光盘的读写工作原理

光盘的读写工作原理
光盘的读写工作原理

光盘的读写工作原理

什么是光盘?

光盘即高密度光盘(Compact Disc)是近代发展起来不同于完全磁性载体的光学存储介质(例如:磁光盘也是光盘)光盘,用聚焦的氢离子激光束处理记录介质的方法存储和再生信息,又称激光光盘。由于软盘的容量太小,光盘凭借大容量得以广泛使用。我们听的CD是一种光盘,看的VCD、DVD也是一种光盘。现在一般的硬盘容量在

3GB到3TB之间,软盘已经基本被淘汰,CD光盘的最大容量大约是700MB,DVD盘片单面4.7GB,最多能刻录约4.59G的数据(因为DVD的1GB=1000MB,而硬盘的

1GB=1024MB)(双面8.5GB,最多约能刻8.3GB的数据),蓝光(BD)的则比较大,其中HD DVD单面单层15GB、双层30GB;BD单面单层25GB、双面50GB、三层75GB、四层100GB。

光盘的存储原理比较特殊,里面存储的信息不能被轻易地改变。也就是说我们常见的光盘生产出来的时候是什么样,就一直是那样了。那我们有没有办法把自己写的文章存在光

盘上呢?当然有!只要你有一个CD刻录机和空的CD-R光盘,就能将自己的“文章”写在光盘上。其它像DVD等介质的刻录也是一样的,要注意的是,绝大部分DVD刻录机都能刻录CD,即所谓的“向下兼容”。说到这里,我们来想一下,光盘是属于内存储器还是外存储器呢?要记住,我们所说的内部存储器就是内存,而外部存储器都是可以电脑中拆卸下来的。常见的外部存储器有硬盘、光盘、U盘、SD(Security Data,数据安全)卡、TF(T-Flash)卡等。

光盘的分类

光盘可以分为两类:1只读型光盘,其中包括CD-Audio、CD-Video、CD-ROM、DVD-Audio、DVD-Video、DVD-ROM 等;

2可记录型光盘,它包括CD-R、CD-RW、DVD-R、DVD+R、DVD+RW、DVD-RAM、Double layer DVD+R等各种类型。

光盘的结构﹑组成及原理

光盘是利用激光束在记录表面存储信息,根据激光束和反射光的强弱不同,可以实现信息的读写。对于只读型或只写一次的光盘而言,写入时将能量高度集中,在记录介质上发生物理或化学变化,从而存储信息,主要是形成小凹坑,有坑的地方记录“1”,反之是“0”。可擦写光盘是利用激光在磁性薄膜上产生热磁效应。

根据光盘结构,光盘主要分为CD、DVD、蓝光光盘等几种类型,这几种类型的光盘,在结构上有所区别,但主要结构原理是一致的。而只读的CD光盘和可记录的CD光盘在结构上没有区别,它们主要区别在材料的应用和某些制造工序的不同,DVD方面也是同样的道理。现在,我们就以CD光盘为例进行讲解。

我们常见的CD光盘非常薄,它只有1.2mm厚,但却包括了很多内容。从图中可以看出,CD光盘主要分为五层,其中包括基板、记录层、反射层、保护层、印刷层等。现在,我们分别进行说明。

1.基板

它是各功能性结构(如沟槽等)的载体,其使用的材料是聚碳酸酯(PC),冲击韧性极好、使用温度范围大、尺寸稳定性好、耐候性、无毒性。一般来说,基板是无色透明的聚碳酸酯板,在整个光盘中,它不仅是沟槽等的载体,更是整体个光盘的物理外壳。CD光盘的基板厚度为1.2mm、直径为120mm,中间有孔,呈圆形,它是光盘的外形体现。光盘之所以能够随意取放,主要取决于基板的硬度。

在读者的眼里,基板可能就是放在最底部的部分。不过,对于光盘而言,却并不相同。如果你把光盘比较光滑的一面(激光头面向的一面)面向你自己,那最表面的一面就是基板。需要说明的是,在基板方面,CD、CD-R、CD-RW之间

是没有区别的。

2.记录层(染料层)

这是烧录时刻录信号的地方,其主要的工作原理是在基板上涂抹上专用的有机染料,以供激光记录信息。由于烧录前后的反射率不同,经由激光读取不同长度的信号时,通过反射率的变化形成0与1信号,借以读取信息。目前市场上存在三大类有机染料:花菁(Cyanine)、酞菁

(Phthalocyanine) 及偶氮(AZO)。

目前,一次性记录的CD-R光盘主要采用(酞菁)有机染料,当此光盘在进行烧录时,激光就会对在基板上涂的有机染料,进行烧录,直接烧录成一个接一个的"坑",这样有"坑"和没有"坑"的状态就形成了‘0'和‘1'的信号,这一个接一个的"坑"是不能恢复的,也就是当烧成"坑"之后,将永久性地保持现状,这也就意味着此光盘不能重复擦写。这一连串的"0"、"1"信息,就组成了二进制代码,从而表示特定的数据。在这里,需要特别说明的是,对于可重复擦写的CD-RW而言,所涂抹的就不是有机染料,而是某种碳性物质,当激光

在烧录时,就不是烧成一个接一个的"坑",而是改变碳性物质的极性,通过改变碳性物质的极性,来形成特定的"0"、"1"代码序列。这种碳性物质的极性是可以重复改变的,这也就表示此光盘可以重复擦写。

3.反射层

这是光盘的第三层,它是反射光驱激光光束的区域,借反射的激光光束读取光盘片中的资料。其材料为纯度为99.99%的纯银金属。这个比较容易理解,它就如同我们经常用到的镜子一样,此层就代表镜子的银反射层,光线到达此层,就会反射回去。一般来说,我们的光盘可以当作镜子用,就是因为有这一层的缘故。

4.保护层

它是用来保护光盘中的反射层及染料层防止信号被破坏。材料为光固化丙烯酸类物质。另外现在市场使用的DVD+/-R 系列还需在以上的工艺上加入胶合部分。

5.印刷层

印刷盘片的客户标识、容量等相关资讯的地方,这就是光盘的背面。其实,光盘印刷

它不仅可以标明信息,还可以起到一定的保护光盘的作用。光盘读取技术

1)CLV技术:(Constant-Linear-Velocity)恒定线速度读取方式。在低于12倍速的光驱中使用的技术。它是为了保持

数据传输率不变,而随时改变旋转光盘的速度。读取内沿数据的旋转速度比外部要快许多。

2) CAV技术:(Constant-Angular-Velocity)恒定角速度读取方式。它是用同样的速度来读取光盘上的数据。但光盘上的内沿数据比外沿数据传输速度要低,越往外越能体现光驱的速度,倍速指的是最高数据传输率。

