅里叶级数的复数形式-------------------------10 四.结语------------------------------------------------11 参考文献-----------------------------------------------11 一.序言

欧拉公式

欧拉公式 欧拉公式是指以欧拉命名的诸多公式。其中最著名的有,复变函数中的欧拉幅角公式,即将复数、指数函数与三角函数联系起来。拓扑学中的欧拉多面体公式。初等数论中的欧拉函数公式。欧拉公式描述了简单多面体顶点数、面数、棱数特有的规律,它只适用于简单多面体。常用的欧拉公式有复数函数e^ix=cosx+isinx,三角公式d^2=R^2-2Rr ,物理学公式F=fe^ka 等。 复变函数 e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。 欧拉公式 e^ix=cosx+isinx的证明: 因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+…… cos x=1-x^2/2!+x^4/4!-x^6/6!…… sin x=x-x^3/3!+x^5/5!-x^7/7!…… 在e^x的展开式中把x换成±ix. (±i)^2=-1, (±i)^3=?i, (±i)^4=1 …… e^±ix=1±ix/1!-x^2/2!?ix^3/3!+x^4/4!…… =(1-x^2/2!+……)±i(x-x^3/3!……) 所以e^±ix=cosx±isinx 将公式里的x换成-x,得到: e^-ix=cosx-isinx,然后采用两式相加减的方法得到: sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x 取作π就得到: 恒等式 e^iπ+1=0.这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及被称为人类伟大发现之一的0。数学家们评价它是“上帝创造的公式” 那么这个公式的证明就很简单了,利用上面的e^±ix=cosx±isinx。那么这里的π就是x,那么e^iπ=cosπ+isinπ =-1 那么e^iπ+1=0 这个公式实际上是前面公式的一个应用。 分式 分式里的欧拉公式:

欧拉公式推导

欧拉公式推导: 图4.3所示的两端铰支杆件,受轴向压力N 作用而处于中性平衡微弯状态,杆件弯曲后截面中产生了弯矩M 和剪力V ,在轴线任意点上由弯矩产生的横向变形为1y ,由剪力产生的横向变形为2y ,总变形21y y y +=。 y 图4.3 两端铰支的轴心压杆临界状态 设杆件发生弯曲屈曲时截面的临界应力小于材料比例极限p f ,即p f ≤σ(对理想材料取y p f f =)。由材料力学可得: EI M dz y d -=2 12 由剪力V 产生的轴线转角为: dz dM GA V GA dz dy ?=?==ββγ2 式中 A 、I ——杆件截面面积、惯性矩; E 、G ——材料的弹性模量、剪切模量; β—— 与截面形状有关的系数。 因为 222 22dz M d GA dz y d ?=β 所以 2222122222d y d y d y M d M dz dz dz EI GA dz β=+=-+? 由 y N M ?=得: 2222dz y d GA N y EI N dz y d ?+?-=β

01=?+??? ??-''y EI N GA N y β 令 ??? ??-=GA N EI N k β12 得常系数线性二阶齐次方程 20y k y ''+= 其通解为:sin cos y A kz B kz =+ 由边界条件:;0,0==y z 0=B ,kz A y sin =。再由0,==y l z 得: 0sin =kl A 上式成立的条件是0=A 或0sin =kl ,其中0=A 表示杆件不出现任何变形,与杆件微弯的假设不符。由0sin =kl ,得πn kl =(=n 1,2,3…),取最小值=n 1,得π=kl ,即 2 221N k N l EI GA πβ==??- ??? 由此式解出N ,即为中性平衡的临界力cr N 12222222211Ι11γππβππ?+?=?+?=l ΕΙl ΕGA l ΕΙl ΕΙ N cr (4.6) 临界状态时杆件截面的平均应力称为临界应力cr σ 12 22211γλπλπσ?+?==ΕΑΕA N cr cr (4.7) 式中 1γ——单位剪力时杆件的轴线转角,)/(1GA βγ=; l ——两端铰支杆得长度; λ——杆件的长细比,i l /=λ; i ——杆件截面对应于屈曲轴的回转半径,A I i /=。 如果忽略杆件剪切变形的影响(此影响很小)则式(4.6)、(4.7)变为: 22cr E πσλ = (4.8)

