微积分公式与定积分计算练习题

微积分公式与定积分计算练习题
微积分公式与定积分计算练习题

微积分公式与定积分计算练习(附加三角函数公式)

一、基本导数公式

⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '=

⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-?

()x

x

e e '= ⑽

()ln x

x a a a

'= ⑾

()1

ln x x '=

()

1log ln x a

x a '=

(

)arcsin x '= ⒁(

)arccos x '= ⒂

()21arctan 1x x '=+ ⒃()

21arccot 1x x '=-+⒄()1

x '=

'=

二、导数的四则运算法则

()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''

-??= ???

三、高阶导数的运算法则

(1)()()()

()

()

()

()

n n n u x v x u x v x ±=±???

? (2)()()

()()

n n cu x cu x =???

?

(3)()()

()

()n n n

u ax b a u

ax b +=+???

?

(4)

()()()

()

()()()0

n

n n k k k n k u x v x c u x v x -=?=????

四、基本初等函数的n 阶导数公式

(1)

()()

!

n n

x n = (2)

()()

n ax b

n ax b

e a e ++=? (3)

()()

ln n x

x n a a a

=

(4)

()()

sin sin 2n n ax b a ax b n π?

?+=++??? ?

??

?

?(5)

()()

cos cos 2n n ax b a ax b n π?

?+=++??? ?

??

?

?

(6)

()

()

()

1

1!

1n n n

n a n ax b ax b +???=- ?+??

+ (7)

()()

()

()()

1

1!

ln 1n n n n

a n ax

b ax b -?-+=-????

+

五、微分公式与微分运算法则 ⑴()0

d c = ⑵

()1d x x dx

μμμ-= ⑶

()sin cos d x xdx

= ⑷()cos sin d x xdx

=- ⑸

()2tan sec d x xdx = ⑹

()2cot csc d x xdx

=-

()sec sec tan d x x xdx =? ⑻

()csc csc cot d x x xdx

=-?

()x

x

d e

e dx = ⑽()ln x

x

d a a

adx

= ⑾

()1

ln d x dx x =

⑿()1log ln x

a d dx x a = ⒀(

)arcsin d x = ⒁(

)arccos d x =

()21arctan 1d x dx x =

+ ⒃()2

1

arccot 1d x dx x =-+

六、微分运算法则 ⑴

()d u v du dv

±=± ⑵

()d cu cdu

=

⑶()d uv vdu udv =+ ⑷2

u vdu udv

d v v -??= ???

七、基本积分公式

⑴kdx kx c =+? ⑵11x x dx c μμ

μ+=++? ⑶ln dx x c x =+?

⑷ln x

x

a a dx c a =+? ⑸x x e dx e c =+? ⑹cos sin xdx x c =+?

⑺sin cos xdx x c =-+? ⑻2

21sec tan cos dx xdx x c x ==+?? ⑼2

21csc cot sin xdx x c x ==-+?? ⑽21arctan 1dx x c x =++?

arcsin x c

=+

八、补充积分公式

tan ln cos xdx x c =-+? cot ln sin xdx x c =+?

sec ln sec tan xdx x x c =++? csc ln csc cot xdx x x c =-+?

22

11arctan x

dx c a x a a =++?

22

11ln 2x a

dx c x a a x a -=+-+?

arcsin

x

c a =+

ln x c

=+

十、分部积分法公式

⑴形如n ax

x e

dx

?

,令n u x =,ax

dv e dx = 形如sin n x xdx ?令n

u x =,sin dv xdx = 形如

cos n x xdx

?令n u x =,cos dv xdx =

⑵形如arctan n

x xdx

?

,令arctan u x =,n

dv x dx =

形如ln n

x xdx

?

,令ln u x =,n

dv x dx =

⑶形如

sin ax

e xdx

?,

cos ax e xdx

?令

,sin ,cos ax

u e x x =均可。 十一、第二换元积分法中的三角换元公式

sin x a t =

(2) tan x a t =

sec x a t =

【特殊角的三角函数值】

(1)sin 00= (2)

1sin

6

=

(3

)sin 3π= (4)sin 12π

= (5)sin 0π=

(1)cos01= (2

cos

6

=

(3)1cos 32π= (4)cos 0

2π= (5)cos 1π=- (1)tan 00= (2

tan

6

=

(3

)tan 3π=4)

tan

不存在(5)tan 0π= (1)cot 0不存在 (2

)cot

6

π

=3

cot

3

π

=

(4)cot 0

=(5)cot π不存

十二、重要公式

(1)0sin lim 1x x x →= (2)()10lim 1x x x e →+= (3

))1n a o >=

(4

)1

n = (5)limarctan 2x x π

→∞

=

(6)lim tan 2x arc x π

→-∞

=-

(7)limarccot 0x x →∞

= (8)lim arccot x x π→-∞

= (9)lim 0

x x e →-∞

=

(10)lim x x e →+∞=∞

(11)0

lim 1x x x +

→=

(12)

101101lim 0n n n m m x m a n m b a x a x a n m b x b x b n m

--→∞?=??+++?=

>???L L (系数不为0的情况)

十三、下列常用等价无穷小关系(0x →)

sin x x : tan x x : arcsin x x : arctan x x :

2

11cos 2x x

-:

()ln 1x x

+: 1x e x -: 1ln x

a x a -:

()

11x x

?

+-?:

十四、三角函数公式 1.两角和公式

sin()sin cos cos sin A B A B A B +=+ sin()sin cos cos sin A B A B A B -=- cos()cos cos sin sin A B A B A B +=- cos()cos cos sin sin A B A B A B -=+

tan tan tan()1tan tan A B A B A B ++=

- tan tan tan()1tan tan A B

A B A B --=

+ cot cot 1cot()cot cot A B A B B A ?-+=+ cot cot 1

cot()cot cot A B A B B A ?+-=

- 2.二倍角公式

sin 22sin cos A A A = 2222cos 2cos sin 12sin 2cos 1A A A A A =-=-=- 22tan tan 21tan A A A =

-

3.半角公式

sin

2A =

cos 2A =

sin tan

21cos A A A ==+

sin cot 21cos A A A ==-

4.和差化积公式

sin sin 2sin

cos 22a b a b a b +-+=? sin sin 2cos sin 22a b a b

a b +--=? cos cos 2cos cos 22a b a b a b +-+=? cos cos 2sin sin

22a b a b

a b +--=-?

()sin tan tan cos cos a b a b a b ++=

?

