EMC DMX存储的物理架构与逻辑架构

EMC DMX存储的物理架构与逻辑架构
EMC DMX存储的物理架构与逻辑架构

EMC DMX存储的物理架构与逻辑架构

一.DMX存储概述

DMX存储硬件的物理与逻辑架构能够实现最大限度的将一个lun 的io 最大限度分摊给硬盘,DAE盘阵的环路; 一个lun 的io 同时也平均分摊给后端的存储cpu . 从后面文档设备连接的介绍可以知晓.

DMX的架构做到了最大限度的打散数据以达到性能最大化;性能最大化的硬件配置是一个控制柜加两个与控制柜存储cpu端口直连的磁盘柜;

存储卷vol 以及4个vol meta(绑定) 条带化以后就避免了热点(hot block) 读写的问题.

将任何一个lun的读写io 操作做到由最多的硬件资源来支撑. 硬件资源主要是硬盘,DAE盘阵环路,存储cpu,存储缓存.

DMX存储安装配置是通过加载预先配置好的bin file 来部署的; bin file 定义了物理架构与逻辑架构的配置定义整个存储当前硬件配置如何被使用规划好,以后修改配置就得重新装载bin file 也就是重新配置整个存储.

Bin file的加载以及整个存储的管理通过console服务器上的软件symmwin来操作,console服务器通过电话线moden 与EMC 支持中心连通. EMC技术人员通过电话线的拨号拨入方式可以做到完全掌控存储设备.

本文档关注存储设备架构方面,管理方面的gk盘,ecc等不做赘述.

二.E MC DMX 存储的物理架构

1.存储外观及各个模块介绍

(1)外观

DMX由一个控制柜加磁盘柜组成, 通常带2个或者5个磁盘柜

我们公司为了性能最大化,配置满配的前端后端卡,只挂2个磁盘柜.再扩展磁盘

机柜只增加空间,性能不增长.

,

BAY

BAY

(2)物理构成模块图示: (打开机柜门前视图)

2.存储后端接线连接以及磁盘环路

DA卡cpu端口与硬盘的连线图示:

这里的图示是端口所管理的硬盘,是指硬盘的主环路(BUS loop),实际情况物理联线只连接到DAE 的LCC A & LCC B 端口.

方环路的硬盘,也就是互为standby 环路.

DA 卡cpu 与 DAE 盘柜 的对应关系

三.E MC DMX 存储的逻辑架构

●存储最小的可用单元是cylinder (每个cylinder 960k) ;

●每个cyln 由15个64k 的块组成.

●每个硬盘以cyln为单位划分成n 个hyper(也叫切片)

●以DA02 D1:05 (DA卡2,D cpu port 1口管理的DAE ID 5硬盘为例)

1.DA02 D1:05 硬盘被切成了14块,前面9块都是16570 cyln 的大小的数据

空间, 后面5块是3 cyln 的管理用的GK盘.

2.然后以16570 cyln为单位的15GB(16570*960k/1024)大小的hyper 来与其

他硬盘里面的同样是16570 cyln 的hyper 来做镜像成为一个卷(vol). 大

多数情况下某个硬盘里面的数据(vol) 与另外一个硬盘的数据一摸一样.

3.看如下图示: 镜像1 是M1, 镜像2 是M2. 互相交叉. 后面的6,7,8 ……都

是同样情况,两块硬盘数据一样,镜像1 镜像2 交叉放.

4.卷volume 分配给主机的时候都是连续地分配出去, 而如下图两个硬盘里

面的vol 都是不顺序的,是打散的,这样就打散了主机对存储读写的io.

DA02 D1:05

DA02 D1:05

如下图示:

每个卷底层都是由8个硬盘来支持,并且由八个cpu通道来支持,因为八个

硬盘都算来自不同的硬盘DAE盘阵,能达到最佳的IOPS.

dmx系统只将MetaPosition 0 的卷名(meta位置0的) 映射给主机,一个卷也

就是作为一个lun来使用. 这里举例的情况是两个hyper先镜像,然后4个Array

6.主机端查看分配的lun的volume 信息

用powerpath工具powermt 看Logical device ID

例如:

Pseudo name=emcpowerbd

Symmetrix ID=000290105785

Logical device ID=05EB

state=alive; policy=SymmOpt; priority=0; queued-IOs=0

========================================================

--- Host -- - Stor - -- I/O Path - -- Stats ---

### HW Path I/O Paths Interf. Mode State Q-IOs Errors ========================================================

2 qla2xxx sdbq FA 14dA active alive 0 0

3 qla2xxx sdev FA 13dA active alive 0 0

3 qla2xxx sdgo FA 14dA active alive 0 0

4 qla2xxx sdjt FA 3dA active alive 0 0

4 qla2xxx sdlm FA 4dA active alive 0 0

5 qla2xxx sdor FA 3dA active alive 0 0

5 qla2xxx sdqk FA 4dA active alive 0 0

2 qla2xxx sdx FA 13dA active alive 0 0

主机能看到05EB 卷的有: 172.23.106.2, 172.24.67.2 ……

923845-服务器-中科曙光ParaStor200并行存储系统介绍

信息技术的发展带来数据的爆炸性增长,PB 规模的数据越来越常见,这 些数据80%以上是视频、音频、图片等非结构化数据,如何有效地管理海量非结构化数据已成为IT 管理者所必须重视的问题。传统的SAN 和NAS 存储架构 已经无法满足海量非结构化数据处理的密集型I/O 及海量并发访问的需求。 ParaStor200并行存储系统汇集了曙光公司多年以来在并行计算和海量数据处理方面的丰富经验,从架构上彻底消除了传统存储系统的瓶颈,能够满足高带宽和高并发的海量文件存取的需求,为用户带来前所未有的存储性能体验。 产品概述 ParaStor200并行存储系统采用了代表存储技术、网络通信技术以及数据管理技术发展方向的并行体系架构,是一款面向海量非结构化数据处理、拥有自主知识产权的高端存储系统。它可以提供TB/s 级的高速带宽和EB 级的海量存储空间,能够满足飞机汽车船舶设计、生物基因研究、材料科学研究、天气预报、地震监测、环境监测分析、能源勘探、电子商务、网络游戏、社交与视频分享网站建设、动漫渲染、视频编辑处理等领域中对于存储容量和I/O 性能要求极高的应用,可广泛应用于政府、教育、科研、制造、企业、医疗、石油、广电、互联网等行业。 ParaStor200并行存储系统先进的架构使其具备超强的横向扩展能力,只需要简单地增加数据控制器,即可获得更大的存储容量和更多的数据通道,从而获得更高的系统聚合带宽和I/O 性能。随着数据控制器的增加,所有物理资源(CPU 、缓存、网络带宽和磁盘读写带宽)自动实现负载均衡,满足成千上万个客户端的数据并发存取需求。此外,ParaStor200高可用、全冗余的架构设计也使其具有及时的系统预警、准确的故障定位和优越的容错恢复能力,可以保障业务系统7×24小时的持续可用,实现海量存储系统最高级别的可靠性。 曙光并行存储系统 ParaStor200 特点: ● EB 级单一命名空间 ● 支持高并发I/O ● TByte/s 级聚合带宽 ● 性能随容量的增加呈 线性增长 ● 全冗余架构,无单点 故障 ● 自动化故障恢复

三层电梯控制设计

综合实训设计报告信息工程与自动化学院自动化系 设计题目:基于PLC的三层电梯控制系统设计 姓名: 学号: 专业:测控121班 指导老师: 二0一五年七月

引言 随着城市建设的不断发展,城市迅速的崛起,高层建筑的不断增多,电梯作为高层建筑中垂直运行的交通工具已与人们的日常生活密不可分。它是采用电力拖动方式,将载有乘客或货物的轿厢,运行于垂直方向的两根刚性导轨之间,运送乘客和货物的固定式提升设备。所以,电梯是为高层建筑运输服务的设备,它具有运送速度快、安全可靠、操作简便的优点。但传统的电梯控制系统主要采用继电器--接触器进行控制,其缺点是触点多,故障率高、可靠性差、维修工作量大等,而采用 PLC组成的控制系统可以很好地解决上述问题,使电梯运行更加安全、方便、舒适。 目前电梯的控制普遍采用了两种方式,一是采用微机作为信号控制单元,完成电梯信号的采集、运行状态和功能的设定,实现电梯的自动调度和集选运行功能,拖动控制则由变频器来完成;第二种控制方式采用可编程控制器取代微机实现信号控制。从控制方式和性能上来说,这两种方法并没有太大的区别,但PLC 可靠性高,程序设计方便灵活。 1.电梯的PLC控制方式 PLC是一种用于工业自动给控制的专用计算机。实质上属于计算机控制方式。PLC与普通微机一样,能通用或专用CPU作为字处理器,实现通道(字)的运算和数据存储,另外还有位处理器(布尔处理器),进行点(位)运算与控制。PLC控制一般具有可靠性高,易操作、维修和编程简单、灵活性强等特点。 1.1 PLC控制系统的可靠性 对可维修的产品,可靠性包括产品的有效性和可维修性。PLC不需要大量的活动元件和接线电子元件,它的接线大大减少,与此同时,系统的维修简单,维修时间短。PLC采用了一系列可靠性设计的方法进行设计,例如,冗余设计,断电保护,故障诊断和信息保护及恢复等,提高了MTBF,降低了MTTR,使可靠性提高。PLC是为工业生产过程控制而专门设计的控制装置,它具有比通用计算机控制更简单的编程语言,而为工业恶劣操作环境设计的硬件使可靠性大大提高。在PLC的硬件方面,采用了一系列提高可靠性的措施。例如,采用可靠性的元件,采用先进的工艺制造流水线制造,对于干扰的屏蔽、隔离和滤波等,对电源的断

EMCVPLEX安装实施方案

VPLEX-LOCAL 的硬件配置信息 此次安装的VPLEX-Local有单台台VPLEX组成, VPLEX的硬件配置如下: 1) 1 个 Engine 2) 2 个 Director ,每个 Engine 由两个 Director 组成 3)8 个 8Gb 前端 FC端口,每 个 Director 包含一块 前端 FC卡,共 4 个 8Gb 的前端 FC端 口,由 于交换机端口限制,本次使 用 4 个前端 FC端口(每个 Directo 上两个)。 4)8 个 8Gb 后端 FC端口,每 个 Director 包含一块 后端 FC卡,共 4 个 8Gb 的后端 FC端 口。本 次使用4 个前端 FC 端口(每个Directo 上两个) 5) 4 个可用的 8Gb 的 VPLEX-Local级联 FC端口,每个 Director 包含一块 VPLEX-Local 级联 FC卡,共 4 个 8Gb 的级联 FC端口,但是只有两个可用 VPLEX-LOCAL 的硬件介绍 单台 VPLEX的硬件布局 VPLEX 的 ENGINE 的硬件布局