3) PCAV技术:(Partial-CAV)区域恒定角速度读取方式。是融合了CLV和CAV的一种新技术,它是在读取外沿数据采用CLV技术,在读取内沿数据采用CAV技术,提高整体数据传输的速度。

移动硬盘工作原理

硬盘,英文名称是Hard disk,发明于1950年。开始的时候,它的直径长达20英寸;并且只能容纳几MB(兆字节)的信息。最初的时候它并不称为Hard disk ,而是叫做“fixed disk"或者"Winchester"(IBM产品流行的代码名称);如果在某些文献里提到这些名词,我们知道它们是硬盘就可以了。随后,为了把硬盘的名称与"floppy disk"(软盘)区分开来,它的名称就演变成了"hard disk"。硬盘的内部有磁碟,作为保存信息的磁介质;而磁带和软盘里面则使用柔韧的塑料薄膜作为磁介质。 在简单的标准上,硬盘与盒式磁带并没有太大的区别。所有的硬盘和盒式磁带都使用相同的磁性技术录制信息,这点将在“磁带录音机是怎么工作的有介绍”,但这已经不是属于IT硬件的范畴了。硬盘和磁带录音机都从磁存储技术获得最大的效益--磁介质可以轻易地进行擦除和复写,并且信息将记录在磁道里,储存的信息可以永久保存。 想明白硬盘工作原理的最好途径是看清楚它的内部结构。注意:打开硬盘会损坏硬件,因此朋友们不要自己尝试,当然你有一个损坏的硬盘就另当别论了。 硬盘使用了铝片把表面给密封了起来,而另外的一边则布满了控制用的电子元件。电子控制器控制硬盘的读/写机制,还有转动盘片的马达。电子元件还把硬盘磁区域的信息汇编成byte(读),并把bytes转化为磁区域(写)。这些电子元件被装配在与硬盘盘片分开的小电路板上。 在电路板下面是连接盘片的马达,还有采用了高度过滤的通风孔,以便维持硬盘内部和外部的空气压力平衡。 移开了硬盘的顶盖之后,展现在大家眼前的是非常简单但却精密的内部结构。 盘片--当硬盘在工作的时候,它可以转动5,400或者72,00 rpm(通常的情况下,当然最快也有10,000rpm,SCSI硬盘甚至达到了15,000rpm)。这些盘片制造的时候有惊人的精确度,并且表面如镜子般光滑。(你甚至还在盘片里看到了作者的肖像) 臂--位于左上角,是用来保持磁头的读/写控制机制,能够把磁头从盘片的中心移动到硬盘的边缘。臂和它的移动机制相当的轻,并且速度飞快。普通的硬盘每秒可以在盘片中心和边缘之间来会移动50次,如果用肉眼看的话,速度真的是非常惊人。 为了增加硬盘储存的信息量,很多硬盘都使用了多盘片的设计。我们打开的硬盘有三个盘片和6个读/写的磁头。 硬盘里面保持臂的移动速度和精确度都达到了不可置信的地步,它使用了高速的线性马达。 很多硬盘使用了音圈(Voice coil)的方法来移动臂部--与你的立体声系统中扬声器使用的技术类似。 数据的储存 数据储存在盘片表面的扇区(Sector)和磁道(track)里,磁道是一系列的同心圆,而扇区则是磁道组成的圆状表面,如下: 上图黄色部分展示的就是典型的磁道,而蓝色部分则是扇区。扇区包括了固定数量的byte---例如,256或者512byte。无论是在硬盘还是在操作系统水平,扇区都通常组成群集(cluster)。 硬盘的低级格式化过程在盘片上建立了扇区和磁道,每个扇区的开始和结束部分都被写到了盘片上,这个处理使硬盘准备开始以byte的形式保持数据。高级格式化则写入文件储存的结构,例如把文件分配表写入到扇区,这个过程使硬盘

各种RAID的工作原理..

各种RAID的工作原理 RAID是通过磁盘阵列与数据条块化方法相结合,以提高数据可用率的一种结构。IBM早于1970年就开始研究此项技术。RAID 可分为RAID级别1到RAID级别6, 通常称为:RAID 0, RAID 1, RAID 2, RAID 3,RAID 4, RAID 5,RAID6。每一个RAID级别都有自己的强项和弱项。"奇偶校验"定义为用户数据的冗余信息, 当硬盘失效时,可以重新产生数据。 RAID 0:RAID 0 并不是真正的RAID结构,没有数据冗余。RAID 0 连续地分割数据并并行地读/写于多个磁盘上。因此具有很高的数据传输率。但RAID 0在提高性能的同时,并没有提供数据可靠性,如果一个磁盘失效,将影响整个数据。因此RAID 0 不可应用于需要数据高可用性的关键应用。 RAID 1:RAID 1通过数据镜像实现数据冗余,在两对分离的磁盘上产生互为备份的数据。RAID 1可以提高读的性能, 当原始数据繁忙时,可直接从镜像拷贝中读取数据。RAID 1是磁盘阵列中费用最高的, 但提供了最高的数据可用率。当一个磁盘失效,系统可以自动地交换到镜像磁盘上, 而不需要重组失效的数据。 RAID 2:从概念上讲, RAID 2 同RAID 3类似, 两者都是将数据条块化分布于不同的硬盘上, 条块单位为位或字节。然而RAID 2 使用称为"加重平均纠错码"的编码技术来提供错误检查及恢复。这种编码技术需要多个磁盘存放检查及恢复信息, 使得RAID 2技术实施更复杂。因此,在商业环境中很少使用. RAID 3:不同于RAID 2, RAID 3使用单块磁盘存放奇偶校验信息。如果一块磁盘失效, 奇偶盘及其他数据盘可以重新产生数据。如果奇偶盘失效,则不影响数据使用。RAID 3对于大量的连续数据可提供很好的传输率, 但对于随机数据, 奇偶盘会成为写操作的瓶颈。 RAID 4:同RAID 2, RAID 3一样, RAID 4, RAID 5也同样将数据条块化并分布于不同的磁盘上, 但条块单位为块或记录。RAID 4使用一块磁盘作为奇偶校验盘, 每次写操作都需要访问奇偶盘, 成为写操作的瓶颈. 在商业应用中很少使用。 RAID 5:RAID 5没有单独指定的奇偶盘, 而是交叉地存取数据及奇偶校验信息于所有磁盘上。在RAID5 上, 读/写指针可同时对阵列设备进行操作, 提供了更高的数据流量。RAID 5更适合于小数据块, 随机读写的数据.RAID 3 与RAID 5相比, 重要的区别在于RAID 3每进行一次数据传输,需涉及到所有的阵列盘。而对于RAID 5来说, 大部分数据传输只对一块磁盘操作, 可进行并行操作。在RAID 5中有"写损失", 即每一次写操作,将产生四个实际的读/写操作, 其中两次读旧的数据及奇偶信息, 两次写新的数据及奇偶信息。 RAID 6:RAID 6 与RAID 5相比,增加了第二个独立的奇偶校验信息块。两个独立的奇偶系统使用不同的算法, 数据的可靠性非常高。即使两块磁盘同时失效,也不会影响数据的使用。但需要分配给奇偶校验信息更大的磁盘空间, 相对于RAID 5有更大的"写损失"。RAID 6 的写性能非常差, 较差的性能和复杂的实施使得RAID 6很少使用。 在计算机发展的初期,“大容量”硬盘的价格还相当高,解决数据存储安全性问题的主要方法是使用磁带机等设备进行备份,这种方法虽然可以保证数据的安全,但查阅和备份工作都相当繁琐。1987年,Patterson、Gibson和Katz这三位工程师在加州大学伯克利分校发表了题为《A Case of Redundant Array of Inexpensive Disks(廉价磁盘冗余阵列方案)》的论文,其基本思想就是将多只容量较小的、相对廉价的硬盘驱动器进行有机组合,使其性能超过一只昂贵的大硬盘。这一设计思想很快被接受,从此RAID技术得到了广泛应用,数据存储进入了更快速、更安全、更廉价的新时代。 磁盘阵列对于个人电脑用户,还是比较陌生和神秘的。印象中的磁盘阵列似乎还停留在这样

