液态金属结晶原理形核生长

南昌航空大学 NANCHANG HANGKONG UNIVERSITY
8 液态金属的结晶--形核,生长

除少数合金在超高速冷却条件下(106~108K/s)凝固 为非晶态外,几乎所有液态金属及合金在通常冷却条 件下都转变为晶体,即其液固转变过程为结晶过程 结晶过程包括 形核(nucleation)+长大(growth)

两个过程重叠交织
形核
长大
形成多晶体

结晶热力学条件
自然界中物质总是力图由不稳定状态向稳定状态转变 状态稳定性由自由能高低来决定,自由能越高,状态 越不稳定;自由能越低,状态越稳定 物质总是自发地由自由能较高状态向自由能较低状态 转变。只有自由能降低过程才能自发进行

液固相变驱动力
G = H - TS = U + PV - TS
金属结晶可认为恒压进行
?G ( )P = ?S ?T
由于熵值S为正数,故自由能随温度升高而下降
?G ( )P = ?S ?T
S 液 > S固
液相原子排列混乱程度比固相大, 熵值大,温度变化率大

(1)T>Tm时
GL液相处于自由能更低稳定状态 结晶不可能进行 (2) TGL>GS
结晶才可能自发进行 两相体积自由能差值ΔGV构成相变(结晶)驱动力 (3) T=Tm时,GL=GS,固液两相处于平衡状态。Tm即为 纯金属平衡结晶温度(熔点)

过冷度定义为:ΔT = Tm - T 凝固发生的必要条件

ΔT=5K
ΔT=62K
ΔT=121K

相变驱动力的计算
ΔGV = GS ? GL GS = H s ? T ? S s GL = H L ? T ? S L
ΔGV = ( H s ? H L ) ? T ( S s ? S L ) = ΔH - TΔS
ΔH,ΔS为焓变和熵变,在熔点处近似不随温度变化
ΔGV (Tm ) = L ? Tm ΔS = 0
L ΔS = Tm
L—结晶潜热

相变驱动力的计算
ΔGV = ΔH - TΔS
L
L Tm
? T ? L ΔT ΔGV = L - T = L? 1- ? =L ? ? Tm Tm ? Tm ?
对于给定金属,L与Tm为定值,所以ΔGV仅与ΔT有关 ΔT越大,ΔGV也就越大,结晶驱动力也就越大

在相变驱动力条件下,结晶还需克服两种能量障碍: ?热力学障碍(如界面自由能),由界面处原子所产 生,直接影响体系自由能大小; ?动力学能障(如扩散激活能),由金属原子穿越界 面过程所引起,大小与相变驱动力无关,取决于界面 结构和性质 通过能量起伏来实现

形核方式
?均质生核 形核前液相金属或合金中无外来固相质点而从液相自 身发生形核的过程,所以也称“自发形核” 特点:完全依靠液态金属中的晶胚形核,液相中各 区域出现新相晶核的几率均相同

实际生产中均质形核不太可能,即使区域精炼条件 下,1cm3液相中也有约106个立方体微小杂质颗粒 ?非均质生核 在不均匀熔体中依靠外来杂质或型壁界面提供的衬 底进行生核,亦称“异质形核”或“非自发形核”

David Turnbull (1915–2007)
2005年韩国济州岛 RQ12

均质生核
ΔG = VΔGV + Aσ LC
体积自由 界面能 能降低 升高
假定球形晶胚
ΔG = 4 3 πr ΔGV + 4πr 2σ LC 3
由于两部分竞争,体系自由能ΔG随r先增加,后降低

临界形核半径
dΔG =0 dr
4 3 ΔG = πr ΔGV + 4πr 2σ LC 3
2σ LC T0 r = L ΔT
*
r < r ? 晶胚消失 r > r ? 晶胚稳定长大,形成晶核
液体中存在“结构起伏”的 原子集团,其平均尺寸随温 度降低(过冷度增加)而增大

临界形核功
4 3 ΔG = πr ΔGV + 4πr 2σ LC 3
2σ LC T0 r = LΔT
*
3 2 T 16 πσ 1 1 ΔG * = ( 2 LC 2 0 ) = 4πr *2σ LC 3 3 L ΔT
1 * ΔG = A σ LC 3
*

临界形核功
1 * ΔG = A σ LC 3
*
体积自由能只能抵消表面自由 能的2/3,剩余1/3要靠临界形 核功来完成,它是均质形核所 必须克服的能量障碍。 临界形核功由熔体中的“能量起伏”提供。 因此,过冷熔体中形成的晶核是“结构起伏”及“能 量起伏”的共同产物

临界过冷度 结构起伏的原子集 团与临界形核半径 竞争结果
2σ LC T0 r = LΔT
*
两条曲线的交点所对应的过冷度即为均质形核的 临界过冷度ΔT*,(约为0.18~0.20Tm)