VPLEX-LOCAL 的级联端口连接VPLEX-LOCAL 拓扑结构

VPLEX-LOCAL 的 FABRIC 拓扑图 Host Host Fabric Switch Fabric Switch Management server Engine power supply VNX VPLEX VNX VPLEX-LOCAL 后端存储系统的配置 HOST_PRD HOST_BAK VPLEX_0550 VPLEX_0549 VMAX_3358 V p l e x M e t a v o l u m e ( >= 78GB, using 144GB ) Host data volume

曙光ParaStor300S并行分布式云存储系统产品技术白皮书V1.6

信息技术的发展带来数据的爆炸性增长,毋庸置疑,我们已经全面跨入大数据时代,PB 规模的非结构化数据越来越常见,如何有效地管理这些数据,并进一步发掘数据价值,已成为IT 管理者所必须重视的问题。同时大数据4V 特性也对存储系统的大容量、高性能、易扩展、易用性等提出了更高要求。传统的SAN 和NAS 存储架构已经难以满足海量数据的密集型I/O 并发访问需求。 ParaStor300S 并行分布式云存储系统,是在曙光公司近10年来海量数据存储与处理的基础之上,针对大数据时代的特点,全新设计并全面优化的高端存储系统。 产品定位 集群文件/对象统一存储 基于曙光完全自主研发的并行分布式软件ParaStor 构建的集群存储系统,对外统一提供多种存储协议: 提供文件存储服务,包括Linux POSIX 、NFS 、SMB 、FTP 等,满足Windows 、Linux 、Unix 等异构平台的不同访问需求; 提供对象存储服务,兼容Amazon S3接口,满足云生态的应用需求。 特别地,同一集群可以同时提供文件/对象接口,访问方式更为灵活。 Scale-Out 横向扩展的并行架构 基于服务器构建的并行分布式存储系统,对外提供单一的命名空间。支持3~4096节点的弹性无缝扩展,单一存储空间容量可扩展至EB 级。 具备超强的横向扩展能力,只需简单地增加存储节点,即可获得更大的存储容量和更多的数据通道,从而获得更高的系统聚合带宽和I/O 性能。 面向海量非结构化数据存储场景 ParaStor300S 并行分布式云存储系统适用于存在数据共享需求的多种应用领域,如高性能计算、生物信息、气象预报、环境监测分析、地震监测、能源勘探、卫星遥感、视频监控、媒资管理、视频编辑处理等,可以广泛应用于政府、教育、科研、医疗、石油、广电、企业等行业。 ParaStor300S 并行分布式云存储系统 新一代自主研发的海量非结构化数据存储 EB 级共享空间 ? 3~4096节点 ? 单一命名空间 ? 按需分配,在线扩容 多种访问协议 ? Linux POSIX ? NFS/CIFS/FTP ? S3 多款硬件平台 ? 2U12、4U24、4U36 ? SATA/SAS/SSD 混插 智能存储策略 ? SSD 读缓存加速 ? 细粒度配额管理 多重数据保护 ? 2~4副本 ? N+M:b 纠删码 ? 快照 ? 全冗余设计,无单点故障 简易运维管理 ? 多套集群统一管理 ? 资源、状态实时监控 ? 邮件、短信、SNMP 告警

emcvplex安装实施方案

E M C V P L E X安装实施方案-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

VPLEX-LOCAL的硬件配置信息 此次安装的VPLEX-Local有单台台VPLEX组成,VPLEX的硬件配置如下: 1)1个Engine 2)2个Director,每个Engine由两个Director组成 3)8个8Gb前端FC端口,每个Director包含一块前端FC卡,共4个8Gb的前端FC端口, 由于交换机端口限制,本次使用4个前端FC端口(每个Directo上两个)。 4)8个8Gb后端FC端口,每个Director包含一块后端FC卡,共4个8Gb的后端FC端口。 本次使用4个前端FC端口(每个Directo上两个) 5)4个可用的8Gb的VPLEX-Local级联FC端口,每个Director包含一块VPLEX-Local级联FC 卡,共4个8Gb的级联FC端口,但是只有两个可用 VPLEX-LOCAL的硬件介绍 单台VPLEX的硬件布局 VPLEX的ENGINE的硬件布局

拓扑结构 VPLEX-LOCAL的FABRIC拓扑图

Fabric Switch Engine power supply Management server Fabric Switch VNX VNX VPLEX Host Host VPLEX-LOCAL 后端存储系统的配置 META VOLUME 的配置 请注意每台VNX 必须使用两个RG ,每个RG 各提供两个80G LUN 。Mirror 和backup 的meta volume LUN 需分开RG 存放。不推荐mirror 和 backup 放在同一个RG 里。

plc三层电梯控制设计样本

1. 三层电梯PLC控制系统设计 1.1实训目 本次设计是一种电梯PLC控制系统。电梯是垂直方向运送设备,是高层建筑中不可缺少交通运送设备。它靠电力,拖动一种可以载人或物轿厢,在建筑井道导轨上做垂直升降运动,在人们生活中起着举足轻重作用。而控制电梯运营PLC 系统也规定越来越高,规定达到电梯运营“稳、准、快”运营目。该系统重要由PLC、逻辑控制电路构成。其中涉及交流异步电动机、继电器、接触器、行程开关、按钮、发光批示器和变频器构成为一体控制系统。 整个系统通过PLC、逻辑控制电路对电梯升降;加、减速;平层;起动、制动控制。其构造简朴、运营效率高、平层精度高、易于理解与掌握。 1.2 实训容和控制规定 工作过程:电梯由安装在各楼层厅门口呼喊按钮进行操纵,其操纵容为呼喊电梯、运营方向和停靠楼层。每层楼设有呼喊按钮(一层U1,二层U2,D2,三层D3),批示灯L1批示电梯在一层与二层之间运营、L2批示在二层与三层之间运营、L3批示在三层与二层之间运营、SQ1~SQ3为到位行程开关。电梯上升途中只响应上升呼喊,下降途中只响应下降呼喊,任何反方向呼喊均无效。输出端用输出批示灯状态来模仿输出设备状态。 三层楼电梯自动控制规定如下: (1)当电梯停于1F或2F时,如果按3F按钮呼喊,则电梯上升到3F,由行程开关SQ3停止;