5.积化和差公式

()()1sin sin cos cos 2a b a b a b =-+--???? ()()1

cos cos cos cos 2a b a b a b =++-????

()()1sin cos sin sin 2a b a b a b =++-???? ()()1

cos sin sin sin 2a b a b a b =+--????

6.万能公式

22tan 2sin 1tan 2a

a a

=+

2

2

1tan 2cos 1tan 2a a a -=+ 2

2tan

2tan 1tan 2a

a a

=-

7.平方关系

22sin cos 1x x += 22sec n 1x ta x -= 22csc cot 1x x -=

8.倒数关系

tan cot 1x x ?= sec cos 1x x ?= c sin 1cs x x ?=

9.商数关系

sin tan cos x x x =

cos cot sin x

x x =

十五、几种常见的微分方程

1.可分离变量的微分方程:()()dy

f x

g y dx = , ()()()()11220

f x

g y dx f x g y dy += 2.齐次微分方程:dy y f dx

x ??

= ?

??

3.一阶线性非齐次微分方程:()()dy p x y Q x dx += 解为:

()()()p x dx p x dx y e Q x e dx c -????=+?????

高考定积分应用常见题型大全

一.选择题(共21小题)

1.(2012?福建)如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( ) A . B . C . D . 2.(2010?山东)由曲线y=x 2,y=x 3围成的封闭图形面积为( ) A . B . C . D .

3.设f (x )=,函数图象与x 轴围成封闭区域的面积为( ) A . B . C . D .

4.定积分的值为( ) A . B . 3+ln2 C . 3﹣ln2 D . 6+ln2

5.如图所示,曲线y=x 2和曲线y=围成一个叶形图(阴影部分),其面积是( ) A . 1 B . C . D .

6.=( ) A . π B . 2 C . ﹣π D . 4

7.已知函数f (x )的定义域为[﹣2,4],且f (4)=f (﹣2)=1,f′(x )为f (x )的导函数,函数y=f′(x )的图象如图所示,则平面区域f (2a+b )<1(a≥0,b≥0)所围成的面积是( ) A . 2 B . 4 C . 5 D . 8

8.∫01e x dx与∫01e x dx相比有关系式()

A.∫01e x dx<∫01e x dx B.∫01e x dx>∫01e x dx

C.(∫01e x dx)2=∫01e x dx D.∫01e x dx=∫01e x dx

9.若a=,b=,则a与b的关系是()

A.a<b B.a>b C.a=b D.a+b=0

10.的值是()

A.B.C.D.

11.若f(x)=(e为自然对数的底数),则=()

A.+e2﹣e B.+e C.﹣e2+e D.﹣+e2﹣e

12.已知f(x)=2﹣|x|,则()

A.3B.4C.3.5 D.4.5

13.设f(x)=3﹣|x﹣1|,则∫﹣22f(x)dx=()

A.7B.8C.7.5 D.6.5

14.积分=()

A.B.C.πa2D.2πa2

15.已知函数的图象与x轴所围成图形的面积为()

A.1/2 B.1C.2D.3/2

16.由函数y=cosx(0≤x≤2π)的图象与直线及y=1所围成的一个封闭图形的面积是()A.4B.C.D.2π

17.曲线y=x3在点(1,1)处的切线与x轴及直线x=1所围成的三角形的面积为()A.B.C.D.

18.图中,阴影部分的面积是()

A.16 B.18 C.20 D.22

19.如图中阴影部分的面积是()

A.B.C.D.

20.曲线与坐标轴围成的面积是()

A.B.C.D.

21.如图,点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点,图中阴影部分的面

积为10π,则反比例函数的解析式为()

A.y= B.y= C.y= D.y=

高考定积分应用常见题型大全(含答案)

参考答案与试题解析

一.选择题(共21小题)

1.(2012?福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()

A.B.C.D.

考点:定积分在求面积中的应用;几何概型.501974

专题:计算题.

分析:根据题意,易得正方形OABC的面积,观察图形可得,阴影部分由函数y=x与y=围成,由定积分公式,计算可得阴影部分的面积,进而由几何概型公式计算可得答案.解答:解:根据题意,正方形OABC的面积为1×1=1,

而阴影部分由函数y=x与y=围成,其面积为∫01(﹣x)dx=(﹣)|01=,

则正方形OABC中任取一点P,点P取自阴影部分的概率为=;

故选C.

点评:本题考查几何概型的计算,涉及定积分在求面积中的应用,关键是正确计算出阴影部分的面积.

2.(2010?山东)由曲线y=x2,y=x3围成的封闭图形面积为()

A.B.C.D.

考点:定积分在求面积中的应用.501974

专题:计算题.

分析:要求曲线y=x2,y=x3围成的封闭图形面积,根据定积分的几何意义,只要求∫01(x2﹣x3)dx即可.

解答:解:由题意得,两曲线的交点坐标是(1,1),(0,0)故积分区间是[0,1] 所求封闭图形的面积为∫01(x2﹣x3)dx═,

故选A.

点评:本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积.

3.设f(x)=,函数图象与x轴围成封闭区域的面积为()

A.B.C.D.

考点:分段函数的解析式求法及其图象的作法;函数的图象;定积分在求面积中的应用.501974

专题:计算题;数形结合.

分析:利用坐标系中作出函数图象的形状,通过定积分的公式,分别对两部分用定积分求出其面积,再把它们相加,即可求出围成的封闭区域曲边图形的面积.

解答:解:根据题意作出函数的图象:

根据定积分,得所围成的封闭区域的面积

S=

故选C

点评:本题考查分段函数的图象和定积分的运用,考查积分与曲边图形面积的关系,属于中档题.解题关键是找出被积函数的原函数,注意运算的准确性.

4.定积分的值为()

A.B.3+ln2 C.3﹣ln2 D.6+ln2

考点:定积分;微积分基本定理;定积分的简单应用.501974

专题:计算题.

分析:由题设条件,求出被积函数的原函数,然后根据微积分基本定理求出定积分的值即可.解答:解:=(x2+lnx)|12=(22+ln2)﹣(12+ln1)=3+ln2

故选B.

点评:本题考查求定积分,求解的关键是掌握住定积分的定义及相关函数的导数的求法,属于基础题.

5.如图所示,曲线y=x2和曲线y=围成一个叶形图(阴影部分),其面积是()

A.1B.C.D.

考点:定积分;定积分的简单应用.501974

专题:计算题.

分析:联立由曲线y=x2和曲线y=两个解析式求出交点坐标,然后在x∈(0,1)区间上利用定积分的方法求出围成的面积即可.