均质生核条件: ?液体中存在结构起伏,以提供固相晶胚 ?生核导致体积自由能降低,界面自由能提高。为此, 晶胚需达到一定尺寸才能稳定存在(临界形核半径) ? 液体中存在能量起伏,以提供临界形核功 ? 为维持生核功,需要一定过冷度

液态金属成型原理作业

液态金属成型原理 一、简述普通金属材料特点及熔配工艺 1 普通金属材料的特点 1.1铸铁材料 铸铁是含碳量大于2.11%或者组织中具有共晶组织的铁碳合金,其成分范围为:2.4%~ 4.0%C,0.6%~3.0%Si,0.2%~1.2%Mn,0.1%~1.2%P,0.08%~0.15%S。依据碳在铸铁中的形态可将铸铁分为白口铸铁、灰口铸铁及麻口铸铁,其中灰口铸铁依据石墨形态的不同分为普通灰铸铁、蠕虫状石墨铸铁、球墨铸铁和可锻铸铁。 (1)白口铸铁 白口铸铁中的碳少量溶于铁素体,大部分以碳化物的形式存在于铸铁中,断口呈银白色。白口铸铁硬而脆,很难加工。我们可以利用它的硬度高和抗磨性好的特点制造一些高耐磨的零件和工具。 (2)灰铸铁 碳主要结晶成片状石墨存在于铸铁中,断口为暗灰色。灰口铸铁不能承受加工变形,但是却具有特别优良的铸造性能,同时切削加工性能也很好,低熔点、良好的流动性和填充性以及小的凝固收缩。 (3)麻口铸铁 麻口铸铁具有灰口和白口的混合组织,断口呈灰白交错。麻口铸铁不利于机械加工,也无特殊优异的使用性能。 (4)可锻铸铁 可锻铸铁是由白口铸铁经过石墨化退火后制成的。具有较高的强度、塑性和韧性,与球墨铸铁相比具有质量稳定、处理铁水简便以及易于组织流水线生产等优点,适用于形状复杂薄壁小件的大批量生产。 (5)球墨铸铁 球墨铸铁中的碳主要以球状石墨形态存在于铸铁中。球墨铸铁具有比灰口铸铁高得多的强度、塑性和韧性,同时仍保持着灰口铸铁所具有的耐磨、消震、易切削加工、容易铸造等一系列优异性能。 1.2 铸钢材料 铸钢具有良好的综合机械性能和物理化学性能,比铸铁具有更高的强度、塑性和良好的焊接性。按化学成分可以分为碳素钢和合金钢,其中碳素钢又分为低碳钢、中碳钢和高碳钢。(1)低碳钢 低碳钢的含碳量小于0.20%,它的塑性和韧性较高,但是强度较低,通常要经过渗碳后进行淬火、回火处理来提高强度和耐磨性。低碳钢的铸造性能差,熔点高,钢液流动性差,

金属凝固原理思考题

金属凝固原理思考题 1.表面张力、界面张力在凝固过程的作用和意义。 2.如何从液态金属的结构特点解释自发形核的机制。 3.从最大形核功德角度,解释0 /= ?dr G d的含义。 4.表面张力、界面张力在凝固过程和液态成形中的意义。 5.在曲率为零时,纯镍的平衡熔点喂1723K,假设镍的球形试样半径是1cm,1μm、μm,其 熔点温度各为多少已知△H=18058J/mol,V m =606cm3/mol,σ=255×107J/cm2 6.证明在相同的过冷度下均质形核时,球形晶核与立方形晶核哪种更易形成。 7.用平面图表示,为什么晶体长大时,快速长大的晶体平面会消失,而留下长的速度较慢的平面。 8.用相变热力学分析为何形核一定要在过冷的条件下进行。 9.证明在相同的过冷度下均质形核时,球形晶核与立方形晶核哪种更易形成。 8.试导出平衡凝固及液相完全混合条件下凝固时T*与f s 的关系。 9.Ge-Ga锭中含有Ga10ppm(质量分数),凝固速度R为8×10-3J/s,无对流现象,试绘出凝 固后锭长度上的成分分布图,给出最初成分、最后过渡区的长度。设D L =5×10-5cm2/s, k = 10.从溶质再分配的角度出发,解释合金铸件中宏观偏析形成的原因及其影响因素。 12.根据成分过冷理论,阐述工艺和合金两个方面的因素对结晶形貌的影响方式。 13.在揭示铸件内部等轴晶的形成机制和控制铸件凝固组织方面,大野美的实验有何意义。14.在片层状规则共晶的生长过程中,界面上各组元原子的扩散运动规律及其与生长速度的关系。 15.在长大速度一定的条件下,温度梯度G L 是否影响规则共晶的片层间距原因何在 16.如何认识液态金属的结构特征,液态金属的结构特征对形核有何影响。 17.试分析表面张力和界面张力形成的物理原因及其与物质原子间结合力的关系。 18.证明在相同的过冷度下均质形核时,体积相同的球形晶核与立方形晶核哪种更易形成。 试导出平衡凝固及液相完全混合条件下T* L 与f L 的关系。19。Al-Cu(w C =1%)合金于单向 凝固中生长速度为3×10-4cm/s,完全没有对流(合金相图中C E =33%(Cu),C Sm =%(Cu),