存储器的工作原理

存储器的工作原理 1、存储器构造 存储器就是用来存放数据的地方。它是利用电平的高低来存放数据的,也就是说,它存放的实际上是电平的高、低,而不是我们所习惯认为的1234这样的数字,这样,我们的一个谜团就解开了,计算机也没什么神秘的吗。 图2

图3 让我们看图2。这是一个存储器的示意图:一个存储器就像一个个的小抽屉,一个小抽屉里有八个小格子,每个小格子就是用来存放“电荷”的,电荷通过与它相连的电线传进来或释放掉,至于电荷在小格子里是怎样存的,就不用我们操心了,你可以把电线想象成水管,小格子里的电荷就像是水,那就好理解了。存储器中的每个小抽屉就是一个放数据的地方,我们称之为一个“单元”。 有了这么一个构造,我们就可以开始存放数据了,想要放进一个数据12,也就是00001100,我们只要把第二号和第三号小格子里存满电荷,而其它小格子里的电荷给放掉就行了(看图3)。可是问题出来了,看图2,一个存储器有好多单元,线是并联的,在放入电荷的时候,会将电荷放入所有的单元中,而释放电荷的时候,会把每个单元中的电荷都放掉,这样的话,不管存储器有多少个单元,都只能放同一个数,这当然不是我们所希望的,因此,要在结构上稍作变化,看图2,在每个单元上有个控制线,我想要把数据放进哪个单元,就

给一个信号这个单元的控制线,这个控制线就把开关打开,这样电荷就可以自由流动了,而其它单元控制线上没有信号,所以开关不打开,不会受到影响,这样,只要控制不同单元的控制线,就可以向各单元写入不同的数据了,同样,如果要某个单元中取数据,也只要打开相应的控制开关就行了。 2、存储器译码 那么,我们怎样来控制各个单元的控制线呢?这个还不简单,把每个单元的控制线都引到集成电路的外面不就行了吗?事情可没那么简单,一片27512存储器中有65536个单元,把每根线都引出来,这个集成电路就得有6万多个脚?不行,怎么办?要想法减少线的数量。我们有一种方法称这为译码,简单介绍一下:一根线可以代表2种状态,2根线可以代表4种状态,3根线可以代表几种,256种状态又需要几根线代表?8种,8根线,所以65536种状态我们只需要16根线就可以代表了。 3、存储器的选片及总线的概念 至此,译码的问题解决了,让我们再来关注另外一个问题。送入每个单元的八根线是用从什么地方来的呢?它就是从计算机上接过来的,一般地,这八根线除了接一个存储器之外,还要接其它的器件,如图4所示。这样问题就出来了,这八根线既然不是存储器和计算机之间专用的,如果总是将某个单元接在这八根线上,就不好了,比如这个存储器单元中的数值是0FFH另一个存储器的单元是00H,那么

有机浮栅存储器的工作原理

有机浮栅存储器的工作原理 1.1 有机场效应晶体管(OFET)的基本结构和工作原理 1.1.1 有机场效应晶体管的基本结构 有机场效应晶体管的具有很多的优点:材料来源广、可以大量生产和能够实现低成本、可与柔性衬底兼容。应用前景十分广泛,如有机集成电路、存储器件、柔性显示屏等。自20世纪80年代有机场效应晶体管诞生,有机场效应晶体管得到迅速发展,到目前为止,一些有机场效应晶体管已经得到实用化的程度,在载流子迁移率、开关电流比方面已经可与非晶硅相媲美。 有机场效应晶体管按照源漏极和有机半导体的相对位置有两种结构(图2-1)底接触和顶接触,按照沟道中起传输作用的载流子的种类的不同,可以分为两种:n沟道场效应晶体管和p沟道场效应晶体管[8,9]。 图2-1 两种OFET结构:顶接触(左) 底接触(右) 1.1.2 有机场效应晶体管的工作原理 有机场效应晶体管的工作原理与无机场效应晶体管的工作原理类似。下面通过对一个顶接触的p-沟的OFET进行分析,如图2-2所示:

图2-2 有机场效应管的原理示意图 我们在栅极上施加一个相对于源极的负偏压时(源极是接地的),栅极表面出现负电荷,相应的在沟道表面感应出正电荷。当增大栅极电压时,在沟道表面形成积累层并进而形成含有可动载流子-空穴-的薄层,源漏之间的电流主要是由空穴贡献,这是与无机场效应晶体管最大的不同,通过控制栅极电压来改变沟道中空穴的数量,进而控制漏极电流[10]。 由于我们使用的是有机材料作为有源区,我们在引用传统的EEPROM的模型时必须要进行修改。在本文中,我们考虑了Pool-Frenkel效应[11],在半导体和绝缘层接触面的电荷,接触势垒,陷阱效应,采用修正以后的漂移-扩散模型(DDM)[12],借助TCAD求解泊松方程和连续性方程(2-1),(2-2),(2-3)[13],来模拟有机场效应晶体管的电学特性。 其中为静电势,为有机材料的介电常数,G为产生率, 和分别为捕获的电子和空穴的密度,和分别为电子和空穴的 电流密度。R是电子和空穴的复合率。[14,15],