(2)当电梯停于3F或2F时,如果按1F按钮呼喊,则电梯下降到1F,由行程开关LS1停止; (3)当电梯停于1F,如果按2F按钮呼喊,则电梯上升到2F,由行程开关LS2停止; (4)当电梯停于3F,如果按2F按钮呼喊,则电梯下降到2F,由行程开关LS2停止; (5)当电梯停于2F,而2F、3F按钮均有人呼喊时,电梯先上升到2F,由LS2控制暂停2S后,继续上升到3F,由LS3停止; (6)当电梯停于3F,而1F、2F按钮均有人呼喊时,电梯下降到2F,由LS2控制暂停2S后,继续下降到1F,由LS1停止; (7)在电梯上升途中,任何反方向下降按钮呼喊均无效; (8)在电梯下降途中,任何反方向上升按钮呼喊均无效; (9)每层楼之间到达时间应在10s完毕,否则电梯停机; (10)电梯起始位置和程序启动、停止运营自行设计。 1.3电梯构造

曙光DS800-G25双活数据中心解决方案介绍V1.1

曙光DS800-G25 双活数据中心解决方案介绍 曙光信息产业股份有限公司

1解决方案概述 在信息社会里,数据的重要性已经毋容置疑,作为数据载体的存储阵列,其可靠性更是备受关注。尤其在一些关键应用中,不仅需要单台存储阵列自身保持高可靠性,往往还需要二台存储阵列组成高可靠的系统。一旦其中一台存储阵列发生故障,另一台可以无缝接管业务。这种两台存储都处于运行状态,互为冗余,可相互接管的应用模式一般称之为双活存储。 由于技术上的限制,传统的双活存储方案无法由存储阵列自身直接实现,更多的是通过在服务器上增加卷镜像软件,或者通过增加额外的存储虚拟化引擎实现。通过服务器上的卷镜像软件实现的双活存储,实施复杂,对应用业务影响大,而且软件购买成本较高。通过存储虚拟化引擎实现的双活存储,虽然实施难度有一定降低,但存储虚拟化引擎自身会成为性能、可靠性的瓶颈,而且存在兼容性的限制,初次购买和维护成本也不低。 曙光DS800-G25双活数据中心方案采用创新技术,可以不需要引入任何第三方软硬件,直接通过两台DS800-G25存储阵列实现两台存储的双活工作,互为冗余。当其中一台存储发生故障时,可由另一台存储实时接管业务,实现RPO、RTO为0。这是一种简单、高效的新型双活存储技术。

2产品解决方案 曙光DS800-G25双活数据中心方案由两台存储阵列组成,分别对应存储引擎A、引擎B。存储引擎A和B上的卷可配置为双活镜像对,中间通过万兆以太网链路进行高速数据同步,数据完全一致。由于采用虚拟卷技术,双活镜像对中的两个卷对外形成一个虚拟卷。对服务器而言,双活镜像对就是可以通过多条路径访问的同一个数据卷,服务器可以同时对双活镜像对中两个卷进行读写访问。组成双活镜像系统的两台存储互为冗余,当其中一台存储阵列发生故障时,可由另一台存储阵列直接接管业务。服务器访问双活存储系统可根据实际需要,选用FC、iSCSI方式,服务器访问存储的SAN网络与数据同步的万兆网络相互独立,互不干扰。 组网说明: 1)服务器部署为双机或集群模式,保证服务器层的高可用, 2)存储与服务器之间的连接可以采用FC、iSCSI链路,建议部署交换机进行组网; 3)存储之间的镜像通道采用10GbE链路,每个控制器上配置10GbE IO接口卡,采用光纤交叉直

emcvplex安装实施方案

VPLEX-LOCAL的硬件配置信息 此次安装的VPLEX-Local有单台台VPLEX组成,VPLEX的硬件配置如下: 1)1个Engine 2)2个Director,每个Engine由两个Director组成 3)8个8Gb前端FC端口,每个Director包含一块前端FC卡,共4个8Gb的前端FC端口, 由于交换机端口限制,本次使用4个前端FC端口(每个Directo上两个)。 4)8个8Gb后端FC端口,每个Director包含一块后端FC卡,共4个8Gb的后端FC端口。 本次使用4个前端FC端口(每个Directo上两个) 5)4个可用的8Gb的VPLEX-Local级联FC端口,每个Director包含一块VPLEX-Local级联 FC卡,共4个8Gb的级联FC端口,但是只有两个可用 VPLEX-LOCAL的硬件介绍 单台VPLEX的硬件布局 VPLEX的ENGINE的硬件布局 VPLEX-LOCAL的级联端口连接