多面体欧拉公式的发现(二)共9页

●教学时间 第十课时 ●课题 §9.9.2 研究性课题:多面体欧拉公式的发现(二) ●教学目标 (一)教学知识点 1.欧拉公式的证明. 2.欧拉公式的应用. (二)能力训练要求 1.使学生能理解多面体欧拉公式的证明过程并能叙述其证明思路. 2.使学生掌握多面体欧拉公式并灵活地将其应用于解题中. (三)德育渗透目标 继续培养学生寻求规律、发现规律、认识规律、并利用规律解决问题的能力. ●教学重点 欧拉公式的应用. ●教学难点 欧拉公式的证明思路. ●教学方法 学导式 本节课继续上节课对欧拉公式的研究活动,遵循寻求规律——发现规律——认识规律——应用规律的学习过程,对上节课已猜想出的欧拉公式

进一步深入研究,探索它的证明思路,让学生了解这种证明思想,进而达到熟练掌握欧拉公式的目标,以便于学生得心应手地将欧拉公式应用到各种问题的解决中. ●教具准备 投影片三张 问题5(1)(2)(记作§9.9.2 A) 第一张:课本P 59 第二张:本课时教案例1(记作§9.9.2 B) 第三张:本课时教案例2(记作§9.9.2 C) ●教学过程 Ⅰ.课题导入 [师]上节课我们已经猜想出了欧拉公式并且同学们也已自学了它的证明过程,这节课我们继续对它的证明方法及其重要应用进行学习和探讨. Ⅱ.讲授新课 的欧拉公式的证明进行了自学,那么,[师]上节课我们已对课本P 58 谁能说一下课本中的证明思路和关键是什么? [生]将立体图形转化为平面图形. [师]好,前面,我们经常使用把不在同一平面中的几何图形的问题转化为同一平面中图形的问题,所以此处如果能把求一个简单多面体的V、F、E三者之间的关系问题,转化为平面中的问题就会前进一大步了. 那么课本中是怎样实现转化的呢? [生]把多面体想成是用橡皮膜做成的,即课本P 图9—85的多面体, 58

欧拉函数公式及其证明

欧拉函数: 欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n)。 完全余数集合: 定义小于n且和n互质的数构成的集合为Zn,称呼这个集合为n的完全余数集合。显然|Zn|=φ(n)。 有关性质: 对于素数p,φ(p)=p-1。 对于两个不同素数p,q,它们的乘积n=p*q满足φ(n)=(p-1)*(q-1)。 这是因为Zn={1,2,3,...,n-1}-{p,2p,...,(q-1)*p}-{q,2q,...,(p-1)*q},则φ(n)=(n-1)-(q-1)-(p-1)=(p-1)*(q-1)=φ(p)*φ(q)。 欧拉定理: 对于互质的正整数a和n,有aφ(n)≡1modn。 证明: (1)令Zn={x1,x2,...,xφ(n)},S={a*x1modn,a*x2modn,...,a*xφ(n)modn}, 则Zn=S。 ①因为a与n互质,x i(1≤i≤φ(n))与n互质,所以a*x i与n互质,所以a*x i modn∈Zn。 ②若i≠j,那么x i≠x j,且由a,n互质可得a*x i modn≠a*x j modn(消去律)。 (2)aφ(n)*x1*x2*...*xφ(n)modn

≡(a*x1)*(a*x2)*...*(a*xφ(n))modn ≡(a*x1modn)*(a*x2modn)*...*(a*xφ(n)modn)modn ≡x1*x2*...*xφ(n)modn 对比等式的左右两端,因为x i(1≤i≤φ(n))与n互质,所以aφ(n)≡1modn(消去律)。 注: 消去律:如果gcd(c,p)=1,则ac≡bcmodp?a≡bmodp。 费马定理: 若正整数a与素数p互质,则有a p-1≡1modp。 证明这个定理非常简单,由于φ(p)=p-1,代入欧拉定理即可证明。 ****************************************************** *********************** 补充:欧拉函数公式 (1)p k的欧拉函数 对于给定的一个素数p,φ(p)=p-1。则对于正整数n=p k, φ(n)=p k-p k-1 证明: 小于p k的正整数个数为p k-1个,其中 和p k不互质的正整数有{p*1,p*2,...,p*(p k-1-1)}共计p k-1-1个 所以φ(n)=p k-1-(p k-1-1)=p k-p k-1。 (2)p*q的欧拉函数 假设p,q是两个互质的正整数,则p*q的欧拉函数为 φ(p*q)=φ(p)*φ(q),gcd(p,q)=1。 证明: 令n=p*q,gcd(p,q)=1