硬盘内部硬件结构和工作原理详解

硬盘内部硬件结构和工作原理详解 一般硬盘正面贴有产品标签,主要包括厂家信息和产品信息,如商标、型号、序列号、生产日期、容量、参数和主从设置方法等。这些信息是正确使用硬盘的基本依据,下面将逐步介绍它们的含义。 硬盘主要由盘体、控制电路板和接口部件等组成,如图1-1所示。盘体是一个密封的腔体。硬盘的内部结构通常是指盘体的内部结构;控制电路板上主要有硬盘BIOS、硬盘缓存(即CACHE)和主控制芯片等单元,如图1-2所示;硬盘接口包括电源插座、数据接口和主、从跳线,如图1-3所示。 图1-1 硬盘的外观 图1-2 控制电路板 图1-3 硬盘接口 电源插座连接电源,为硬盘工作提供电力保证。数据接口是硬盘与主板、内存之间进行数据交换的通道,使用一根40针40线(早期)或40针80线(当前)的IDE接口电缆进行连接。新增加的40线是信号屏蔽线,用于屏蔽高速高频数据传输过程中的串扰。中间的主、从盘跳线插座,用以设置主、从硬盘,即设置硬盘驱动器的访问顺序。其设置方法一般标注在盘体外的标签上,也有一些标注在接口处,早期的硬盘还可能印在电路板上。 此外,在硬盘表面有一个透气孔(见图1-1),它的作用是使硬盘内部气压与外部大气压保持一致。由于盘体是密封的,所以,这个透气孔不直接和内部相通,而是经由一个高效过滤器和盘体相通,用以保证盘体内部的洁净无尘,使用中注意不要将它盖住。

1.2 硬盘的内部结构 硬盘的内部结构通常专指盘体的内部结构。盘体是一个密封的腔体,里面密封着磁头、盘片(磁片、碟片)等部件,如图1-4所示。 图1-4 硬盘内部结构 硬盘的盘片是硬质磁性合金盘片,片厚一般在0.5mm左右,直径主要有1.8in (1in=25.4mm)、2.5in、3.5in和5.25in 4种,其中2.5in和3.5in盘片应用最广。盘片的转速与盘片大小有关,考虑到惯性及盘片的稳定性,盘片越大转速越低。一般来讲,2.5in硬盘的转速在5 400 r/min~7 200 r/ min之间;3.5in 硬盘的转速在4 500 r/min~5 400 r/min之间;而5.25in硬盘转速则在3 600 r/min~4 500 r/min之间。随着技术的进步,现在2.5in硬盘的转速最高已达15 000 r/min,3.5in硬盘的转速最高已达12 000 r/min。 有的硬盘只装一张盘片,有的硬盘则有多张盘片。这些盘片安装在主轴电机的转轴上,在主轴电机的带动下高速旋转。每张盘片的容量称为单碟容量,而硬盘的容量就是所有盘片容量的总和。早期硬盘由于单碟容量低,所以,盘片较多,有的甚至多达10余片,现代硬盘的盘片一般只有少数几片。一块硬盘内的所有盘片都是完全一样的,不然控制部分就太复杂了。一个牌子的一个系列一般都用同一种盘片,使用不同数量的盘片,就出现了一个系列不同容量的硬盘产品。 盘体的完整构造如图1-5所示。

硬盘构造的基本原理

目前流行的硬盘储存器都具有非常完善而先进的内置式程序保障系统,它包括硬盘微处理器执行码和大量硬盘运行所需的各种各样的数据表。硬盘内置式程序总的容量大小可以达到几个Mbit。一旦硬盘的这种程序出现被损坏情况,那么,即使硬盘的整个机械装置和电子器件完好无损,硬盘还是会出现部分或完全的工作故障。 本篇文章描述了硬盘程序保障的基本原理,硬盘的结构和地址分配。 硬盘的空间结构 对一个硬盘来说,不是所有的空间都用来储存用户的数据信息。有相当一部分空间对用户来说是看不见的,它包括服务区(Service Area)和备用区(Reserve Area)(详见图1)。 图1 服务区是用来储存服务信息,即硬盘的内部程序和一些辅助表格。备用区是用来替换用户工作区内的故障扇区和磁道。这两个区域在硬盘正常工作状态下是访问不到的。用户只能访问到工作区的数据(通常情况下,这个区域被称为硬盘的逻辑空间),而硬盘的容量标签中标注的正是这一部分空间的容量,如HDD160G LBA:320173056。一个LBA(逻辑块地址)就等于一个扇区,即512bit。这样一来,知道了一个硬盘的LBA总体数量,也就知道了硬盘容量的大小。

硬盘在正常工作(用户)状态下,对工作区(连续不断的逻辑扇区)的访问是通过LBA进行,即在0到最大LBA之间进行。 要想接触到服务区,只有在一种专门的工作状态下,即技术工作状态下才可能实现。而要想进入这一工作状态,则需要一把“钥匙”指令,给出了“钥匙”指令之后,就可以打开一组补充的技术指令。借助这些技术指令就可以进行诸如读/写服务区的扇区信息、获取服务区模块和表格配置图、获取扇区分配表、进行LBA与PCHS (Physical Cylinder Head Sector)(物理磁柱-磁头-扇区)互换、进行低级格式化,以及读/写硬盘的闪存器等操作。 服务信息 服务信息对硬盘运行来说是必须要有的,它可以分为以下几类: ——微程序的管理模块(overlay); ——配置和设置表; ——缺陷表; ——工作记录表(SelfScan, Calibrator程序的工作结果)。 硬盘微处理器的工作程序属于硬盘工作所必需的一组程序。它包括初始诊断程序、伺服电机旋转控制程序、磁头定位程序、与硬盘控制器及缓冲存储器的信息交换程序等。所有这些合起来称作硬盘程序。在有些型号的硬盘中,工作程序被配置在微控制器的内部存储器或外部闪存器中(如2.5"的“TOSHIBA”硬盘)。但是,对大部分型号的硬盘来说,它的部分工作程序存储在磁盘的服务区上,而在电路板的缓冲存储器中,存储的是初始化程序、定位程序,以及从磁盘服务区向内存储器读与复制的工作程序初始加载器。由于程序是从服务区向微处理器的缓冲存储器中重新加载,而这里也是微处理器的工作地点,所以,它们的名字叫做“管理程序或overlay程序”(详见图2)。

硬盘内部硬件结构和工作原理详解概论

图1-1 硬盘的外观 图1-2 控制电路板 图1-3 硬盘接口 电源插座连接电源,为硬盘工作提供电力保证。数据接口是硬盘与主板、内存之间进行数据交换的通道,使用一根40针40线(早期)或40针80线(当前)的IDE 接口电缆进行连接。新增加的40线是信号屏蔽线,用于屏蔽高速高频数据传输过程中的串扰。中间的主、从盘跳线插座,用以设置主、从硬盘,即设置硬盘驱动器的访问顺序。其设置方法一般标注在盘体外的标签上,也有一些标注在接口处,早期的硬盘还可能印在电路板上。 此外,在硬盘表面有一个透气孔(见图1-1),它的作用是使硬盘内部气压与外部大气压保持一致。由于盘体是密封的,所以,这个透气孔不直接和内部相通,而是经由一个高效过滤器和盘体相通,用以保证盘体内部的洁净无尘,使用中注意不要将它盖住。 1.2 硬盘的内部结构 硬盘的内部结构通常专指盘体的内部结构。盘体是一个密封的腔体,里面密封着磁头、盘片(磁片、碟片)等部件,如图1-4所示。