PLEX-LOCAL 拓扑结构 VPLEX-LOCAL 的FABRIC 拓扑图 Fabric Switch Engine power supply Management server Fabric Switch VNX VNX VPLEX Host Host VPLEX-LOCAL 后端存储系统的配置

VMAX_3358Vplex Meta volume ( >= 78GB, using 144GB )Vplex Meta volume backup ( >=78GB, using 144GB )VPLEX logging volume ( >=10GB, using 72GB ) Host data volume VMAX_0251 HOST_BAK HOST_PRD VPLEX_0550VPLEX_0549 Host data volume Host data volume META VOLUME 的配置 请注意每台VNX 必须使用两个RG ,每个RG 各提供两个 80G LUN 。Mirror 和backup 的meta volume LUN 需分开RG 存放。不推荐mirror 和 backup 放在同一个 RG 里。Cluster Meta Volume Storage RAID Group LUN ID RAID Size VPLEX_01Meta_Mirror_1 VNX5400RG1800RAID1080GB Meta_Bcakup_1 VNX5400RG1801RAID1080GB Meta_Mirror_2 VNX5400RG0800RAID1080GB Meta_Backup_2VNX5400RG0801 RAID1080GB LOGGING VOLUME 的配置 Cluster Log Volume Storage RAID Group LUN ID RAID Size VPLEX_01Loggin_Mirror_1 VNX5400802RAID1010GB Mirror 2VNX5400802RAID1010GB VPLEX-LOCAL 安装配置流程

曙光DS800-G25双活数据中心解决方案介绍

曙光DS800-G25 双活数据中心解决案介绍 曙光信息产业股份有限公司

1解决案概述 在信息社会里,数据的重要性已经毋容置疑,作为数据载体的存储阵列,其可靠性更是备受关注。尤其在一些关键应用中,不仅需要单台存储阵列自身保持高可靠性,往往还需要二台存储阵列组成高可靠的系统。一旦其中一台存储阵列发生故障,另一台可以无缝接管业务。这种两台存储都处于运行状态,互为冗余,可相互接管的应用模式一般称之为双活存储。 由于技术上的限制,传统的双活存储案无法由存储阵列自身直接实现,更多的是通过在服务器上增加卷镜像软件,或者通过增加额外的存储虚拟化引擎实现。通过服务器上的卷镜像软件实现的双活存储,实施复杂,对应用业务影响大,而且软件购买成本较高。通过存储虚拟化引擎实现的双活存储,虽然实施难度有一定降低,但存储虚拟化引擎自身会成为性能、可靠性的瓶颈,而且存在兼容性的限制,初次购买和维护成本也不低。 曙光DS800-G25双活数据中心案采用创新技术,可以不需要引入任第三软硬件,直接通过两台DS800-G25存储阵列实现两台存储的双活工作,互为冗余。当其中一台存储发生故障时,可由另一台存储实时接管业务,实现RPO、RTO为0。这是一种简单、高效的新型双活存储技术。

2产品解决案 曙光DS800-G25双活数据中心案由两台存储阵列组成,分别对应存储引擎A、引擎B。存储引擎A 和B上的卷可配置为双活镜像对,中间通过万兆以太网链路进行高速数据同步,数据完全一致。由于采用虚拟卷技术,双活镜像对中的两个卷对外形成一个虚拟卷。对服务器而言,双活镜像对就是可以通过多条路径访问的同一个数据卷,服务器可以同时对双活镜像对中两个卷进行读写访问。组成双活镜像系统的两台存储互为冗余,当其中一台存储阵列发生故障时,可由另一台存储阵列直接接管业务。服务器访问双活存储系统可根据实际需要,选用FC、iSCSI式,服务器访问存储的SAN网络与数据同步的万兆网络相互独立,互不干扰。 组网说明: 1)服务器部署为双机或集群模式,保证服务器层的高可用, 2)存储与服务器之间的连接可以采用FC、iSCSI链路,建议部署交换机进行组网; 3)存储之间的镜像通道采用10GbE链路,每个控制器上配置10GbE IO接口卡,采用光纤交叉直连的式,共需要4根直连光纤; 4)组网拓扑

EMC私有云存储平台方案

EMC私有云存储平台方案 目录 一、前言 (1) 二、VPlex产品及功能概述 (3) 三、方案设计原则 (6) 3.1、数据的安全性和系统的高可靠性 (6) 3.2、系统的高性能 (6) 3.3、系统的可扩展性/可扩充性 (7) 3.4、系统的多平台支撑能力 (7) 3.5、灵活性和系统管理的简单性 (7) 3.6、存储的虚拟化 (8) 四、存储方案设计 (8) 1:存储系统 (8) 2:存储虚拟化系统 (9) 3:系统参考拓扑 (9) 4:建议配置 (11) 5:Vmware EMC优势 –超过70个集成点 (11) 6:方案优势 (15) 五、相关产品介绍 (15) EMC Vplex系列 (15) 一、前言 信息是各行业的命脉, 近十年来信息存储基础设施的建设在各行业取得长足的进步。从内置存储转向外置RAID存储,从多台服务器共享一台外置RAID阵列,再到更多台服务器通过SAN共享更大型存储服务器。存储服务器容量不断扩大的同时,其功能也不断增强,从提供硬件级RAID保护到独立于服务器的跨磁盘阵列的数据镜像,存储服务器逐渐从服务器外设的角色脱离出来,成为单独的“存储层”,为数