欧拉公式的证明(整理)Word版

欧拉公式的证明 著名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+....., siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2; 上式左边相当于下式左边乘以i 于是上式右边相当于下式右边乘以i 然后化简就得到欧拉公式 这个证明方法不太严密 但很有启发性 历史上先是有人用上述方法得到了对数函数和反三角函数的关系 然后被欧拉看到了,才得到了欧拉公式 设a t θ ?R,ρ?R+,a^(it)?z有: a^(it)=ρ(cosθ+isinθ) 1 因共轭解适合方程,用-i替换i有: a^(-it)=ρ(cosθ-isinθ) 2

欧拉公式的证明和应用

欧拉公式的证明和应用https://www.360docs.net/doc/617922007.html,work Information Technology Company.2020YEAR

数学文化课程报告 欧拉公式的证明与应用 一 .序言------------------------------------------------------------------------2 二.欧拉公式的证明--------------------------------------3 1.1 极限法 --------------------------------------3 1.2 指数函数定义法-------------------------------4 1.3 分离变量积分法-------------------------------4 1.4 复数幂级数展开法-----------------------------4 1.5 变上限积分法---------------------------------5

1.6 类比求导法-----------------------------------7 三.欧拉公式的应用 2.1 求高阶导数-----------------------------------7 2.2 积分计算------------------------------------8 2.3 高阶线性齐次微分方程的通解------------------9 2.4 求函数级数展开式----------------------------9 2.5 三角级数求和函数----------------------------10 2.6 傅里叶级数的复数形式-------------------------10 四.结语------------------------------------------------11 参考文献-----------------------------------------------11 一.序言 欧拉是十八世纪最杰出的最多产的数学家之一[1],留下了数不胜数的以其名 字命名的公式。本文关注的欧拉公式x i x e ix sin cos +=,在复数域中它把指数函数 联系在一起。特别当π=x 时,欧拉公式便写成了01=+πi e ,这个等式将最富有特 色的五个数π,,,,10e i 绝妙的联系在一起,“1是实数的基本单位,i 是虚数的基本单位,0是唯一的中性数,他们都具有独特的地位,都具有代表性。i 源于代数,

欧拉函数公式及其证明

欧拉函数公式及其证明 Prepared on 22 November 2020

欧拉函数: 欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n)。 完全余数集合: 定义小于n且和n互质的数构成的集合为Zn,称呼这个集合为n的完全余数集合。显然|Zn|=φ(n)。 有关性质: 对于素数p,φ(p)=p-1。 对于两个不同素数p,q,它们的乘积n=p*q满足φ(n)=(p-1)*(q-1)。 这是因为Zn={1,2,3,...,n-1}-{p,2p,...,(q-1)*p}-{q,2q,...,(p-1)*q},则φ(n)=(n-1)-(q-1)-(p-1)=(p-1)*(q-1)=φ(p)*φ(q)。 欧拉定理: 对于互质的正整数a和n,有aφ(n)≡1modn。 证明: (1)令Zn={x1,x2,...,xφ(n)},S={a*x1modn,a*x2modn,...,a*xφ(n)modn}, 则Zn=S。 ①因为a与n互质,x i(1≤i≤φ(n))与n互质,所以a*x i与n互质,所以a*x i modn∈Zn。 ②若i≠j,那么x i≠x j,且由a,n互质可得a*x i modn≠a*x j modn(消去律)。 (2)aφ(n)*x1*x2*...*xφ(n)modn