解答:解:联立得,

解得或,

设曲线与直线围成的面积为S,

则S=∫01(﹣x2)dx=

故选:C

点评:考查学生求函数交点求法的能力,利用定积分求图形面积的能力.

6.=()

A.πB.2C.﹣πD.4

考点:微积分基本定理;定积分的简单应用.501974

专题:计算题.

分析:由于F(x)=x2+sinx为f(x)=x+cosx的一个原函数即F′(x)=f(x),根据∫a b f (x)dx=F(x)|a b公式即可求出值.

解答:解:∵(x2++sinx)′=x+cosx,

∴(x+cosx)dx

=(x2+sinx)

=2.

故答案为:2.

点评:此题考查学生掌握函数的求导法则,会求函数的定积分运算,是一道基础题.

7.已知函数f(x)的定义域为[﹣2,4],且f(4)=f(﹣2)=1,f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示,则平面区域f(2a+b)<1(a≥0,b≥0)所围成的面积是()

A.2B.4C.5D.8

考点:定积分的简单应用.501974

分析:根据导函数的图象,分析原函数的性质或作出原函数的草图,找出a、b满足的条件,画出平面区域,即可求解.

解答:解:由图可知[﹣2,0)上f′(x)<0,

∴函数f(x)在[﹣2,0)上单调递减,(0,4]上f′(x)>0,

∴函数f(x)在(0,4]上单调递增,

故在[﹣2,4]上,f(x)的最大值为f(4)=f(﹣2)=1,

∴f(2a+b)<1(a≥0,b≥0)?

表示的平面区域如图所示:

故选B.

点评:本题考查了导数与函数单调性的关系,以及线性规划问题的综合应用,属于高档题.解决时要注意数形结合思想应用.

8.∫01e x dx与∫01e x dx相比有关系式()

A.∫01e x dx<∫01e x dx B.∫01e x dx>∫01e x dx

C.(∫01e x dx)2=∫01e x dx D.∫01e x dx=∫01e x dx

考点:定积分的简单应用;定积分.501974

专题:计算题.

分析:根据积分所表示的几何意义是以直线x=0,x=1及函数y=e x或y=e x在图象第一象限内圆弧与坐标轴围成的面积,只需画出函数图象观察面积大小即可.

解答:解:∫01e x dx表示的几何意义是以直线x=0,x=1及函数y=e x在图象第一象限内圆弧与坐标轴围成的面积,

∫01e x dx表示的几何意义是以直线x=0,x=1及函数y=e x在图象第一象限内圆弧与坐标轴围成的面积,

如图

∵当0<x<1时,e x x>e x,故有:∫01e x dx>∫01e x dx

故选B.

点评:本题主要考查了定积分,定积分运算是求导的逆运算,解题的关键是求原函数,也可利用几何意义进行求解,属于基础题.

9.若a=,b=,则a与b的关系是()

A.a<b B.a>b C.a=b D.a+b=0

考点:定积分的简单应用.501974

专题:计算题.

分析:a==(﹣cosx)=(﹣cos2)﹣(﹣cos)=﹣cos2≈sin24.6°,b==sinx=sin1﹣sin0=sin1≈sin57.3°.

解答:解:∵a==(﹣cosx)=(﹣cos2)﹣(﹣cos)=﹣cos2≈﹣cos114.6°=sin24.6°,b==sinx=sin1﹣sin0=sin1≈sin57.3°,

∴b>a.

故选A.

点评:本题考查定积分的应用,是基础题.解题时要认真审题,仔细解答.

10.的值是()

A.B.C.D.

考点:定积分的简单应用.501974

专题:计算题.

分析:根据积分所表示的几何意义是以(1,0)为圆心,1为半径第一象限内圆弧与抛物线y=x2在第一象限的部分坐标轴围成的面积,只需求出圆的面积乘以四分之一与抛物线在第一象限的部分与x轴和直线x=1围成的图形的面积即可.

解答:解;积分所表示的几何意义是以(1,0)为圆心,1为半径第一象限内圆弧与抛物线y=x2在第一象限的部分坐标轴围成的面积,

故只需求出圆的面积乘以四分之一与抛物线在第一象限的部分与x轴和直线x=1围成的图形的面积之差.

即=﹣=﹣=

故答案选A

点评:本题主要考查了定积分,定积分运算是求导的逆运算,解题的关键是求原函数,也可利用几何意义进行求解,属于基础题

11.若f(x)=(e为自然对数的底数),则=()

A.+e2﹣e B.+e C.﹣e2+e D.﹣+e2﹣e

考点:定积分的简单应用.501974

专题:计算题.

分析:由于函数为分段函数,故将积分区间分为两部分,进而分别求出相应的积分,即可得到结论.

解答:解:===

故选C.

点评:本题重点考查定积分,解题的关键是将积分区间分为两部分,再分别求出相应的积分.12.已知f(x)=2﹣|x|,则()

A.3B.4C.3.5 D.4.5

考点:定积分的简单应用.501974

专题:计算题.

分析:由题意,,由此可求定积分的值.

解答:解:由题意,=+=2﹣+4﹣2=3.5

故选C.

点评:本题考查定积分的计算,解题的关键是利用定积分的性质化为两个定积分的和.13.设f(x)=3﹣|x﹣1|,则∫﹣22f(x)dx=()

A.7B.8C.7.5 D.6.5

考点:定积分的简单应用.501974

专题:计算题.

分析:∫﹣22f(x)dx=∫﹣22(3﹣|x﹣1|)dx,将∫﹣22(3﹣|x﹣1|)dx转化成∫﹣21(2+x)dx+∫12(4﹣x)dx,然后根据定积分的定义先求出被积函数的原函数,然后求解即可.

解答:解:∫﹣22f(x)dx=∫﹣22(3﹣|x﹣1|)dx=∫﹣21(2+x)dx+∫12(4﹣x)dx=(2x+x2)|﹣21+(4x﹣x2)|12=7

故选A.

点评:本题主要考查了定积分,定积分运算是求导的逆运算,同时考查了转化与划归的思想,属于基础题.

14.积分=()

A.B.C.πa2D.2πa2

考点:定积分的简单应用;定积分.501974

专题:计算题.

分析:本题利用定积分的几何意义计算定积分,即求被积函数y=与x轴所围成的图形的面积,围成的图象是半个圆.

解答:解:根据定积分的几何意义,则表示圆心在原点,半径为3的圆的上半圆的面积,故==.