图1-4 硬盘内部结构 硬盘的盘片是硬质磁性合金盘片,片厚一般在0.5mm左右,直径主要有1.8in (1in=25.4mm)、2.5in、3.5in和5.25in 4种,其中2.5in和3.5in盘片应用最广。盘片的转速与盘片大小有关,考虑到惯性及盘片的稳定性,盘片越大转速越低。一般来讲,2.5in硬盘的转速在5 400 r/min~7 200 r/ min之间;3.5in硬盘的转速在4 500 r/min~5 400 r/min之间;而5.25in硬盘转速则在3 600 r/min~4 500 r/min之间。随着技术的进步,现在2.5in硬盘的转速最高已达15 000 r/min,3.5in硬盘的转速最高已达12 000 r/min。 有的硬盘只装一张盘片,有的硬盘则有多张盘片。这些盘片安装在主轴电机的转轴上,在主轴电机的带动下高速旋转。每张盘片的容量称为单碟容量,而硬盘的容量就是所有盘片容量的总和。早期硬盘由于单碟容量低,所以,盘片较多,有的甚至多达10余片,现代硬盘的盘片一般只有少数几片。一块硬盘内的所有盘片都是完全一样的,不然控制部分就太复杂了。一个牌子的一个系列一般都用同一种盘片,使用不同数量的盘片,就出现了一个系列不同容量的硬盘产品。 盘体的完整构造如图1-5所示。

存储程序工作原理

一、存储程序工作原理 二、计算机的三个基本能力:一是采用二进制,二是能够存储程序,三是能够自动地执行程序。 三、计算机是利用“存储器”(内存)来存放所要执行的程序的,而称之为CPU的部件可以依次从存储器中取出程序中的每一条指令,并加以分析和执行,直至完成全部指令任务为止。 四、总线(Bus):是微型计算机中用于连接CPU、存储、输入/输出接口等部件的一组信号线和控制电路,是系统内各种部件之间共享的一组公共数据传输线路。 五、回收站:硬盘的部分存储区域 六、文件:新建打开保存另存为页面设置打印 七、编辑:撤消重复复制粘贴查找替换 八、格式:字体段落分栏文字方向背景 九、表格:绘制表格插入表格合并单元格绘制斜线表头表格属性 十、计算机网络是指通过通信设备将地理位置分散、具有独立功能的多个计算机连接起来,按照协议进行数据通信,以实现资源共享和信息传递的系统。 十一、计算机网络的物理组成:计算机传输介质连接设备 十二、网络连接设备:网络适配器集线器交换机中继器网桥路由器网关调制解调器 十三、国标字符集有6763个常用汉字 十四、由三部分组成: 十五、字母、数字和各种符号,共687个 十六、一级常用汉字,共3755个,按汉语拼音排列 十七、二级常用汉字,共3008个,按偏旁部首排列 十八、基本思想:先把编制的程序存储起来,再用程序来控制计算机的运行. 十九、“存储程序”工作原理:在计算机中设置存储器,将二进制编码表示的计算步骤与数据一起存放在存储器中,机器一经启动,就能按照程序指定的逻辑顺序依次取出存储内容进行译码和处理,自动完成由程序所描述的处理工作 二十、计算机网络的概念:概念:计算机网络是通信技术与计算机技术相结合的产物,是以资源共享为主要目的、以通信媒体互连起来的计算机的集合二十一、计算机:服务器、客户机和同位体。 二十二、传输介质:计算机与通信设备之间、以及通信设备之间都通过传输介质互连,具体有双绞线、同轴电缆、光纤、电话线、微波信道、卫星信道等。 二十三、通信设备:其作用是为计算机转发数据,具体有交换机、集线器、路由器、调制解调器等。 二十四、中国教育科研网(CERNET )中国公用信息网(ChinaNET )中国科学技术网(CSTNET )中国金桥信息网(CHINAGBN) 1.阐述系统软件和应用软件的分类和作用。 系统软件:操作系统、程序设计语言、语言处理程序、诊断程序、数据库管理系统。 应用软件:用于科学计算方面的数学计算软件包、统计软件包;文字处理软件包;图像处理软件包;各种财务管理、税务管理、工业控制等行业软件。

RAM-ROM-EEPROM存储器工作原理

RAM-ROM-EEPROM存储器工作原理

一.基本工作原理 1、存储器构造 存储器就是用来存放数据的地方。它是利用电平的高低来存放数据的,也就是说,它存放的实际上是电平的高、低,而不是我们所习惯认为的1234这样的数字,这样,我们的一个谜团就解开了,计算机也没什么神秘的吗。 图1 图2 让我们看图1。这是一个存储器的示意图:

一个存储器就像一个个的小抽屉,一个小抽屉里有八个小格子,每个小格子就是用来存放“电荷”的,电荷通过与它相连的电线传进来或释放掉,至于电荷在小格子里是怎样存的,就不用我们操心了,你可以把电线想象成水管,小格子里的电荷就像是水,那就好理解了。存储器中的每个小抽屉就是一个放数据的地方,我们称之为一个“单元”。 有了这么一个构造,我们就可以开始存放数据了,想要放进一个数据12,也就是00001100,我们只要把第二号和第三号小格子里存满电荷,而其它小格子里的电荷给放掉就行了(看图2)。可是问题出来了,看图1,一个存储器有好多单元,线是并联的,在放入电荷的时候,会将电荷放入所有的单元中,而释放电荷的时候,会把每个单元中的电荷都放掉,这样的话,不管存储器有多少个单元,都只能放同一个数,这当然不是我们所希望的,因此,要在结构上稍作变化,看图1,在每个单元上有个控制线,我想要把数据放进哪个单元,就给一个信号这个单元的控制线,这个控制线就把开关打开,这样电荷就可以自由流动了,而其它单元控制线上没有信号,所