金属结晶的现象

第四讲金属结晶的现象及条件 第一节金属结晶的现象 一、主要内容: 金属结晶的宏观现象 金属结晶的微观现象 二、要点: 金属结晶的热分析曲线,热分析法,过冷现象,过冷度,结晶潜热,金属结晶的热分析曲线分析,金属结晶的微观过程分析,形核,晶核长大。 三、方法说明: 首先介绍热分析法,说明热分析曲线,介绍金属的热分析曲线的特征,说明过冷现象,过冷度,结晶潜热,金属结晶的微观现象,可举例说明晶核的形成和长大的过程,如窗花,盐,冰,植物等增加学生的感性认识和对形核、长大的理解。 授课内容: 物质从液态冷却转变为固态的过程称为凝固。 凝固后的物质可以是晶体,也可以是非晶体。若凝固后的物质为晶体,则这种凝固称为结晶。 一、金属结晶过程中的宏观现象 热分析法:将纯金属放入坩埚中加热熔化成液态,然后插入热电偶测量温度,让液态金属缓慢而均匀的冷却,用X-Y记录仪将冷却过程中的温度与时间记录下来,获得冷却曲线,这种实验方法叫热分析法。如图 图1 热分析实验装置示意图图2 纯金属的冷却曲线 2、热分析曲线:纯金属的冷却曲线,即温度随时间的变化曲线。 3、过冷现象:金属的实际开始凝固温度Tn总是低于理论凝固温度Tm的现象。 4、过冷度:理论凝固温度与实际开始凝固温度之差,即Δ T=Tm-Tn。 结晶潜热:金属熔化时从固态转变为液态需要吸收热量,而结晶时从液态转化为固态要放出热量,前者叫熔化潜热,后者叫结晶潜热。 二、金属结晶的微观过程 金属的结晶是一个晶核的形成和晶核的长大过程。

第二节金属结晶的热力学条件 第三节金属结晶的结构条件 一、主要内容: 金属结晶的驱动力和热力学条件 结构起伏的概念 二、要点: 热力学第二定律,物质系统,自发过程,熵的概念, 金属结晶过程液固两相自由能之差的推导, 液相、固相自由能随温度变化示意图 晶胚,晶核,近程有序,远程有序,液态金属的结构,液态金属中不同尺寸结构起伏出现的几率,最大结构起伏尺寸与过冷度的关系 三、方法说明: 熵,物质系统,自发过程等概念较抽象,打比方形象的说明有利于学生的理解。 用液态金属的宏观特性解释液态金属的微观结构,解释金属结晶的微观过程,讲清晶胚,晶核等概念及影响因素,说明金属结晶的结构条件 授课内容: 第二节金属结晶的热力学条件 热力学第二定律:在等温等压下,过程自发进行的方向是体系自由能降低的方向。自由能G 用下式表示: G=H-TS, 式中,H是焓;T是绝对温度;S是熵,可推导得 dG= Vdp- SdT。 在等压时,dp=0,故上式简化为: dG=- SdT。 由于熵恒为正值,所以自由能是随温度增高而减小。 图3 自由能随温度变化的示意图

金属凝固原理复习资料

金属凝固原理复习题部分参考答案 (杨连锋2009年1月) 2004年 二 写出界面稳定性动力学理论的判别式,并结合该式说明界面能,温度梯度,浓度梯度对界面稳定性的影响。 答:判别式, 2 01()()2 (1)m c v D s g m v D g G T k ωωωω * *??- ??? =-Γ- ++?? -- ??? ,()s ω的正负决定 着干扰振幅是增长还是衰减,从而决定固液界面稳定性。第一项是由界面能决定的,界面能不可能是负值,所以第一项始终为负值,界面能的增加有利于固液界面的稳定。第二项是由温度梯度决定的,温度梯度为正,界面稳定,温度梯度为负,界面不稳定。第三项恒为正,表明该项总使界面不稳定,固液界面前沿形成的浓度梯度不利于界面稳定,溶质沿界面扩散也不利于界面稳定。 三 写出溶质有效分配系数E k 的表达式,并说明液相中的对流及晶体生长速度对E k 的影 响。若不考虑初始过渡区,什么样的条件下才可能有0s C C * = 答:0 00 (1)N L s v E D C k k C k k e δ*- = = +- 可以看出,搅拌对流愈强时,扩散层厚度N δ愈小, 故s C * 愈小。生长速度愈大时,s C * 愈向0C 接近。(1)慢的生长速度和最大的对流时,N L v D δ《1,0E k k = ;(2)大的生长速度或者液相中没有任何对流而只有扩散时,N L v D δ》1,E k =1 (3)液相中有对流,但属于部分混合情况时,0 1E k k <<。1E k =时,0 s C C * = ,即在 大的生长速度或者液相中没有任何对流而只有扩散时。 四 写出宏观偏析的判别式,指出产生正偏析,负偏析,和不产生偏析的生长条件。 答:0 1s q q C k C k = -+,s C 是溶质的平均浓度,0C 是液相的原始成分,q 是枝晶 内溶质分布的决定因素,它是合金凝固收缩率β,凝固速度u 和流动速度v 的函数, (1)(1)v q u β=-- 。0s C C =,即 1p u v β β =- -时,q=1,无宏观偏析。0s C C >时,对于01k <的合金来说,为正偏析,此时 1p u v β β >- -。0s C C <时,对于01k <的合金来 说,为负偏析,此时 1p u v β β <- -。 五 解:用2m m m m r m m k r T V T V T H H σσ?=- ?=- ? ??计算