故选B.

点评:本小题主要考查定积分、定积分的几何意义、圆的面积等基础知识,考查考查数形结合思想.属于基础题.

15.已知函数的图象与x轴所围成图形的面积为()

A.1/2 B.1C.2D.3/2

考点:定积分在求面积中的应用.501974

专题:计算题.

分析:根据几何图形用定积分表示出所围成的封闭图形的面积,求出函数f(x)的积分,求出所求即可.

解答:解:由题意图象与x轴所围成图形的面积为

=(﹣)|01+sinx

=+1

=

故选D.

点评:本题考查定积分在求面积中的应用,求解的关键是正确利用定积分的运算规则求出定积分的值,本题易因为对两个知识点不熟悉公式用错而导致错误,牢固掌握好基础知识很重要.

16.由函数y=cosx(0≤x≤2π)的图象与直线及y=1所围成的一个封闭图形的面积是()A.4B.C.D.2π

考点:定积分在求面积中的应用.501974

专题:计算题.

分析:由题意可知函数y=cosx(0≤x≤2π)的图象与直线及y=1所围成的一个封闭图形可利用定积分进行计算,只要求∫0(1﹣cosx)dx即可.然后根据积分的运算公式进行求解即可.

解答:解:由函数y=cosx(0≤x≤2π)的图象与直线及y=1所围成的一个封闭图形的面积,就是:∫0(1﹣cosx)dx=(x﹣sinx)|0

=.

故选B.

点评:本题考查余弦函数的图象,定积分,考查计算能力,解题的关键是两块封闭图形的面积之和就是上部直接积分减去下部积分.

17.曲线y=x3在点(1,1)处的切线与x轴及直线x=1所围成的三角形的面积为()A.B.C.D.

考点:定积分在求面积中的应用.501974

专题:计算题.

分析:欲求所围成的三角形的面积,先求出在点(1,1)处的切线方程,只须求出其斜率的值即可,故要利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率,从而问题解决.

解答:解:∵y=x3,

∴y'=3x2,当x=1时,y'=3得切线的斜率为3,所以k=3;

所以曲线在点(1,1)处的切线方程为:

y﹣1=3×(x﹣1),即3x﹣y﹣2=0.

令y=o得:x=,

∴切线与x轴、直线x=1所围成的三角形的面积为:

S=×(1﹣)×1=

故选B.

点评:本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,属于基础题.

18.图中,阴影部分的面积是()

A . 16

B . 18

C . 20

D . 22

考点: 定积分在求面积中的应用.501974 专题: 计算题. 分析: 从图象中知抛物线与直线的交点坐标分别为(2,﹣2),(8,4).过(2,﹣2)作x

轴的垂线把阴影部分分为S 1,S 2两部分,利用定积分的方法分别求出它们的面积并相加即可得到阴影部分的面积. 解答: 解:从图象中知抛物线与直线的交点坐标分别为(2,﹣2),(8,4).过(2,﹣2)

作x 轴的垂线把阴影部分分为S 1,S 2两部分,分别求出它们的面积A 1,A 2: A 1=∫02[]dx=2 dx=, A 2=∫28[]dx=

所以阴影部分的面积A=A 1+A 2==18 故选B . 点评:

本题考查定积分在求面积中的应用,解题是要注意分割,关键是要注意在x 轴下方的部分积分为负(积分的几何意义强调代数和),属于基础题.考查学生利用定积分求阴影面积的方法的能力.

19.如图中阴影部分的面积是( ) A . B . C . D .

考点:

定积分在求面积中的应用.501974 专题:

计算题. 分析: 求阴影部分的面积,先要对阴影部分进行分割到三个象限内,分别对三部分进行积分求和即可.

解答: 解:直线y=2x 与抛物线y=3﹣x 2解得交点为(﹣3,﹣6)和(1,2) 抛物线y=3﹣x 2与x 轴负半轴交点(﹣,0)

设阴影部分面积为s ,则

= =

所以阴影部分的面积为, 故选C .

点评: 本题考查定积分在求面积中的应用,解题是要注意分割,关键是要注意在x 轴下方的部分积分为负(积分的几何意义强调代数和),属于基础题.

20.曲线与坐标轴围成的面积是( ) A . B . C . D .

考点:

定积分在求面积中的应用.501974

专题:计算题.

分析:先根据题意画出区域,然后依据图形得到积分下限为0,积分上限为,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.

解答:解:先根据题意画出图形,

得到积分上限为,积分下限为0

曲线与坐标轴围成的面积是:

S=∫0(﹣)dx+∫dx

=

∴围成的面积是

故选D.

点评:本题主要考查了学生会求出原函数的能力,以及考查了数形结合的思想,同时会利用定积分求图形面积的能力,解题的关键就是求原函数.

21.如图,点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()

A.y= B.y= C.y= D.y=

考点:定积分在求面积中的应用.501974

专题:计算题;数形结合.

分析:根据圆的对称性以及反比例函数的对称性可得,阴影部分的面积等于圆的面积的,即可求得圆的半径,再根据P在反比例函数的图象上,以及在圆上,即可求得k的值.解答:解:设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π

解得:r=2.

∵点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点.

∴3a2=k且=r

∴a2=×(2)2=4.

∴k=3×4=12,

则反比例函数的解析式是:y=.

故选C.

点评:本题主要考查反比例函数图象的对称性的知识点,解决本题的关键是利用反比例函数的对称性得到阴影部分与圆之间的关系.

基本积分公式

§5.3基本积分公式 重点与难点提示 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式. (1) ( 5.6 ) (2) ( 5.7 ) (3) ( 5.8 ) (4) ( 5.9 ) (5) ( 5.10 ) (6) ( 5.11 ) (7) ( 5.12 ) (8) ( 5.13 ) (9) ( 5.14 )

(10) ( 5.15 ) (11) ( 5.16 ) 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有.