以开关不打开,不会受到影响,这样,只要控制不同单元的控制线,就可以向各单元写入不同的数据了,同样,如果要某个单元中取数据,也只要打开相应的控制开关就行了。 2、存储器译码 那么,我们怎样来控制各个单元的控制线呢?这个还不简单,把每个单元的控制线都引到集成电路的外面不就行了吗?事情可没那么简单,一片27512存储器中有65536个单元,把每根线都引出来,这个集成电路就得有6万多个脚?不行,怎么办?要想法减少线的数量。我们有一种方法称这为译码,简单介绍一下:一根线可以代表2种状态,2根线可以代表4种状态,3根线可以代表几种,256种状态又需要几根线代表?8种,8根线,所以65536种状态我们只需要16根线就可以代表了。 3、存储器的选片及总线的概念 至此,译码的问题解决了,让我们再来关注另外一个问题。送入每个单元的八根线是用从什么地方来的呢?它就是从计算机上接过来的,一般地,这八根线除了接一个存储器之外,还要接其它的器件。这样问题就出来了,这八根线既然

静态MOS存储器工作原理

静态MOS存储器 1.基本存储元 (1)六管静态MOS存储元 A、电路图: 由两个MOS反相器交叉耦合而成的双稳态触发器。 B、存储元的工作原理: 假设:T0管导通,T1管截止:存0; T0管截至,T1管导通:存1; 说明:MOS管有三极,如果栅极为高电平,则源极和漏极导通。如果栅极为低电平,则源极和漏极截至。 ①写操作。在字线上加一个正电压的字脉冲,使T2、T3管导通。若要写“0”,无论该位存储元电路原存何种状态,只需使写“0”的位线BS0电压降为地电位(加负电压的位脉冲),经导通的T2管,迫使节点A的电位等于地电位,就能使T1管截止而T0管导通。 写入1,只需使写1的位线BS1降为地电位,经导通的T3管传给节点B,迫使T0管截止而T1管导通。 写入过程是字线上的字脉冲和位线上的位脉冲相重合的操作过程。 ②读操作。只需字线上加高电位的字脉冲,使T2、T3管导通,把节点A、B分别连到位线。若该位存储电路原存“0”,节点A是低电位,经一外加负载而接在位线BS0上的外加电

源,就会产生一个流入BS0 线的小电流(流向节点A经T0 导通管入地)。“0”位线上BS0 就从平时的高电位V下降一个很小的电压,经差动放大器检测出“0”信号。 若该位原存“1”,就会在“1”位线BS1 中流入电流,在BS1 位线上产生电压降,经差动放大器检测出读“1”信号。 读出过程中,位线变成了读出线。读取信息不影响触发器原来状态,故读出是非破坏性的读出。 ③若字线不加正脉冲,说明此存储元没有选中,T2 ,T3 管截止,A、B结点与位/读出线隔离,存储元存储并保存原存信息。 (2)8管静态MOS存储元 A 、 目的:地址的双重译码选择,字线分为X选择线与Y选择线 B 、 实现:需要在6管MOS存储元的A、B节点与位线上再加一对地址选择控制管T7 、T8 ,形成了8管MO BS1 读/写”0” 读/写”1” 位/ 6管MOS 存储电路

硬盘原理初探

硬盘原理初探 有关于硬盘原理的介绍并不像CPU、显卡以及声卡那样随处可见,但从各配件的重要性来看硬盘在计算机中的地位并不逊色于CPU、显卡以及声卡;对于从事信息工作的人来说,他的信息比他的计算机还重要,而他的信息就保存在硬盘里,所以从某种特定的角度来说,硬盘比其它任何一各配件都要重要.也正是由于以上的原因,近年来硬盘在速度、容量和稳定性等方面都有了长足的发展,但是无论其如何变化,它的基本原理是不变的,正所谓“万变不离其宗”.了解它的原理,对如何选择硬盘有很大的帮助. 美国、日本、韩国是世界上生产硬盘的主要厂商.美国的主要品牌有昆腾(Quantum)、希捷(Seagate)、迈拓(Maxtor)、IBM、西部数据(Western Digital);日本有NEC、富士通(Fujitsu);韩国的三星.三国之中美国一直是硬盘技术的领导者,日、韩二国产品的性能价格比要优于美国.Seagate,Quantum,Maxtor等是打入中国硬盘界的老手, Fujitsu,IBM,Samsung等是后来者.硬盘由磁头、磁盘、电路板和接口等部件所组成,虽然不复杂,但描述硬盘的术语以及有关于硬盘的各种技术和规定却是很多,如转速、接口技术、S.M.A.R.T技术、SPS和MaxSafe等等,下面就近年来硬盘变化较大的部件、术语和技术进行介绍. 磁头: 不用说大家也都知道,硬盘存取数据主要是靠磁头.磁头的发展先后经历了“亚铁盐类磁头(MONOLITHIC HEAD)”、“MIG(METAL IN GAP)磁头”、“薄膜磁头(THIN FILM HEAD)”.以上这些传统的磁头是读写合一的电磁感应式磁头,但是,硬盘的读、写却是两种截然不同的操作,为此,这种二合一磁头在设计时必须要同时兼顾到读/写两种特性,从而造成了硬盘设计上的局限.现在流行的MR磁头(Magnetoresistive heads),即磁阻磁头,采用的是分离式的磁头结构:写入磁头仍采用传统的磁感应磁头(MR磁头不能进行写操作),读取磁头则采用新型的MR磁头,即所谓的感应写、磁阻读.这样,在设计时就可以针对两者的不同特性分别进行优化,以得到最好的读/写性能.另外,MR磁头是通过阻值变化而不是电流变化去感应信号幅度,因而对信号变化相当敏感,读取数据的准确性也相应提高.而且由于读取的信号幅度与磁道宽度无关,故磁道可以做得很窄,从而提高了盘片密度,这也是MR磁头被广泛应用的最主要原因.目前市场上的新型大容量硬盘大都采用了MR磁头.另外,Quantum等几家公司已开发出一种采用多层结构和磁阻效应更好的材料制作的GMR磁头(Giant Magnetoresistive heads),它可使硬盘容量提高十倍以上,它的大量运用,必将带动硬盘业兴起一场变革. 单碟容量: 单碟容量是指单张盘片的容量,单碟容量越大,实现大容量硬盘也就越容易,寻找数据所需的时间也相对少一点.如今,PRML(PARTIAL RESPONSE MAXIMUM LIKELIHOOD)——局部响应最大相似性读磁道技术不仅使单碟容量大大增加,还加快了数据传输率,采取这一技术的硬盘性能都有较大提高.当这项技术应用于硬盘信号读取时,就能避免因磁道过窄造成的信号干扰,因而可以大幅度地提高盘片的密度.与此同时,由于磁盘密度的增大,磁头在相同时间内可以读取到更多的信号,这就意味着读取速度得以提高.而最大相似(Maximum likelihood)原理则是通过多点采样,把磁头读取到的信号与标准信号进行对比,以得出最匹配的信号再传送出去,从而大大地提高了数据读取的准确性.这是传统的“脉冲峰值检测”读取通道(analog peak detection read channels)无法做到的.PRML技术的普遍采