第二章 纯金属的结晶

第二章纯金属的结晶 (一) 填空题 1.金属结晶两个密切联系的基本过程是和 2 在金属学中,通常把金属从液态向固态的转变称为,通常把金属从一种结构的固态向另一种结构的固态的转变称为。 3.当对金属液体进行变质处理时,变质剂的作用是 4.铸锭和铸件的区别是。 铸锭是将熔化的金属倒入永久的或可以重复使用的铸模中制造出来的。凝固之后,这些锭(或棒料、板坯或方坯,根据容器而定)被进一步机械加工成多种新的形状。用铸造方法获得的金属物件,即把熔炼好的液态金属,用浇注、压射、吸入或其他方法注入预先准备好的铸型中,冷却后经落砂、清理和后处理,所得到的具有一定形状,尺寸和性能的物件。 5.液态金属结晶时,获得细晶粒组织的主要方法是 6.金属冷却时的结晶过程是一个热过程。 7.液态金属的结构特点为。 8.如果其他条件相同,则金属模浇注的铸件晶粒比砂模浇注的,高温浇注的铸件晶粒比低温浇注的,采用振动浇注的铸件晶粒比不采用振动的,薄铸件的晶粒比厚铸件。 9.过冷度是。一般金属结晶时,过冷度越大,则晶粒越。 (二) 判断题 1 凡是由液态金属冷却结晶的过程都可分为两个阶段。即先形核,形核停止以后,便发生长大,使晶粒充满整个容积。 2.凡是由液体凝固成固体的过程都是结晶过程。 3.近代研究表明:液态金属的结构与固态金属比较接近,而与气态相差较远。( ) 4.金属由液态转变成固态的过程,是由近程有序排列向远程有序排列转变的过程。( ) 5.当纯金属结晶时,形核率随过冷度的增加而不断增加。( ) 6.在结晶过程中,当晶核成长时,晶核的长大速度随过冷度的增大而增大,但当过冷度很大时,晶核的长大速度则很快减小。 7.金属结晶时,冷却速度愈大,则其结晶后的晶粒愈细。 9.在其它条件相同时,金属模浇注的铸件晶粒比砂模浇注的铸件晶粒更细 10.在其它条件相同时,高温浇注的铸件晶粒比低温浇注的铸件晶粒更细。 11.在其它条件相同时,铸成薄件的晶粒比铸成厚件的晶粒更细。 14.在实际生产条件下,金属凝固时的过冷度都很小(<20℃),其主要原因是由于非均匀 形核的结果。( ) 15.过冷是结晶的必要条件,无论过冷度大小,均能保证结晶过程得以进行。( ) (三) 选择题 1 液态金属结晶的基本过程是 A.边形核边长大B.先形核后长大 C.自发形核和非自发形核D.枝晶生长 2.液态金属结晶时,越大,结晶后金属的晶粒越细小。 A.形核率N B.长大率G C.比值N/G D.比值G/N 3.过冷度越大,则 A.N增大、G减少,所以晶粒细小B.N增大、G增大,所以晶粒细小 C N增大、G增大,所以晶粒粗大D.N减少、G减少,所以晶粒细小 4.纯金属结晶时,冷却速度越快,则实际结晶温度将。 A.越高 B 越低C.越接近理论结晶温度D.没有变化 5.若纯金属结晶过程处在液—固两相平衡共存状态下,此时的温度将比理论结晶温度A.更高B.更低C;相等D.高低波动 T0为金属的晶体与液体平衡共存的温度,称为理论结晶温度。显然,在这一温度时,金属的结晶速度与熔化速度相等,所以只有进一步冷却,使金属的实际结晶温度Tn低于,T。时,结晶才能进行。结晶时Tn低于T0的现象称为过冷。纯金属的冷却曲线出现一个水