是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数)

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? = 1ln ax b C a ++ 2.()d ax b x μ+?=1 1() (1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +?= 2 1(ln )ax b b ax b C a +-++ 4.2 d x x ax b +? = 22 311()2()ln 2ax b b ax b b ax b C a ??+-++++???? 5.d () x x ax b +? =1ln ax b C b x +-+ 6.2 d () x x ax b +? =2 1ln a ax b C bx b x +- ++ 7.2 d () x x ax b +? =2 1(ln )b ax b C a ax b ++ ++ 8.2 2 d () x x ax b +? = 2 3 1(2ln )b ax b b ax b C a ax b +-+- ++ 9.2 d () x x ax b +? = 2 11ln () ax b C b ax b b x +- ++ 的积分 10.x ? = C 11.x ?=2 2(3215ax b C a -+ 12.x x ?= 2 2 2 3 2(15128105a x abx b C a -+ 13.x ? = 2 2(23ax b C a -+

14 .2 x ? = 222 3 2(34815a x abx b C a -+ 15 .? (0) (0) C b C b ?+>?的积分 22.2 d x ax b +? =(0) (0) C b C b ? +>? ? ?+< 23.2 d x x ax b +? = 2 1 ln 2ax b C a ++

定积分的性质与计算方法

定积分的性质与计算方法 摘要: 定积分是微积分学中的一个重要组成部分,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。 关键词:定积分 性质 计算方法 定积分的定义 设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n 个子区间[x 0,x 1], (x 1,x 2], (x 2,x 3], …, (x n-1,x n ],其中x 0=a ,x n =b 。可知各区间的长度依次是:△x 1=x 1-x 0, △x 2=x 2-x 1, …, △x n =x n -x n-1。在每个子区间(x i-1,x i ]中任取一点i ξ(1,2,...,n ),作和式1()n i i f x ι=ξ?∑。设λ=max{△x 1, △x 2, …, △x n }(即λ是 最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为: ()b a f x dx ?。 其中:a 叫做积分下限,b 叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。 对于定积分,有这样一个重要问题:函数()f x 在[a,b]上满足怎样的条件, ()f x 在[a,b]上一定可积?下面给出两个充分条件: 定理1: 设()f x 在区间[a,b]上连续,则()f x 在[a,b]上可积。 定理2: 设()f x 在区间[a,b]上有界,且只有有限个间断点,则 ()f x 在[a,b]上可积。 例:利用定义计算定积分1 20x dx ?. 解:因为被积函数2()f x x =在积分区间[0,1]上连续,而连续函数是可积的,所以积分与区间[0,1]的分法及点i ξ的取法无关。因此,为了 便于计算,不妨把区间[0,1]分成n 等份,分点为i i x n = ,1,2,,1i n =?-;这样,

微积分公式与定积分计算练习

微积分公式与定积分计算练习(附加三角函数公式) 一、基本导数公式 ⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼ ()x x e e '= ⑽ ()ln x x a a a '= ⑾ ()1 ln x x '= ⑿ () 1log ln x a x a '= ⒀ ( )arcsin x '= ⒁( )arccos x '= ⒂ ()21arctan 1x x '=+ ⒃() 21arccot 1x x '=-+⒄()1 x '= ⒅ '= 二、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v ''' -??= ??? 三、高阶导数的运算法则 (1)()()() () () () () n n n u x v x u x v x ±=±??? ? (2)()() ()() n n cu x cu x =??? ? (3)()() () ()n n n u ax b a u ax b +=+??? ? (4) ()()() ()()()()0 n n n k k k n k u x v x c u x v x -=?=???? ∑ 四、基本初等函数的n 阶导数公式 (1) ()() ! n n x n = (2) ()() n ax b n ax b e a e ++=? (3) ()() ln n x x n a a a = (4) ()() sin sin 2n n ax b a ax b n π??+=++??? ??? ??(5) ()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6) () () () 1 1! 1n n n n a n ax b ax b +???=- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则

微积分公式大全

导数公式: 基本积分表: 三角函数的有理式积分: 2222 212sin cos 1121u u x du x x u tg dx u u u -==== +++, , ,  22(tan )sec (cot )csc (sec )sec tan (csc )csc cot ()ln ()(ln 1)1(log )ln x x x x a x x x x x x x x x x a a a x x x x x a '='=-'=?'=-?'='=+' = 2 2 2 (arcsin )(arccos )1 (arctan )11 (arc cot )11 ()x x x x x x thx ch '= '='= +'=- +' = 2 22 2sec tan cos csc cot sin sec tan sec csc cot csc ln ln(x x dx xdx x C x dx xdx x C x x xdx x C x xdx x C a a dx C a shxdx chx C chxdx shx C x C ==+==-+?=+?=-+=+=+=+=+????????? 222222tan ln cos cot ln sin sec ln sec tan csc ln csc cot 1arctan 1ln 21ln 2arcsin xdx x C xdx x C xdx x x C xdx x x C dx x C a x a a dx x a C x a a x a dx a x C a x a a x x C a =-+=+=++=-+=++-=+-++=+--=+???????? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

5.2 微积分基本公式-习题

1.设函数0 cos x y tdt = ?,求'(0)y ,'()4 y π。 【解】由题设得'()cos y x x =, 于是得 '(0)cos01y ==,'()cos 4 4 2 y ππ == 。 2.计算下列各导数: ⑴20x d dx ?; 【解】20x d dx ?2)x =2= ⑵ 1t d dt dx ; 【解】1t d dt dx 1 ()t d dt dx =-=-=。 ⑶ cos 2 sin cos()x x d t dt dx π?; 【解】cos 2sin cos()x x d t dt dx π?0cos 2 2sin 0[cos()cos()]x x d t dt t dt dx ππ=+?? 》 0cos 22 sin 0cos()cos()x x d d t dt t dt dx dx ππ= +?? sin cos 2200 [cos()]cos()x x d d t dt t dt dx dx ππ=-+?? 22cos(sin )(sin )cos(cos )(cos )d d x x x x dx dx ππ=-+ 22cos(sin )cos cos[(1sin )](sin )x x x x ππ=-+-- 22cos(sin )cos cos(sin )sin x x x x πππ=--- 22cos(sin )cos cos(sin )sin x x x x ππ=-+ 2cos(sin )(sin cos )x x x π=-。 ⑷2ln 1 x x d dt dx t ?。 【解】 2ln 1x x d dt dx t ?21ln 11 1[]x x d dt dt dx t t =+?? 21ln 111x x d d dt dt dx t dx t =+?? …

定积分计算公式和性质

第二节 定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x 为上的任一点, 于是, 在区间 上的定积分为 这里x 既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x 在区 间上任意变动,则对 于每一个取定的x 值,定积分有一个确定值与之对应,所以定积分在 上定义了一个以x 为自变量的函数,我们把 称为函数 在区间 上 变上限函数 记为 从几何上看,也很显然。因为X 是上一个动点, 从而以线段 为底的曲边梯形的面积,必然随着底数 端点的变化而变化,所以阴影部分的面积是端点x 的函数(见图5-10) 图 5-10