计算机硬盘工作原理

计算机硬盘工作原理 概括地说,硬盘的工作原理是利用特定的磁粒子的极性来记录数据。磁头在读取数据时,将磁粒子的不同极性转换成不同的电脉冲信号,再利用数据转换器将这些原始信号变成电脑可以使用的数据,写的操作正好与此相反。另外,硬盘中还有一个存储缓冲区,这是为了协调硬盘与主机在数据处理速度上的差异而设的。由于硬盘的结构比软盘复杂得多,所以它的格式化工作也比软盘要复杂,分为低级格式化,硬盘分区,高级格式化并建立文件管理系统。 硬盘驱动器加电正常工作后,利用控制电路中的单片机初始化模块进行初始化工作,此时磁头置于盘片中心位置,初始化完成后主轴电机将启动并以高速旋转,装载磁头的小车机构移动,将浮动磁头置于盘片表面的00道,处于等待指令的启动状态。当接口电路接收到微机系统传来的指令信号,通过前置放大控制电路,驱动音圈电机发出磁信号,根据感应阻值变化的磁头对盘片数据信息进行正确定位,并将接收后的数据信息解码,通过放大控制电路传输到接口电路,反馈给主机系统完成指令操作。结束硬盘操作的断电状态,在反力矩弹簧的作用下浮动磁头驻留到盘面中心。 它的工作原理如下图: 所谓“低格”是指对一块裸盘进行划分磁道和扇区、标注地址信息、设置交叉因子、修复逻辑坏道等低层操作,“低格”需要用专门与硬盘配套的软件,由于低格将可能损伤盘片磁介质,一般没有必要对硬盘进行这种操作。而高级格式化,将做清除硬盘上的数

据,生成BOOT区信息,初始化FAT表,标注逻辑坏道等工作。对硬盘进行高级格式化通常使用操作系统自带的FORMAT(格式化磁盘)命令。 关于硬盘低格的利弊,各方说法不一,一直无定论。以往硬盘容量不大时低格是没问题的,那时大多数主板的BIOS中就提供硬盘低格的程序。随着硬盘技术的发展,容量的增大,厂家一般都不推荐对硬盘进行低格,以免使硬盘的交错因子等参数发生改变,影响硬盘的性能与寿命。但硬盘低格确实是对解决某些问题有用(如恶性病毒、逻辑坏道),若实在需要进行低格,应尽量采用厂家专用的低格程序。另外“低格”的过程进行得很慢,若中途出现掉电死机等意外情况,将会造成非常严重的后果,而且由于“低格”时要使硬盘的低层物理特性发生一定变化,对硬盘的寿命肯定有影响,所以一般轻易不要对硬盘进行“低格”操作。

计算机组成原理存储器(1)(1)说课讲解

计算机组成原理存储 器(1)(1)

1.存储器 一、单选题(题数 54,共7 ) 1 在下述存储器中,允许随机访问的存储器是()。(1.2分) A、磁带 B 、磁盘 C 、磁鼓D 、半导体存储器 正确答案 D 2 若存储周期250ns,每次读出16位,则该存储器的数据传送率为()。(1.2分) A、4×10^6字节/秒 B、4M字节/秒 C、8×10^6字节/秒 D、8M字节/秒 正确答案 C 3 下列有关RAM和ROM得叙述中正确的是()。 IRAM是易失性存储器,ROM是非易失性存储器 IIRAM和ROM都是采用随机存取方式进行信息访问 IIIRAM和ROM都可用做Cache IVRAM和ROM都需要进行刷新 (1.2分) A、仅I和II B、仅I和III C、仅I,II,III D、仅II,III,IV 正确答案 A 4 静态RAM利用()。(1.2分) A、电容存储信息 B、触发器存储信息 C、门电路存储信息 D、读电流存储信息 正确答案 B 5 关于计算机中存储容量单位的叙述,其中错误的是()。(1.2分) A、最小的计量单位为位(bit),表示一位“0”或“1” B、最基本的计量单位是字节(Byte),一个字节等于8b C、一台计算机的编址单位、指令字长和数据字长都一样,且是字节的整数倍 D、主存容量为1KB,其含义是主存中能存放1024个字节的二进制信息 正确答案 C 6

若CPU的地址线为16根,则能够直接访问的存储区最大容量为()。(1.2分) A、1M B、640K C、64K D、384K 正确答案 C 7 由2K×4的芯片组成容量为4KB的存储器需要()片这样的存储芯片。(1.2分) A、2 B、4 C、8 D、16 正确答案 B 8 下面什么存储器是目前已被淘汰的存储器。(1.2分) A、半导体存储器 B、磁表面存储器 C、磁芯存储器 D、光盘存储器 正确答案 C 9 下列几种存储器中,()是易失性存储器。(1.2分) A、cache B、EPROM C、FlashMemory D 、 C D-ROM 正确答案 A 10 下面关于半导体存储器组织叙述中,错误的是什么。 (1.2分) A、存储器的核心部分是存储体,由若干存储单元构成 B、存储单元由若干存放0和1的存储元件构成 C、一个存储单元有一个编号,就是存储单元地址 D、同一个存储器中,每个存储单元的宽度可以不同 正确答案 D 11 在主存和CPU之间增加Cache的目的是什么。(1.2分) A、扩大主存的容量 B、增加CPU中通用寄存器的数量 C、解决CPU和主存之间的速度匹配 D、代替CPU中的寄存器工作 正确答案 C

(完整word版)硬盘的存储原理和内部架构

硬盘的存储原理和内部架构2012-11-19 21:47:21 分类:服务器与存储 本来想写个文件系统的专题,结果发现对硬盘的内部架构和存储原理还是比较模糊,因为不了解“一点”硬盘的存储原理对文件系统的认识老是感觉镜花水月,不踏实。经过搜集整理资料就由了本文的问世。 借用Bean_lee兄一句话:成果和荣耀归于前辈。 首先,让我们看一下硬盘的发展史: ?1956年9月13日,IBM的IBM 350 RAMAC(Random Access Method of Accounting and Control)是现代硬盘的雏形,整个硬盘需要50个直径为24英寸表面涂有磁浆的盘片,它相当于两个冰箱 的体积,不过其存储容量只有5MB。 ?1971年,IBM开始采用一种名叫Merlin的技术生产硬盘,这种技术据称能使硬盘头更好地在盘片上 索引。 ?1973年,IBM 3340问世,主流采用采用红色。这个大家伙每平方英寸存储1.7MB的数据,在当时已 经创了一个纪录。许多公司共享这些系统,需要时按 照时间和存储空间租用它。租赁价值为7.81美元每 兆,这个价格比当时汽油的价格还贵38%。它拥有“温 彻斯特”这个绰号,也就是我们现在所熟知的“温氏架 构”。来源于它两个30MB的存储单元,恰好是当时出