≡(a*x1)*(a*x2)*...*(a*xφ(n))modn ≡(a*x1modn)*(a*x2modn)*...*(a*xφ(n)modn)modn ≡x1*x2*...*xφ(n)modn 对比等式的左右两端,因为x i(1≤i≤φ(n))与n互质,所以aφ(n)≡1modn(消去律)。 注: 消去律:如果gcd(c,p)=1,则ac≡bcmodpa≡bmodp。 费马定理: 若正整数a与素数p互质,则有a p-1≡1modp。 证明这个定理非常简单,由于φ(p)=p-1,代入欧拉定理即可证明。 ****************************************************** *********************** 补充:欧拉函数公式 (1)p k的欧拉函数 对于给定的一个素数p,φ(p)=p-1。则对于正整数n=p k, φ(n)=p k-p k-1 证明: 小于p k的正整数个数为p k-1个,其中 和p k不互质的正整数有{p*1,p*2,...,p*(p k-1-1)}共计p k-1-1个

欧拉公式的证明

欧拉公式的证明 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

欧拉公式的证明 着名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:??? 设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是 e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+.....,

siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2; 上式左边相当于下式左边乘以i 于是上式右边相当于下式右边乘以i 然后化简就得到欧拉公式 这个证明方法不太严密 但很有启发性 历史上先是有人用上述方法得到了对数函数和反三角函数的关系 然后被欧拉看到了,才得到了欧拉公式 设a t θ ?R,ρ?R+,a^(it)?z有:

简单多面体的欧拉公式优秀教学设计

简单多面体的欧拉公式 新课程倡导教师对学生最重要的价值引导就是“会做数学”比“会说数学”更重要,课堂始终以“做数学”为主旋律,教师不断地创设有意义的问题情境或教学活动,激励学生在解决问题中学习。与传统数学相比,现代数学的巨大变化还表现在,通过观察作出猜想、建立模型、然后进行修改调整,成为现代数学家以及应用数学家、工程技术人员的基本思维。 “研究性课题:多面体欧拉定理的发现”是一个探究式、自主学习的课题,在这节课中,我利用网络资源,不断地创设一系列问题情境,引导学生独立自主地发现问题——解决问题——应用知识,提高了学习的效率。在教学中,我设计了以下几个环节,愿与大家探讨。 一、创设情境提出问题 歌尼斯堡问题是学生在课前搜集相关资料的时候找到的一个相关问题,由于它是平面的问题,比较简单易懂。在课堂上学生积极地向其他同学介绍这个有意思的问题。不仅扩充了课程资源,也渗透了与图形大小、长短无关的一类几何问题,为接下去的学习活动提供了良好的教学情境。 二、问题驱动自主探究 接下来,以网页课件为媒体,开展以下活动: 活动一:问题驱动引出定理 通过一系列问题,引领学生体验从二维到三维的类比推广,把问题引向未研究过的的领域,并通过学生自己的实践(数正多面体的棱数、面数、顶点数)总结出、有价值的规律。学生相互交流思考问题。师生交流后教师给出密码,提供比较完整的问题解答,实现了师生互动与交流。 活动二:实例验证加深理解 学生在知道了欧拉定理后,以正四面体为例,通过课件的提示帮助,体会“平面法”验证欧拉定理的思想。 教师布置任务:以同样的思想方法,以正六面体为例,验证欧拉定理。汇总各小组的研究方案,选代表在黑板上演示,并宜从一些不成立的步骤着手,引导学生找出问题所在,在逐步矫正中,加深学生对“平面法”的理解。 随后由教师提供密码,给出比较完善的方案。 活动三:知识应用解决问题 用欧拉定理解决所提出的问题:正多面体为什么只有五种?由学生自己阅读,教师加以点拨即可。 随后以一些实际应用的例题体会欧拉定理在各学科中的应用。 三、总结提炼拓展延伸 四、反思总结 活动课中让学生探讨一些具有挑战性的问题,引导学生通过观察,进行猜想,进一步验证猜想。通过一系列的思维活动,让学生主动地获取知识,理解数学的思想方法、思维方式;引导学生体会发现规律的过程,体现了课堂教学的实验性、探索性,实现了

欧拉公式的证明(整理)

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 欧拉公式的证明 著名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+....., siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqr t(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2;