定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s 为 另一方面,如果物体经过的路程s 是时间t 的函数,那么物体 从t=a 到t=b 所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即 是 一个原函数,因此,为了求出定积分,应先求出被积函数 的原函数 , 再求 在区间 上的增量 即可。 如果抛开上面物理意义,便可得出计算定积分的一般 方法: 设函数在闭区间上连续, 是 的一个原函数, 即 ,则 图 5-11

这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例 2 求曲线 和直线x=0、x= 及y=0所围成图形面积A(5-12) 解 这个图形的面积为 二、定积分的性质 设 、 在相应区间上连续,利用前面学过的知识,可以 得到定积分以下几个简单性质: 图 5-12

定积分的基本公式

第三讲 定积分的基本公式 【教学内容】 1.变上限积分函数 2.牛顿-莱布尼兹公式 【教学目标】 1.掌握变上限积分函数 2.掌握牛顿-莱布尼兹公式 【教学重点与难点】 牛顿-莱布尼兹公式 【教学过程】 一、引例 一物体作变速直线运动时,其速度)(t v v =,则它从时刻a t =到时刻b t =所经过的路程S : dt t v S b a ? = )( 另一方面,如果物体运动时的路程函数)(t S S =,则它从时刻a t =到时刻b t =所经过的路程 S 等于函数)(t S S =在],[b a 上的增量 )()(a S b S - 同一物理量(路程)的两种不同数学表达式应该是相等的, ∴ dt t v S b a ? = )()()(a S b S -= ∵ )()(/ t v t S = ∴ ? ? = = b a b a dt t S dt t v S )()(/)()(a S b S -= 二、变上限积分函数 1.定义:如果函数)(x f 在区间],[b a 上连续,那么对于区间],[b a 上的任一点x 来说,)(x f 在区间],[x a 上仍连续,所以函数)(x f 在],[x a 上的定积分 ? x a dx x f )( 存在。也就是说,对于每一个确定的x 值,这个积分将有一个确定的值与之对应,因此它是积分上限x 的函数,此函数定义在区间],[b a 上,把它叫做变上限积分函数,记为)(x Φ。即 )()()()(b x a dt t f dx x f x x a x a ≤≤==Φ?? 2.定理1 如果函数)(x f y =在区间],[b a 上连续,则变上限积分函数 )()()(b x a dt t f x x a ≤≤=Φ? 是函数)(x f y =的原函数,即

定积分基本公式

定积分基本公式 定积分是高等数学中一个重要的基本概念,在几何、物理、经济学等各个领域中都有广泛的应用.本章将由典型实例引入定积分概念,讨论定积分性质和计算方法,举例说明定积分在实际问题中的具体运用等. 第二节 微积分基本公式 一、变上限的定积分 设函数()f x 在[[,]a b ] 上连续,x ∈[,]a b ,于是积分()d x a f x x ?是一个定数, 这种写法有一个不方便之处,就是 x 既表示积分上限,又表示积分变量.为避免 t ,于是这个积分就写成了 ()d x a f t t ? . x 值,积分()d x a f t t ?就有一个确定的的一个函数,记作 ()Φx =()d x a f t t ? ( a ≤x ≤ b )通常称函数 ()Φx 为变上限积分函数或变上限积分,其几何意义如图所示. 定理1 如果函数()f x 在区间[,]a b 上连续,则变上限积分 ()Φx =()d x a f t t ?在[,]a b 上可导,且其导数是 d ()()d ()d x a Φx f t t f x x '= =?( a ≤x ≤ b ). 推论 连续函数的原函数一定存在. 且函数()Φx =()d x a f t t ?即为其原函数.

例1 计算()Φx =2 0sin d x t t ?在x =0 ,处的导数. 解 因为2 d sin d d x t t x ?=2sin x ,故 2 (0)sin 00Φ'==; πsin 242Φ'==. 例2 求下列函数的导数: (1) e ln ()d (0)x a t Φx t a t =>? ; 解 这里()Φx 是x 的复合函数,其中中间变量e x u =,所以按复合函数求导 法则,有 d d ln d(e )ln e (d )e d d d e x x u x x a Φt t x x u t x ===?. (2) 2 1()(0) x Φx x θ=>? . 解 21d d d d x Φx x θ=-?2 2()x x ='=2sin 2sin 2x x x x x =- ?=-. 二、牛顿-莱布尼茨(Newton-Leibniz )公式 定理2 设函数()f x 在闭区间[,]a b 上连续,又 ()F x 是()f x 的任一个原函数,则有()d ()() b a f x x F b F a =-? . 证 由定理1知,变上限积分 ()()d x a Φx f t t =?也是()f x 的一个原函数,于 是知0()()Φx F x C -=, 0C 为一常数, 即 0 ()d ()x a f t t F x C =+?.

微积分公式与定积分计算练习大全

微积分公式与定积分计算练习(附加三角函数公式) 一、基本导数公式 ⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼ ()x x e e '= ⑽ ()ln x x a a a '= ⑾ ()1 ln x x '= ⑿ () 1log ln x a x a '= ⒀ ( )arcsin x '= ⒁( )arccos x '= ⒂ ()21arctan 1x x '=+ ⒃() 21arccot 1x x '=-+⒄()1 x '= ⒅ '= 二、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v ''' -??= ??? 三、高阶导数的运算法则 (1)()()() () () () () n n n u x v x u x v x ±=±??? ? (2)()() ( ) ()n n cu x cu x =??? ? (3)()() () ()n n n u ax b a u ax b +=+??? ? (4) ()()() ( ) ()() ()0 n n n k k k n k u x v x c u x v x -=?=???? ∑ 四、基本初等函数的n 阶导数公式 (1) ()() ! n n x n = (2) ()() n ax b n ax b e a e ++=? (3) ()() ln n x x n a a a = (4) ()() sin sin 2n n ax b a ax b n π??+=++??? ??? ??(5) ()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6) () () () 1 1! 1n n n n a n ax b ax b +???=- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则

定积分常用公式

定积分常用公式 二、基本积分表(188页1—15,205页16—24) (1) (k是常数) kdxkxC,,, ,,1x,(2) xdxC,,,(1)u,,,,,1 1(3) dxxC,,ln||,x dx(4) ,,arlxCtan2,1,x dx(5) ,,arcsinxC,21,x (6)cossinxdxxC,, , (7)sincosxdxxC,,, , 1(8) dxxC,,tan2,cosx 1(9) dxxC,,,cot2,sinx sectansecxxdxxC,,(10) , csccotcscxxdxxC,,,(11) , xxedxeC,,(12) , xax(13), (0,1)aa,,且adxC,,,lna shxdxchxC,,(14) , chxdxshxC,,(15) , 11x(16) dxarcC,,tan22,axaa, 1 11xa,(17) dxC,,ln||22,xaaxa,,2 1x(18) dxarcC,,sin,22aax, 122(19) dxxaxC,,,,ln(),22ax, dx22(20) ,,,,ln||xxaC,22xa,