名的“温彻斯特来福枪”的口径和填弹量。至此,硬盘的基本架构被确立。 ?1979年,IBM发明了Thin Film磁头,使硬盘的数据定位更加准确,因此使得硬盘的密度大幅提升。 ?1980年,两位前IBM员工创立的公司开发出5.25英寸规格的5MB硬盘,这是首款面向台式机的产品, 而该公司正是希捷公司(Seagate)公司。 ?1982年,日立发布了全球首款容量超过1GB的硬盘。这就是容量为1.2GB的H-8598硬盘。这块硬 盘拥有10片14英寸盘片,两个读写磁头。 ?1980年代末,IBM推出MR(Magneto Resistive 磁阻)技术令磁头灵敏度大大提升,使盘片的存储密 度较之前的20Mbpsi(bit/每平方英寸)提高了数十倍,该技术为硬盘容量的巨大提升奠定了基础。1991年,IBM应用该技术推出了首款3.5英寸的1GB硬盘。 ?1970年到1991年,硬盘碟片的存储密度以每年25%~30%的速度增长;从1991年开始增长到60%~ 80%;至今,速度提升到100%甚至是200%。从1997年开始的惊人速度提升得益于IBM的GMR(Giant Magneto Resistive,巨磁阻)技术,它使磁头灵敏度进一步提升,进而提高了存储密度。

存储器的工作原理

存储器的工作原理1、存储器构造 存储器就是用来存放数据的地方。它是利用电平的高低来存放数据的,放的实际上是电平的高、低,而不是我们所习惯认为的1234 这样的数字,个谜团就解开了,计算机也没什么神秘的吗。 图2 也就是说,它存 这样,我们的一

图3 让我们看图2。这是一个存储器的示意图:一个存储器就像一个个的小抽屉,一个小抽屉里有八个小格子,每个小格子就是用来存放“电荷”的,电荷通过与它相连的电线传进来或释放掉,至于电荷在小格子里是怎样存的,就不用我们操心了,你可以把电线想象成水管,小格子里的电荷就像是水,那就好理解了。存储器中的每个小抽屉就是一个放数据的地方,我们称之为一个“单元” 。 有了这么一个构造,我们就可以开始存放数据了,想要放进一个数据12 ,也就是00001100 ,我们只要把第二号和第三号小格子里存满电荷,而其它小格子里的电荷给放掉就行了(看图3)。可是问题出来了,看图 2 ,一个存储器有好多单元,线是并联的,在放入电荷的时候,会将电荷放入所有的单元中,而释放电荷的时候,会把每个单元中的电荷都放掉,这样的话,不管存储器有多少个单元,都只能放同一个数,这当然不是我们所希望的,因此,要在结构上稍作变化,看图2,在每个单元上有个控制线,我想要把数据放进哪个单 元,就给一个信号这个单元的控制线,这个控制线就把开关打开,这样电荷就可以自由流动了,而其它单元控制线上没有信号,所以开关不打开,不会受到影响,这样,只要控制不同单元的控制线,就可以向各单元写入不同的数据了,同样,如果要某个单元中取数据,也只要打开相应的控制开关就行了。 2、存储器译码 那么,我们怎样来控制各个单元的控制线呢?这个还不简单,把每个单元的控制线都引 到集成电路的外面不就行了吗?事情可没那么简单,一片27512 存储器中有65536 个单元, 把每根线都引出来,这个集成电路就得有 6 万多个脚?不行,怎么办?要想法减少线的数量。我们有一种方法称这为译码,简单介绍一下:一根线可以代表 2 种状态, 2 根线可以代表 4 种状态,3 根线可以代表几种,256 种状态又需要几根线代表?8 种,8 根线,所以65536

硬盘的工作原理

硬盘的工作原理 ——关于eMule下载伤硬盘的话题 先说一下现代硬盘的工作原理 现在的硬盘,无论是IDE还是SCSI,采用的都是"温彻思特“技术,都有以下特点:1。磁头,盘片及运动机构密封。2。固定并高速旋转的镀磁盘片表面平整光滑。3。磁头沿盘片径向移动。4。磁头对盘片接触式启停,但工作时呈飞行状态不与盘片直接接触。 盘片:硬盘盘片是将磁粉附着在铝合金(新材料也有用玻璃)圆盘片的表面上.这些磁粉被划分成称为磁道的若干个同心圆,在每个同心圆的磁道上就好像有无数的任意排列的小磁铁,它们分别代表着0和1的状态。当这些小磁铁受到来自磁头的磁力影响时,其排列的方向会随之改变。利用磁头的磁力控制指定的一些小磁铁方向,使每个小磁铁都可以用来储存信息。 盘体:硬盘的盘体由多个盘片组成,这些盘片重叠在一起放在一个密封的盒中,它们在主轴电机的带动下以很高的速度旋转,其每分钟转速达3600,4500,5400,7200甚至以上。 磁头:硬盘的磁头用来读取或者修改盘片上磁性物质的状态,一般说来,每一个磁面都会有一个磁头,从最上面开始,从0开始编号。磁头在停止工作时,与磁盘是接触的,但是在工作时呈飞行状态。磁头采取在盘片的着陆区接触式启停的方式,着陆区不存放任何数据,磁头在此区域启停,不存在损伤任何数据的问题。读取数据时,盘片高速旋转,由于对磁头运动采取了精巧的空气动力学设计,此时磁头处于离盘面数据区0.2---0.5微米高度的”飞行状态“。既不与盘面接触造成磨损,又能可靠的读取数据。 电机:硬盘内的电机都为无刷电机,在高速轴承支撑下机械磨损很小,可以长时间连续工作。高速旋转的盘体产生了明显的陀螺效应,所以工作中的硬盘不宜运动,否则将加重轴承的工作负荷。硬盘磁头的寻道饲服电机多采用音圈式旋转或者直线运动步进电机,在饲服跟踪的调节下精确地跟踪盘片的磁道,所以在硬盘工作时不要有冲击碰撞,搬动时要小心轻放。 原理说到这里,大家都明白了吧? 首先,磁头和数据区是不会有接触的,所以不存在磨损的问题。 其次,一开机硬盘就处于旋转状态,主轴电机的旋转可以达到4500或者7200转每分钟,这和你是否使用FLASHGET或者ED都没有关系,只要一通电,它们就在转.它们的磨损也和软件无关。 再次,寻道电机控制下的磁头的运动,是左右来回移动的,而且幅度很小,从盘片的最内层(着陆区)启动,慢慢移动到最外层,再慢慢移动回来,一个磁道再到另一个磁道来寻找数据。不会有什么大规模跳跃的(又不是青蛙)。所以它的磨损也是可以忽略不记的。

相关文档
最新文档