据中心的服务器提供统一的数据存储,保护和共享服务。 多数据中心建设方案可以预防单数据中心的风险,但面对多数据中心建设的巨额投资,如何同时利用多数据中心就成为IT决策者的首要问题。同时利用多数据中心就必需实现生产数据跨中心的传输和共享,总所周知,服务器性能的瓶颈主要在IO部分,数据在不同中心之间的传输和共享会造成IO延时,进而影响数据中心的总体性能。 同时,各家厂商不断推出新技术,新产品,容量不断扩展,性能不断提高,功能越来越丰富,但由于不同存储厂商的技术实现不尽相同,用户需要采用不同的管理界面来使用不同厂商的存储资源。这样,也给用户带来不小的问题,首先是无法采用统一的界面来让服务器使用不同厂商的存储服务器,数据在不同厂商存储服务器之间的迁移也会造成业务中断。 客户要求不断提高服务级别,同时希望减少资金成本和运营成本。为满足这些不断变化的要求,数据中心在经历持续的技术转变。近年来,服务器和存储资源整合已被证明是降低成本、提高利用率和提供更大灵活性的有效手段。难题在于如何做到既利用新技术,同时又不损害为最终用户提供的服务级别。 人们往往用“云”这一类比来表述流畅、动态的 IT 基础架构这一构想。云的一个定义是:将向用户提供的 IT 服务与物理基础架构分离开来。云的一种具体实现是:服务器虚拟化,并且环境中所有服务器上的服务都得到优化,这些服务连接到适当的存储,可从 IT 基础架构中的任何位置访问。此外,“云”这一类比描述了这样一种环境:服务可根据需求变化而无缝地移置。图 1 显示了一个私有云基础架构,其中用户与由 IT 提供的服务是松耦合的,而且服务、计算和存储之间的关系是动态、灵活的。

三层电梯PLC控制系统设计报告

PLC课程设计报告题目:三层电梯PLC控制系统设计 院别: 姓名: 学号: 指导教师: 日期:

本设计主要利用欧姆龙系统完成。主要介绍了3层电梯的PLC的特点、PLC的功能、发展趋势、PLC控制电梯的软、硬件设计。在示意图、接线图、电梯的控制梯形图、指令表、和程序流程图的基础之上提出了PLC的编程方法。 可编程控制系统(Programmable Logic Controller)是一种专门为在工业环境下应用而设计的数字运算操作电子系统。它采用一种可编程的存储器,通过数字式或模拟式的输入输出来控制各种类型的机械设备或生产过程。由于它可通过软件来改变控制过程,而且具有体积小、组装维护方便、编程简单、可靠性高、抗干扰能力强等特点,已广泛应用于工业自动化控制控制的各个领域,大大推进了机电一体化的进程。 电梯是高层建筑不可缺少的运输工具,用于垂直运送乘客和货物,传统的电梯控制系统主要采用继电器--接触器进行控制,其缺点是触点多,故障率高、可靠性差、维修工作量大等,而采用 PLC组成的控制系统可以很好地解决上述问题,使电梯运行更加安全、方便、舒适。目前PLC在电梯行业已得到广泛应用。在层数和控制功能较少的场合,采用PLC控制较为方便。

第一章三层楼电梯自动控制 (4) 一.电梯设计要求 (4) 二.电梯设计分析 (5) 1.分析被控对象 (5) 2.分配PLC的输入/输出端子 (5) 3.统计输入、输出点数并选择PLC型号 (5) 4.输入/输出端子接线图 (6) 5.运动形式分析 (6) 6.助记符 (11) 三.硬件配置设计 (15) 1. 电梯控制构成 (16) 2. 主电路 (16) 四.型号规格 (16)

EMC VPLEX-Hardware-Installation-Guide

Introduction This document describes the basic hardware setup tasks for a factory-racked EMC? VPLEX? cluster at a customer site. Steps are included for both VS1 and VS2 VPLEX hardware. Prerequisites 1. Verify that you have the following documents: ?EMC Best Practices Guide for AC Power Connections in Two-PDP Bays - Power requirements, including redundant power feeds on separate circuits (included in Open First box)?EMC AC Power Configuration Worksheet - Power zone identification (included in Open First box)?EMC 40U-C Cabinet Unpacking and Setup Guide - Instructions to unpack and secure the hardware in the data center (attached to cabinet)2. Note the approximate time that you moved the equipment into the data center. The equipment requires the time shown in the following table before you apply power, to prevent condensation on VPLEX components. 3.Confirm that the following customer-supplied cables are available: ?Enough fiber-optic cables to make all necessary I/O connections, each cable with enough additional length to allow for component serviceability and a minimum two-inch bend radius ?Ethernet cable, to connect the VPLEX management server to the network ?Two AC power cables from separate site power sources 4. Review the following information, available on EMC Powerlink ?: ?EMC VPLEX Site Preparation Guide , for electrical, mechanical, and cooling requirements ?EMC Simple Support Matrix , for support information on VPLEX integration into the customer’s storage environment ?Implementation and Planning Best Practices for EMC VPLEX Technical Notes ?EMC VPLEX with GeoSynchrony (version) Configuration Worksheet - Download for use during VPLEX setup Procedure 1.Remove the cable holder kit from the Open First box, and place it into the pouch on the inside of the cabinet’s rear door. 2. VS1 hardware only: a.At the front of the cabinet, remove each engine’s bezel, and confirm that the components shown in the following figure are secure: b.At the rear of the cabinet, push in on each director and the I/O module (IOM) carrier. If a component is not fully seated, loosen the orange screws, push the component firmly in, and retighten the screws. Verify that each IOM’s latch button is in: 3.VS2 hardware only : a.At the front of the cabinet, remove the 2U (3.5 inch) front panel approximately nine inches below the VPLEX nameplate, to expose the laptop service tray. Then remove and discard the two Phillips screws (used only for shipping) that secure the tray to the NEMA rails, and snap the front panel back into place.b.Remove each engine’s front panel. Then check the latches on all power supplies, and directors, and confirm that the components are secure. When finished, replace the front panel(s). c.At the rear, check the latches on all modules, and confirm that the 4. VS1 and VS2 - Pull gently on each SFP on the I/O modules and (if present) Fibre Channel switches, to confirm that the SFPs are secure. 5. Verify each cable connection by pressing the cable connector into its port or receptacle. Check the AC power cable connections closely, and confirm that any wire cable bales are positioned as shown in the following figure. 13.Verify the LED status on each SPS: NOTE: The On-Battery LED stays on while the SPS units fully charge (which could be a few minutes or a few hours). From transit/storage environment Time required To nominal computer room environment Above 75o F (24o C) 4 hours 68o F to 72o F (20o C to 22o C) 68o F to 72o F (20o C to 22o C)None 40o F to 65o F (4o C to 18o C) 4 hours Below 40o F (4o C)8 hours Damp/high humidity 16 hours Air conditioned, low humidity