(21)tanln|cos|xdxxC,,, , (22)cotln|sin|xdxxC,, , )secln|sectan|xdxxxC,,, (23, cscln|csccot|xdxxxC,,,(24) , 注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。 2、以上公式把换成仍成立,是以为自变量的函数。 xuux 3、复习三角函数公式: 1cos2,x22222, sincos1,tan1sec,sin22sincos,xxxxxxx,,,,,cosx,2 1cos2,x2。 sinx,2 fxxdxfxdx[()]'()[()](),,,,,注:由,此步为凑微分过程,所以第一,, 类换元法也叫凑微分法。此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。 2 小结: 1常用凑微分公式 积分类型换元公式11.f(ax,b)dx,f(ax,b)d(ax,b)(a,0)u,ax,b,,a u,x11,2.f(x)xdx,f(x)d(x)(,0),,,,,,,,,1u,lnx3.f(lnx),dx,f(lnx)d(lnx), ,x 4..f(e),edx,f(e)dexxxxu,ex,,第 1一5.f(a),adx,f(a)daxxxx,,lnau,ax换 6.f(sinx),cosxdx,f(sinx)dsinxu,sinx元,, u,cosx积7.f(cosx),sinxdx,,f(cosx)dcosx,,分 28.f(tanx)secxdx,f(tanx)dtanxu,tanx,,法 u,cotx29.f(cotx)cscxdx,,f(cotx)dcotx,,

微积分公式与运算法则

微积分公式与运算法则 1.基本公式 (1)导数公式(2)微分公式 (xμ)ˊ=μxμ-1d(xμ)=μxμ-1dx (a x)ˊ=a x lnad(a x)=a x lnadx (loga x)ˊ=1/(xlna)d(loga x)=1/(xlna)dx (sinx)ˊ=cosxd(sinx)=cosxdx (conx)ˊ=-sinxd(conx)=-sinxdx (tanx)ˊ=sec2xd(tanx)=sec2xdx (cotx)ˊ=-csc2xd(cotx)=-csc2xdx (secx)ˊ=secx·tanxd(secx)=secx·tanxdx (cscx)ˊ=-cscx·cotxd(cscx)=-cscx·cotxdx (arcsinx)ˊ=1/(1-x2)1/2d(arcsinx)=1/(1-x2)1/2dx (arccosx)ˊ=-1/(1-x2)1/2d(arccosx)=-1/(1-x2)1/2dx (arctanx)ˊ=1/(1+x2)d(arctanx)=1/(1+x2)dx (arccotx)ˊ=-1/(1+x2)d(arccotx)=-1/(1+x2)dx (sinhx)ˊ=coshxd(sinhx)=coshxdx (coshx)ˊ=sinhxd(coshx)=sinhxdx 2.运算法则(μ=μ(x),υ=υ(x),α、β∈R)(1)函数的线性组合积、商的求导法则 (αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ(μ/υ)ˊ=(μˊυ-μυˊ)/υ2

(2)函数和差积商的微分法则 d(αμ+βυ)=αdμ+βdυ d(μυ)=υdμ+μdυ d(μ/υ)=(υdμ-μdυ)/υ2 3.复合函数的微分法则 设y=f(μ),μ=ψ(x),则复合函数y=f[ψ(x)]的导数为 dy/dx=fˊ[ψ(x)]·ψˊ(x) 所以复合函数的微分为 dy=fˊ[ψ(x)]·ψˊ(x)dx 由于fˊ[ψ(x)]=fˊ(μ),ψˊ(x)dx=dμ,因此上式也可写成dy=fˊ(μ)dμ 由此可见,无论μ是自变量,还是另一变量的可微函数,微分形式dy=fˊ(μ)dμ保持不变,这一性质称为微分形式不变性。

定积分公式

二、基本积分表(188页1—15,205页16—24) (1)kdx kx C =+? (k 是常数) (2)1 ,1 x x dx C μμ μ+=++? (1)u ≠- (3)1ln ||dx x C x =+? (4)2 tan 1dx arl x C x =++? (5) arcsin x C =+? (6)cos sin xdx x C =+? (7)sin cos xdx x C =-+? (8)2 1 tan cos dx x C x =+? (9)2 1 cot sin dx x C x =-+? (10)sec tan sec x xdx x C =+? (11)csc cot csc x xdx x C =-+? (12)x x e dx e C =+? (13)ln x x a a dx C a = +?,(0,1)a a >≠且 (14)shxdx chx C =+? (15)chxdx shx C =+? (16)2 2 11tan x dx arc C a x a a = ++?

(17)2 2 11ln | |2x a dx C x a a x a -= +-+? (18) sin x arc C a =+? (19) ln(x C =++? (20) ln |x C =++? (21)tan ln |cos |xdx x C =-+? (22)cot ln |sin |xdx x C =+? (23)sec ln |sec tan |xdx x x C =++? (24)csc ln |csc cot |xdx x x C =-+? 注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。 2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。 3、复习三角函数公式: 2 2 2 2 sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==2 1cos 2cos 2 x x += , 2 1cos 2sin 2 x x -= 。 注:由[()]'()[()]() f x x dx f x d x ????= ?? ,此步为凑微分过程,所以第一 类换元法也叫凑微分法。此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。

微积分基本公式

微积分公式

tan -1 x = x-33x +55x -7 7 x +…+)12()1(12+-+n x n n + … (1+x)r =1+r x+!2)1(-r r x 2+! 3)2)(1(--r r r x 3 +… -1

定积分计算的总结论文

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢?我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限,设 ()0 ()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[] 1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

微积分公式与定积分计算练习

微积分公式与定积分计算练习(附加三角函数公式) 一、基本导数公式 ⑴()0c '= ⑵ 1 x x μμμ-= ⑶ ()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼()x x e e '= ⑽ ()ln x x a a a '= ⑾ ()1ln x x '= ⑿ () 1 log ln x a x a '= ⒀ ( )arcsin x '= ⒁ ( )arccos x '= ⒂ ()2 1arctan 1x x '= + ⒃ ()2 1arccot 1x x '=- +⒄()1x '= ⒅ '= 二、导数的四则运算法则 三、高阶导数的运算法则 (1)()()() () () () () n n n u x v x u x v x ±=±? ??? (2)()() ()() n n cu x cu x =? ??? (3) ()() ()() n n n u ax b a u ax b +=+???? (4) ()()() () ()()()0 n n n k k k n k u x v x c u x v x -=?=???? ∑ 四、基本初等函数的n 阶导数公式 (1) () () ! n n x n = (2) () () n ax b n ax b e a e ++=?