数论中的一些公式【整理】

数论中的一些公式【整理】 以下等式或者不等式均可以用数学归纳法予以证明! 1 + 3 + 5 + ... + (2n - 1) = n^2 1*2 + 2*3 + 3*4 + ... + n*(n + 1) = n*(n + 1)*(n + 2) / 3 1*1! + 2*2! + 3*3! + ... + n*n! = (n + 1)! - 1 1^2 + 2^2 + 3^2 + ... + n^2 = n*(n + 1)*(2n + 1) / 6 1^2 - 2^2 + 3^2 -... + (-1)^n * n^2 = (-1)^(n + 1) * n * (n + 1) / 2 2^2 + 4^2 + ... + (2n)^2 = 2n*(n+1)*(2n+1) / 3 1/2! + 2/3! + ... + n/(n+1)! = 1 - 1/(n+1)! 2^(n + 1) < 1 + (n + 1)2^n 1^3 + 2^3 + 3^3 + ... + n^3 = (n*(n + 1) / 2)^2 1/(2*4)+1*3/(2*4*6)+1*3*5/(2*4*6*8)+...+(1*3*5*...*(2n-1))/(2*4*6*... *(2n+2)) = 1/2 - (1*3*5*...*(2n+1))/ (2*4*6*...*(2n+2)) 1/(2^2-1) + 1/(3^2-1) + .. + 1 / ((n+1)^2 - 1) = 3/4 - 1/(2*(n+1)) - 1/(2*(n+2)) 1/2n <= 1*3*5*...*(2n-1) / (2*4*6*...*2n) <= 1 / sqrt(n+1) n=1,2... 2^n >= n^2 , n=4, 5,... 2^n >= 2n + 1, n=3,4,... r^0 + r^1 + ... + r^n < 1 / (1 - r), n>=0, 0=1, 0=1 (a(1)*a(2)*...*a(2^n))^(1/2^n) <= (a(1) + a(2) + ... + a(2^n)) / 2^n, n = 1, 2, ... a(i)是正数注:()用来标记下标

欧拉公式的证明方法和应用

欧拉公式的证明方法和 应用 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

欧拉公式 θθθ sin cos i e i +=的证明方法和应用 摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=,举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式、微分中值定理、证明、应用、三角函数 1.欧拉公式意义简说 在我们所学过的指数函数和三角函数在实数域中几乎没有什么联系,在复数域中却可以相互转换,被θθθ sin cos i e i +=这简单的关系联系在一起,这个一直盘踞在许多研究家心里的欧拉公式,有着很多很多的疑问,特别是当πθ=时,有1-=e i π ,即01=+e i π ,这个等式将数学中的最富有特色的五个数0、1、i 、e 、π联系在一起,0,1是实数中特殊的数字,i 是一个很重要的虚数单位,e 是无理数它取自瑞士数学家欧拉(Euler,1707-1783)的英文开头[5],π是圆周率在公园前就被定义为“周长与直径的比”。它们在数学中各自都有发展的方面。因此e i π +1=0公式充分揭示了数学的统一性、简洁性和奇异性。了解这些内容对于学习高等数学,对于我们在研究较深的数学问题上有很大帮助。 2.欧拉公式的证明简述 在这里,我把几种证明欧拉公式的方法总结在一起,对学者学习欧拉公式提供多方面的题材,并作出知识的一种综合理解。 幂级数展开式的证明法 引用三角函数和指数函数“幂级数展开式”证明欧拉公式θθθ sin cos i e i +=, 复指数定义法 用复指数定义)sin (cos y i y e e e x iy x z +==+,证明欧拉公θθθ sin cos i e i += 类比法求导法 通过实函数的性质来对复函数进行求导运算(附件①),通过构造x i x x f e ix sin cos )(+= , 0)(='x f 用lagrange 微分中值定理推论[3],从而证明1)(=x f ,使得x i x e ix sin cos += 分离变量积分法