液态金属结晶的基本原理

第六章 液态金属结晶的基本原理 1、怎么从相变理论理解液态金属结晶过程中的生核、成长机理? 答:相变理论:相变时必须具备热力学和动力学条件。 金属结晶属一种相变过程: 热力学条件即过冷度T ?——驱动力V G ? 动力学条件:克服能障 热力学能障——界面自由能——形核 动力学能障——激活自由能A G ?——长大 若在体系内大范围进行,则需极大能量,所以靠起伏,先生核——主要克服热力学能障,然后出现最小限度的过渡区“界面”,此界面逐渐向液相内推移——长大(主要克服动力学能障)。 2、试述均质生核与非均质生核之间的区别与联系,并分别从临界晶核曲率半径、 生核功两个方面阐述外来衬底的湿润能力对临界生核过冷度的影响。要满足纯金属非均质生核的热力学要求,液态金属必须具备哪两个基本条件? 答:(1)T L T G r r LC V LC ?=?==0 * *22σσ非均 相等 但334r V π=均 ()θπf r V 3 34=非 ()4c o s c o s 323θθθ+-=f ∴ 非均质生核所需体积小,即相起伏时的原子数少。 (2)2203 *316T L T G LC ??=?πσ均 ()θf G G * *均非 ?=? 两种均需能量起伏克服生核功,但非均质生核能需较小。 (3)右图看出 ↑?↑→* 非 T θ ()↓?↓→↓→T V f 非θ 即:对*r :θ与* 非T ?的影响. (4)生核功: ()θπσf T L T G LC 2203 *316??=?非

()↓?↓→↓→?↓→T * 能量起伏非 G f θ (5)纯金属非均质生核的热力学条件: V LC G r ?=σ2* 非 ()θπσf T L T G LC 2203 * 316??=?非 液态金属需具备条件(1)液态金属需过冷 (2)衬底存在。 3、物质的熔点就是固、液两相平衡存在的温度、试从这个观点出发阐述式(4—3) 中*r 与T ?之间关系的物理意义。 答:式4—3 T L T G r LC V LC ?=?=0 * 22σσ均 当 0T T =时, 两相平衡; 当0T T <时,趋于固相:即固相教液相稳定; 式中看出 ↓↑→?* 均 r T 。 ↑?T 即↓T ,此时固相更稳定,更易于发生相变,就以较小的* 均r 即可稳定 存在。 4、液态金属生核率曲线特点是什么?在实际的非均质生核过程中这个特点又有何变化? 答:实际非均质生核率受衬底面积大小的影响,当衬底面积全部充满后,生核率 曲线中断,即不再有非均质生核。 相变、生核、成长中的热力学及动力学: (1)相变: 热力学条件:T ? ,可以提供相变驱动力V G ?。 动力学条件:克服热力学能障和动力学能障。 (2)生核: 克服能障:热力学(界面自由能)、动力学A G ?(作用小,对生核率影响小) (3)生长: 热力学能障:()KTi A G F V ln ->?——取决于F A (处于过冷状态,且相变 驱动力克服此能障)

结晶过程观察与纯金属铸锭组织分析

结晶过程观察与纯金属铸锭组织分析 一、实验目的 1.熟悉盐类和金属的结晶过程。 2.了解铸造条件对纯金属铸锭组织的影响。 二、实验原理 熔化状态的金属进行冷却时,当温度降到T m (熔点)时并不立即开始结晶,而是当降到T m以下的某一温度后结晶才开始,这一现象称为过冷。熔点T m与开始结晶的温度T m之差Δ T 称为过冷度。过冷现象表明,金属结晶必须有一定的过冷度,只有具有一定的过冷度下才能为结晶提供相变驱动力。 结晶由两个基本过程所组成,即过冷液体产生细小的结晶核心(形核)以及这些核心的成长(长大)。其中,形核又分为均匀形核和非均匀形核。通常情况下,由于外来杂质、容器或模壁等的影响,一般都是非均匀形核。 由于金属不透明,通常不能用显微镜直接观察液态金属的结晶过程。然而通过采用生物显微镜可以直接观察盐溶液的结晶过程。实践证明,对透明盐类结晶过程的研究所得出的许多结论,对于金属的结晶都是适用的。 在玻璃片上摘上一滴接近饱和的氯化铵水溶液,放在生物显微镜下观察其结晶过程。随着液体的蒸发,液体逐渐达到饱和。由于液滴边缘处最薄,将首先达到饱和,放结晶过程首先从边线开始,然后逐渐向里扩展。 结晶的第一阶段是在液滴的最外层形成一圈细小的等轴晶体。这是由于液滴外层蒸发最快,在短时间内形成了大量晶核之故。 结晶的第二阶段是形成较为粗大的柱状晶体,其成长的方向是伸向液滴的中心。这是由于此时液滴的蒸发已比较慢,而且液滴的饱和顺序是由外向里的,最外层的细小等轴晶中只有少数位向有利的才能向中心生长,而其横向生长则受到了彼此间的限制,因而形成了比较粗大、带有方向性的柱状晶体。 结晶的第三阶段是在液滴中心部分形成不同位向的等轴晶体。这是由于液滴的中心此时也变得较薄,蒸发也较快,同时液体的补充也不足的缘故。这时可以看到明显的等轴晶体。 图4-1示出了氯化铵水溶液结晶过程的一组照片,其中( a )、( b )为在液滴边缘形成的细小等轴晶体和正在生长的柱状晶体,( c )为在液滴中心部分形成的位向不同的等轴枝晶。 利用化学中的取代反应,可以看到置换出来的金属以枝晶形式进行生长的过程。例如,在硝酸银水溶液中放入一小段细铜丝,铜将发生溶解,而银则以枝晶形态沉积出来,其反应式为:

液态金属成型原理

2. 金属结晶(凝固)的形核热力学条件及形核机理。 答:金属结晶的热力学条件: 金属结晶必须要过冷,过冷是金属结晶的必要条件。 金属结晶一般是在等压条件下进行的。固、液两相都有各自的自由能,它们的自由能在等压条件下随温度的升高同样是降低的,如图2.1所示。因为液相原子排列混乱程度高于固相,因而有: 上式表示液相熵的负值比固相熵大,因此液相自由能随温度下降的速率大于固相。而在绝对零度时,因液相原子排列混乱程度大于固相而具有更高的自由能。这一关系可用图2.1来表示。图中G L和G S分别代表液相和固相的自由能随温度变化的曲线,两曲线交于温度T m。在T m温度,固、液两相自由能相等。T m就是理论结晶温度。所以理论结晶温度定义为固液两相自由能相等所对应的温度,也称平衡熔点。 图2.1 自由能随温度的变化示意图 根据自由能最小原理,要发生液相向固相的自发转变,实现结晶,固相自由能必须小于液相,从图中可见:这只有在温度小于理论结晶温度时才能实现,这就是液体金属必须具有一定的过冷度,结晶才能自动进行的原因。四、金属结晶的驱动力金属结晶的驱动力从宏观上看是过冷度,从热力学上看是固、液两相自由能之差。实际上,可以证明单位体积固、液两相自由能之差ΔG v和过冷度ΔT之间存在如下关系: 式中L m—结晶潜热。从上可以看出:要实现结晶,根据自由能最小原理,G L-G S>0,而要保证必须保证G L-G S>0,即实际结晶温度必须低于理论结晶温度。并且,过冷度越大,固、液两相自由能之差越大,金属结晶的驱动力也越大。 晶核的形成机理: 形核有两种方式:均匀形核和非均匀形核。均匀形核是指晶核不依附任何外来物形成,形核在液相各处的形核几率是相同的;非均匀形核是指晶核依附于外来物(如容器壁和固态杂质)上形成。

金属液态成型原理

金属液态成型原理 内容简介 《金属液态成型原理》共10章,书中系统阐述了材料热加工过程中金属液态成形的基本原理。第1章是液态金属的结构和性质,第2章是金属凝固过程的传热,第3章是液态金属凝固热力学及动力学,第4章是单相及多相合金的结晶,第5章是金属凝固组织的控制,第6章是凝固新技术,第7章是合金中的成分偏析,第8章是气孔与夹杂,第9章是缩孔与缩松,第10章是铸造应力、变形及裂纹。《金属液态成型原理》是普通高等学校“材料成形与控制工程专业”液态成形(铸造)方向本科生用的教材,同时也可作为材料加工液态成形方向研究生的参考书,还可作为金属材料工程、热加工以及机械等工程专业师生和工程技术人员的参考用书。 〃查看全部>> 目录 0 绪论1 0.1 金属的液态成形与凝固的关系1 0.2 凝固过程研究的对象1 0.3 凝固理论的研究进展2 第1章液态金属的结构和性质4 1.1 固体金属的加热、熔化4 1.1.1 晶体的定义与结构4 1.1.2 金属的加热膨胀4 1.1.3 金属的熔化6 1.2 液态金属的结构6 1.2.1 液态金属的热物理性质7 1.2.1.1 体积和熵值的变化7

1.2.1.2 熔化潜热与汽化潜热7 1.2.2 X射线结构分析7 1.2.3 液态金属的结构8 1.2.3.1 纯金属液态结构8 1.2.3.2 实际金属液态结构9 1.2.4 液态金属理论结构模型 钢球模型与P Y理论10 1.3 液态金属的性质12 1.3.1 液态金属的黏滞性12 1.3.1.1 液态金属黏滞性的基本概念13 1.3.1.2 黏滞性(黏度)在材料成形过程中的意义14 1.3.2 液态金属的表面张力15 1.3. 2.1 表面张力的基本概念和实质15 1.3. 2.2 影响表面张力的因素17 1.3. 2.3 毛细现象及表面张力引起的附加压力19 1.3. 2.4 表面张力在材料成形中的意义20 1.4 液态金属的充型能力21 1.4.1 液态金属充型能力的基本概念21 1.4.1.1 充型能力的定义及其他相关名词21 1.4.1.2 液态金属流动性测试方法22 1.4.2 液态金属停止流动的机理与充型能力22 1.4. 2.1 液态金属停止流动的机理22 1.4. 2.2 液态金属的充型能力24 1.4.3 影响充型能力的因素27 1.4.3.1 金属性质方面的因素27 1.4.3.2 铸型性质方面的因素29 1.4.3.3 浇注条件方面的因素30 1.4.3.4 铸件结构方面的因素31 1.5 液体金属中的流动31 1.5.1 自然对流和强迫对流31