物理结构设计

物理结构设计: --创建卡类型表 create table会员卡(类型编号int primary key, 类型名char(10), 有效天数char(10), 价格money ); --创建机械表 create table机械(机械编号int primary key, 机械名称char(10), 使用介绍ntext ); --创建管理员表 create table管理员(管理员编号int primary key, 姓名char(10), 登录密码nvarchar(10),

); --创建教练表 create table教练(教练编号int primary key, 姓名char(10), 性别char(4), 年龄char(3), 电话号码nvarchar(20), 登录密码nvarchar(10), Constraint c1 check(性别in('男','女')) ); --创建课程表 create table课程(课程号int primary key, 课程名char(10), 课程简介ntext,,

机械编号int, constraint s1 foreign key(机械编号)references机械(机械编号) ); --创建活动表 create table活动(活动编号int primary key, 活动主题char(20), 活动内容ntext, 活动时间timestamp, 活动地点char(20), 组织者char(10) ); --创建分店表 create table分店(分店编号int primary key, 分店名称char(20),

曙光公司网络安全产品

曙光网络安全产品系列

随着互联网应用的快速发展,骨干网带宽呈爆炸式增长,并且安全问题日益严重,针对网络流量进行异常流量分析已经非常必要。曙光公司推出的FlowFirm 产品能够实现对IP 骨干网、城域网以及云计算中心的数据接入、分析和控制。FlowFirm 硬件平台采用标准的ATCA 架构,易于扩展和移植;核心处理模块采用曙光自主研发的高速网络处理芯片NetFirm 和Netlogic 多核处理器,提供针对大流量的数据接入、数据采集、协议分析、流量过滤、流量采样和负载均衡等综合功能。

整体应用方案

智能密钥Nikey180天机加密芯片Tjcard 安全认证服务器 安全认证服务器配置了曙光天机加密芯片和NiKey 智能钥匙及安全应用软件,有效地提高服务器的安全等级,为用户提供符合国密办标准的数据安全加密、身份认证、CA 认证/签名、单机/远程登录等一体化安全解决方案。可用于云计算中心、电子政务、电子商务领域构建PKI 体系及安全中心。 ● 身份认证:曙光自主研发CA 、签名系统,可对关键敏感数据进行签名与验证,保证数据的真实性、 完整性、合法性,实现身份安全认证等功能。 ● 文件加密:支持文件加密存储,防止存储设备因丢失、维修等情况下数据泄密。 ● 单机登录:配合Nikey ,实现双因子认证功能,保证单机登录系统安全 ● SSH 登录:通过Nikey 强制认证机制,确保系统SSH 登录管理安全。 智能密钥Nikey 销售许可证密码销售许可证

完全自主可控的网络安全产品 采用龙芯3号处理器,实现了从软件到硬件、从芯片到系统完全自主知识产权,消除了采用国外CPU 处理器的安全隐患,是政府、军队、航天、国防等战略部门的的最佳选择。 安全产品资质 中国国家信息安全 产品认证证书 军用信息安全产品 认证证书

三层架构CS模式程序设计实例

三层架构C/S程序设计实例(C#描述) 1.三层之间的关系: 三层是指:界面显示层(UI),业务逻辑层(Business),数据操作层(Data Access) 文字描述: Clients对UI进行操作,UI调用Business进行相应的运算和处理,Business通过Data Access 对Data Base进行操作。 优点: l 增加了代码的重用。Data Access可在多个项目中公用;Business可在同一项目的不同地方使用(如某个软件B/S和C/S部分可以共用一系列的Business组件)。 l 使得软件的分层更加明晰,便于开发和维护。美工人员可以很方便地设计UI设计,并在其中调用Business给出的接口,而程序开发人员则可以专注的进行代码的编写和功能的实现。 2.Data Access的具体实现: DataAgent类型中变量和方法的说明: private string m_strConnectionString; //连接字符串 private OleDbConnection m_objConnection; //数据库连接 public DataAgent(string strConnection) //构造方法,传入的参数为连接字符串 private void OpenDataBase() //打开数据库连接 private void #region CloseDataBase() //关闭数据库连接 public DataView GetDataView(string strSqlStat) //根据传入的连接字符串返回DataView 具体实现代码如下: public class DataAgent { private string m_strConnectionString; private OleDbConnection m_objConnection; #region DataAgend ///