(3)() () ln n x x n a a a = (4) ()() sin sin 2n n ax b a ax b n π? ?+=++??? ? ?? ? ?(5) ()() cos cos 2n n ax b a ax b n π? ?+=++??? ? ?? ? ? (6) () () () 1 1! 1n n n n a n ax b ax b +??? =- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则 ⑴()0 d c = ⑵ ()1d x x dx μμμ-= ⑶()sin cos d x xdx = ⑷ ()cos sin d x xdx =- ⑸ ()2tan sec d x xdx = ⑹ ()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =? ⑻ ()csc csc cot d x x xdx =-? ⑼ ()x x d e e dx = ⑽ ()ln x x d a a adx = ⑾ ()1 ln d x dx x = ⑿ ()1 log ln x a d dx x a = ⒀ ( )arcsin d x = ⒁ ( )arccos d x = ⒂ ()21arctan 1d x dx x = + ⒃()2 1 arccot 1d x dx x =-+ 六、微分运算法则 ⑴ ()d u v du dv ±=± ⑵ ()d cu cdu =

不定积分的基本公式和运算法则直接积分法

?复习1 原函数的定义。2 不定积分的定义。3 不定积分的性质。4 不定积分的几何意义。 ?引入在不定积分的定义、性质以及基本公式的基础上,我们进一步来讨论不定积分的计算 问题,不定积分的计算方法主要有三种:直接积分法、换元积分法和分部积分法。 ?讲授新课 第二节不定积分的基本公式和运算直接积分法 一基本积分公式 由于求不定积分的运算是求导运算的逆运算,所以有导数的基本公式相应地可以得到积分的基本公式如下:

以函 数的的形式。 求函数的不定积分的方法叫积分法。 例1?求下列不定积分.(1) AdX ( 2) XdX _ 1 丄+ 彳 解:(1 ) . 2 dx = x'dx C=-1C X -2 1 X 3 2 5 (2 ).XXdX = χ2 dx = 2 X 2 C J 5 此例表明,对某些分式或根式函数求不定积分时,可先把它们化为 数的积分公式求积分。 不定积分的基本运算法则 X 〉的形式,然后应用幕函

法则1 两个函数代数和的积分,等于各函数积分的代数和,即 [f (X) — g (x)]dx = f (x)dx — g (x)dx 法则1对于有限多个函数的和也成立的. 法则2 被积函数中不为零的常数因子可提到积分号外,即 kf (x)dx = k f (x)dx ( k = O ) 3 X 例 2 求(2x 1 -e )dx 解 (2x 3 1-e" )d )=2 x 3dx + dx - e x dx 1 4 X =X X —e C 。 2 注 其中每一项的不定积分虽然都应当有一个积分常数, 但是这里并不需要在每一项后面加上 一个积分常数,因为任意常数之和还是任意常数,所以这里只把它的和 C 写在末尾,以后仿此。 注 检验解放的结果是否正确,只把结果求导,看它的导数是否等于被积函数就行了。如上例 由于(-X 4 ^e X C) = 2X 3 ^e X ,所以结果是正确的。 2 三直接积分法 在求积分的问题中,可以直接按基本积分公式和两个基本性质求出结果(如上例)但有时,被 积函数常需要经过适当的恒等变形(包括代数和三角的恒等变形)再利用积分的性质和公式求出结 果,这样的积分方法叫直接积分法。 例3 求下列不定积分 解: (1)首先把被积函数^x - I 1 化为和式,然后再逐项积分得 VX 1 √X (1)J (V Σ+1)( X -^^=)dx (2)J x 2 dx )dx

常用的求导和定积分公式

一.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2 csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则

若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数) (x f y =在对应区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1 = 复合函数求导法则 设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx = 或()()y f u x ?'''= 二、基本积分表 (1)kdx kx C =+? (k 是常数) (2)1 ,1 x x dx C μμ μ+= ++? (1)u ≠- (3)1 ln ||dx x C x =+? (4)2 tan 1dx arl x C x =++? (5) arcsin x C =+?

微积分公式大全

第一讲函数、连续与极限 一、理论要求 1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期) 几类常见函数(复合、分段、反、隐、初等函数) 2.极限极限存在性与左右极限之间的关系 夹逼定理和单调有界定理 会用等价无穷小和罗必达法则求极限 3.连续函数连续(左、右连续)与间断 理解并会应用闭区间上连续函数的性质(最值、有界、介值) 二、题型与解法 A.极限的求法(1)用定义求 (2)代入法(对连续函数,可用因式分解或有理化消除零因子) (3)变量替换法 (4)两个重要极限法 (5)用夹逼定理和单调有界定理求 (6)等价无穷小量替换法 (7)洛必达法则与Taylor级数法 (8)其他(微积分性质,数列与级数的性质) 1.(等价小量与洛必达) 2.已知

(洛必达) 3.(重要极限) 4.已知a、b为正常数, (变量替换) 5. 解:令 6.(变量替换) 7.已知在x=0连续,求a 解:令(连续性的概念) 三、补充习题(作业) 1.(洛必达) 2.(洛必达或Taylor) 第二讲导数、微分及其应用 一、理论要求

1.导数与微分导数与微分的概念、几何意义、物理意义 会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程 2.微分中值定理理解Roll、Lagrange、Cauchy、Taylor定理 会用定理证明相关问题 3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径) 二、题型与解法 A.导数微分的计 算 基本公式、四则、复合、高阶、隐函数、参数方程求导 1.决定,求 2.决定,求 解:两边微分得x=0时,将x=0代入等式得y=1 3.决定,则 B.曲线切法线问题5.f(x)为周期为5的连续函数,它在x=1可导,在x=0的某邻域内满足f(1+sinx)-3f(1-sinx)=8x+o(x)。求f(x)在(6,f(6))处的切线方程。 解:需求,等式取x->0的极限有:f(1)=0 C.导数应用问题 6.已知,

相关文档
最新文档