金属凝固原理(全)

《金属凝固理论》期末复习题 一、是非判断题 1 金属由固态变为液态时熵值的增加远远大于金属由室温加热至熔点时熵值的增加。(错) 2 格拉晓夫准则数大表明液态合金的对流强度较小。(错) 3 其它条件相同时,凹形基底的夹杂物不如凸形基底的夹杂物对促进形核有效。(错) 4 大的成分过冷及强形核能力的形核剂有利于等轴晶的形成。(对) 5 大多数非小平面-小平面共晶合金的共晶共生区呈现非对称型。(对) 6 根据相变动力学理论,液态原子变成固态原子必须克服界面能。(对) 7 具有糊状凝固方式的合金容易产生分散缩孔。(对) 8.金属熔体的黏度与金属的熔点相类似,本质都是反映质点间(原子间)结合力大小。(对) 9. 以熔体中某一参考原子作为坐标原点,径向分布函数表示距参考原子r处找到其他原子的 几率。(错) 10. 液态金属中在3-4个原子直径的范围内呈一有序排列状态,但在更大范围内,原子间呈无序状态。(对) 11. 金属熔体的黏度越大,杂质留在铸件中的可能性就越大。(对) 12. 半固态金属在成型过程中遵循的流变特性,主要满足宾汉体的流变特性(对) 13. 在砂型中,低碳钢的凝固方式是体积凝固。(错) 14. 铸型具有一定的发气能力,会导致型腔气体反压增大,充型能力下降。(对) 15. 晶体生长的驱动力是固液两相的体积自由能差值。(对) 16. 绝大多数金属或合金的生长是二维晶核生长机理。(错) 17. Fe-Fe3C共晶合金结晶的领先相是奥氏体。(错) 18. 铸件中的每一个晶粒都代表着一个独立的形核过程,而铸件结晶组织的形成则是这些晶 核就地生长的结果。(错) 19. 型壁附近熔体内部的大量形核只是表面细晶粒区形成的必要条件,而抑制铸件形成稳定 的凝固壳层则为其充分条件. (对) 20.对于薄壁铸件,选择蓄热系数小的铸型有利于获得细等轴晶。(错) 21.处理温度越高,孕育衰退越快。因此在保证孕育剂均匀溶解的前提下,应尽量降低处理 温度。(对) 22. 铸铁中产生的石墨漂浮属于逆偏析。(错) 23.湿型铸造的阀体铸件件皮下形成的内表面光滑的气孔,其形成原因主要是砂型的发气量 大、透气性不足。(对) 二、名词解释 1.黏度:是熔体在不同层面上存在相对运动时才表现出来的一种物理性能,其本质反映的是 质点间的结合力大小。 2.金属遗传性:指在结构上,由原始炉料通过熔体阶段向铸造合金的信息传递,具体表现在 原始炉料通过熔体阶段对合金零件凝固组织,力学性能及凝固缺陷的影响。 3.半固态铸造:指在金属的凝固过程中,对金属施加剧烈的搅拌或扰动、或改变金属的热状 态、或加入晶粒细化剂、或进行快速凝固,即改变初生固相的形核和长大 过程,得到的一种液态金属熔体中均匀地悬浮着一定球状初生固相的固液 混合浆料,然后利用其进行成型的工艺。 4. 充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力 5.非均质形核:指在不均匀的熔体中依靠外来杂质或型壁界面提供的衬底进行形核的过程 6. 临界形核半径:由金属学可知,只有大于临界半径的晶胚才可以作为晶核稳定存在,此

材料成形原理_吴树森_答案(铸造).