/// Initial Function /// /// public DataAgent(string strConnection) { this.m_strConnectionString = strConnection; } #endregion #region OpenDataBase /// /// Open Database /// private void OpenDataBase() { try { this.m_objConnection = new OleDbConnection();

中科曙光系列

中科曙光机架式服务器 型号:I420-G10 处理器:支持Intel Xeon E5-2400系列多核处理器,高速QPI 互连总线(8.0/7.2/6.4 GT/s,依CPU 型号不同而不同),大容量三级缓存(10/15/20 MB,依CPU 型号不同而不同) 芯片组:Intel C602 芯片组 内存: 8 根内存插槽 支持DDR3 1600/1333/1066 ECC 内存(工作频率依CPU 和内存配置不同而不同) 最大可扩展至256GB 内存 网络控制器:集成Intel 双千兆网卡,支持网络唤醒,网络冗余,负载均衡等网络特性 PCI I/O 扩展槽: 2 根PCI-E 3.0 ×16 2 根PCI-E 3.0 ×8 1 个PCI 32bit 插槽 注意:一颗CPU 时 1 根PCI-E 3.0 x16 1 根PCI-E 3.0 x8 1 个PCI 32bit 插槽 硬盘: 可选Upgrade ROM5 支持SAS 硬盘,支持RAID 0、1、10 可选八口SAS RAID 卡,支持RAID 0/1/5/6 系统最大支持12 个热插拔3.5/2.5 寸SAS/SATA 硬盘 其他端口: 2 个RJ-45 网络接口,位于机箱后部 1 个RJ-45 管理接口,位于机箱后部 12 盘位机型:5 个USB 2.0 接口,4 个位于机箱后部、1 个位于机箱前部 8 盘位机型:7 个USB 2.0 接口,4 个位于机箱后部、3 个位于机箱前部 1 个VGA 接口,位于机箱后部 1 个串口,位于机箱后部 电源:可配置单电源,1+1 冗余电源 散热:机箱中部3 个系统风扇 显卡:集成显示控制器,16MB 显存 支持操作系: Windows Server 2008 Enterprise Edition R2 SP1 64bit

逻辑原理设计

基于单片机在非接触电梯按纽中智能识别逻辑设计应用 任相根 目前,电梯的使用必须用手指直接按压按纽开关,在公共场所,如医院、地铁、写字楼等人员密集地,频繁使用电梯按纽十分不卫生,容易传染病毒,近期新冠病毒、流感等传染性病毒肆虐之时,我们将原电梯按纽,改进成实用新型电梯非接触按纽系统,具有创新意义。非接触按纽包括电梯的“选层”按纽、“楼道外呼”按纽、“开关”门按纽,这些电梯按纽在使用中容易受到不正确操作、人员拥挤误触碰产生错误操纵,为解决这个问题,我们探索应用单片机达到防误触碰智能识别功能。下面论述运用单片机在非接触电梯按纽智能操作中逻辑设计思路。 (一)非接触按纽防误触碰智能识别技术功能 1)非接触按纽正确操作标准;当手正确操作按纽时,只要手指一点(时间2s之内),指头离按纽面18mm——20mm即可。 2)当操作按纽不正确时,防误触碰智系统识别为不正确操作,此时,系统不向电梯控制装置发送选层信号(即操作无效)。如较长时间不正确操作按纽开关,系统马上警示音提示;请勿不正确操作,手指离开后,系统识别为不正常操作,选层信号不输出,示为无操作,恢复原状。 3)当人员无意将身体贴近电梯按纽面板,误触碰按纽开关后,系统即刻发出“滴、滴、滴”提示音,告示人们勿贴近按纽面板,人员离开,而后按纽恢复原状(不留误触碰痕迹)。

4)当手指操作按纽时其他手指误触碰面板,智能识别其为“误触”,智能系统判定其不正常操作不送选层信号输出。保证正常手指操作输出。 (二)防误触碰智能识别逻辑思路设计。 我们将非接触按纽产生的操作信号以脉宽信号形式输送给单片机emp78p153识别,构成防误触碰控制电路。设计逻辑思路;根据人们正常操作按纽的习惯,在时间上进行细化、量化,我们将非接触按纽操作按下产生的脉冲时间分为以下几段; 1)设计在2s 之内为一段的正常操作时段。当正常操作产生脉冲在2s 之内,设计单片机检测到的最小为1/4秒(小于1/4秒不识别)最大2s 脉宽为正常按纽操作,单片机emp78p153控制输出为“+”脉冲,允许按纽产生的操作信号脉宽输出,此为正常操作按纽。 2)设计大于2s (不含2s)到12s(不含12s)时段脉宽为不正常操作时段。当人员贴近按纽面板一般按纽脉冲大于2s(不含2s)到12s (不含12s)时,单片机emp78p153识别并控制输出端;一路输出“-”不允许按纽产生的操作脉冲输出(不正常操作);另一路输出“+”脉冲使报警“滴”“滴”“滴”声响,提醒人们勿贴近按纽面板。 3)设计同时按下按纽操纵逻辑识别。当手指操作按纽时其他手指误触碰其他按纽面板,单片机emp78p153根据几个按纽操作产生脉宽时速前后自动选择最前脉宽为正常操作,其他脉宽为不正常操作,不输出操作,为无效操作,防止了误操作。 通过检测非接触按纽操作输出的脉冲宽度,从时段、量化鉴测其

相关文档
最新文档