欧拉函数积性公式证明

欧拉函数积性公式证明 定义:两个整数相除N/m一定可以表示为N=m·u+r,在初等数论中称m为模,r为剩余,如果r为非负整数那么r∈ {0,1,2,...,m-1}中一个。表示式可简化为N≡r modm;模m 对应的剩余集记rmodm。 欧拉发现剩余集中的元素其中与模m互质的个数非常有意义,并从“若m与N互质,则r与m也互质”启发,找到了计算方法。为了纪念他以他的名字称谓欧拉函数φ(m)。如8的剩余集为{0,1,2,...,7}八个元素,但与8互质的为{1,3,5,7}只有4个,即φ(8)=4。 定理1:若q与p互质,则φ(q·p)= φ(q)·φ(p)。 证明:设a,b分别是模q和p互质的剩余集(记Z q和Z p)的元素,根据中国剩余定理,即联立不定方程N≡a modq,N≡b modp 的解→N≡r modq·p,r是唯一的,r≡(ap·p-1+bq·q-1) modq·p,p-1是p的逆,p·p-1≡1modq。且对于不同的a或b,集合{(ap·p-1+bq·q-1) modq·p}的元素两两不相交,否则△a·p p-1≡△b·qq-1 modq·p,由于△a<q、△b<p,故等式不成立。于是根据乘法原理对于不同的a或b 集合Z q×Z p与Z qp一一对应,故φ(q·p)=φ(q)·φ(p)。 定理2:p j(j=1,2,...)均为不同的素数,欧拉函数可以表示为

φ(m)=m·∏(1-1/p j) (j 为 m 的素因子的个数)。 证:根据算数基本定理任何整数可以表示为m= ∏p j k j ,以及φ(p k)=p k- p k-1(与p k有公约数的剩余个数)=(p-1)p k-1,两式结合就得到上述著名的欧拉函数公式。

欧拉定理的证明

一、引言 在数学及许多分支中都可以见到很多以欧拉命名的常数、公式和定理。在数论中,欧拉 之一,欧拉定理实际上是 费马小定理的推广. 二、内容 在数论中, 欧拉定理,(也称 费马--欧拉定理)是一个关于同余的性质。欧拉定理表明, 若n,a 为正整数,且n,a 互质,则: () 1( )n a mod n ?≡. 1.知识准备: (1)欧拉函数 : 欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括1)的个数,记作 φ(n) . (2)完全余数集合: 定义小于 n 且和 n 互质的数构成的集合为 Zn ,称呼这个集合为 n 的完全余数集合。 显然 |Zn| =φ(n) 。其中,“ |A |”表示这个集合中元素的个数,比如A={a,b} 则|A|=2. (3)有关性质: ①对于素数 p ,φ(p) = p -1 。 ②对于两个不同素数 p , q ,它们的乘积 n = p * q 满足 φ(n) = (p -1) * (q -1). 因为Zn = {1, 2, 3, ... , n - 1} - {p, 2p, ... , (q - 1) * p} - {q, 2q, ... , (p - 1) * q} , 则 φ(n) = (n - 1) - (q - 1) - (p - 1) = (p -1) * (q -1) =φ(p) * φ(q) . 2.证明方法: 证明: ( 1 ) 首先证明下面这个命题: 对于集合Zn = {x1, x2, ..., xφ(n)} , S = {a*x1(mod n),a*x2(mod n),...,a*xφ(n)(mod n)} ,其中xi(i=1,2,…φ(n))是不大于n 且与n 互素的数,即n 的一个化简剩余系,或称简系,或称缩系),则Zn = S . 1) 由于a,n 互质,xi 也与n 互质,则a*xi 也一定于n 互质,因此 任意xi ,a*xi(mod n) 必然是Zn 的一个元素 2) 对于Zn 中两个元素xi 和xj ,如果xi ≠ xj 则a*xi(mod n) ≠ a*xj(mod n),这个由a 、n 互质和消去律可以得出。 所以,很明显,S=Zn 既然这样,那么 (a*x1 × a*x2×...×a*xφ(n))(mod n) = (a*x1(mod n) × a*x2(mod n) × ... × a*xφ(n)(mod n))(mod n) = (x1 × x2 × ... × xφ(n))(mod n) 考虑上面等式左边和右边 左边等于(a*(x1 × x2 × ... × xφ(n))) (mod n) 而x1 × x2 × ... ×

相关文档
最新文档