第一部分:液态金属凝固学 1.1 答:(1)纯金属的液态结构是由原子集团、游离原子、空 穴或裂纹组成。原子集团的空穴或裂纹内分布着排 列无规则的游离的原子,这样的结构处于瞬息万变 的状态,液体内部存在着能量起伏。 (2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混 浊”液体,也就是说,实际的液态合金除了存在能量 起伏外,还存在结构起伏。 1.2答:液态金属的表面张力是界面张力的一个特例。表面张 力对应于液-气的交界面,而界面张力对应于固- 液、液-气、固-固、固-气、液-液、气-气的 交界面。 表面张力?和界面张力ρ的关系如(1)ρ=2?/r,因 表面张力而长生的曲面为球面时,r为球面的半径;(2) ρ=?(1/r1+1/r2),式中r1、r2分别为曲面的曲率半 径。 附加压力是因为液面弯曲后由表面张力引起的。1.3答:液态金属的流动性和充型能力都是影响成形产品 质量的因素;不同点:流动性是确定条件下的充型 能力,它是液态金属本身的流动能力,由液态合金 的成分、温度、杂质含量决定,与外界因素无关。

而充型能力首先取决于流动性,同时又与铸件结构、 浇注条件及铸型等条件有关。 提高液态金属的充型能力的措施: (1)金属性质方面:①改善合金成分;②结晶潜热L 要大;③比热、密度、导热系 大;④粘度、表面张力大。 (2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。 (3)浇注条件方面:①提高浇注温度;②提高浇注压力。 (4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度; ②降低结构复杂程度。 1.4 解:浇注模型如下:

材料成型基本原理作业及答案要点

第二章凝固温度场 4. 比较同样体积大小的球状、块状、板状及杆状铸件凝固时间的长短。 解:一般在体积相同的情况下上述物体的表面积大小依次为:A 球t 块>t 板>t 杆。 5. 在砂型中浇铸尺寸为300?300?20 mm 的纯铝板。设铸型的初始温度为20℃,浇注后瞬间铸件-铸型界面温度立即升至纯铝熔点660℃,且在铸件凝固期间保持不变。浇铸温度为670℃,金属与铸型材料的热物性参数见下表: 热物性 材料 导热系数λ W/(m ·K) 比热容C J/(kg ·K) 密度ρ kg/m 3 热扩散率a m 2/s 结晶潜热 J/kg 纯铝 212 1200 2700 6.5?10-5 3.9?105 砂型 0.739 1840 1600 2.5?10-7 试求:(1)根据平方根定律计算不同时刻铸件凝固层厚度s,并作出τ-s 曲线; (2)分别用“平方根定律”及“折算厚度法则”计算铸件的完全凝固时间,并分析差别。 解:(1) 代入相关已知数解得: 2222ρλc b =,=1475 , ()()[] S i T T c L T T b K -+ρπ-= 10112022 = 0.9433 (m s m /) 根据公式K ξ τ= 计算出不同时刻铸件凝固层厚度s 见下表,τξ-曲线见图3。 τ (s) 0 20 40 60 80 100 120 ξ (mm) 4.22 6.00 7.31 8.44 9.43 10.3 (2) 利用“平方根定律”计算出铸件的完全凝固时间: 图3 τξ-关系曲线

材料成型基本原理习题答案第一章答案

第一章习题 1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并 不是原子间结合力的全部破坏? (2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明: ①物质熔化时体积变化、熵变及焓变一般都不大。金属熔化时典型的体积变化?V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。 ②金属熔化潜热?H m约为气化潜热?H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。 由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。 2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么? 答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。 N1 表示参考原子周围最近邻(即第一壳层)原子数。 r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。 3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。 答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡” 着的局域有序的原子集团 (2)说明液态金属或合金结构的近程有序的实验例证 ①偶分布函数的特征 对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。 ②从金属熔化过程看 物质熔化时体积变化、熵变及焓变一般都不大。金属熔化时典型的体积变化?V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。另一方面,金属熔化潜热?H m约为气化潜热?H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。可以说,在熔点(或液相线)附近,液态金属(或合金)的原子集团内短程结构类似于固体。 ③ Richter等人利用X衍射、中子及电子衍射手段,对碱金属、Au、Ag、Pb和Tl等熔体进行了十多年的系统研究,认为液体中存在着拓扑球状密排结构以及层状结构,它们的尺寸范围约为10-6-10-7cm。 ④ Reichert观察到液态Pb局域结构的五重对称性及二十面体的存在,并推测二十面体存在于所有的单组元简单液体。 ⑤在Li-Pb、Cs-Au、Mg-Bi、Mg-Zn、Mg-Sn、Cu-Ti、Cu-Sn、 Al-Mg、Al-Fe等固态具有金属间化合物的二元熔体中均被发现有化学短程序的存在。 4.如何理解实际液态金属结构及其三种“起伏”特征? 答:理想纯金属是不存在的,即使非常纯的实际金属中总存在着大量杂质原子。实际金属和合金的液体由大量时聚时散、此起彼伏游动着的原子团簇、空穴所组成,同时也含有各种固态、液态或气态杂质或化合物,而且还表现出能量、结构及浓度三种起伏特征,其结构相当复杂。 能量起伏是指液态金属中处于热运动的原子能量有高有低,同一原子的能量也在随时间不停地变化,时高时低的现象。 结构起伏是指液态金属中大量不停“游动”着的原子团簇不断地分化组合,由于“能量起伏”,一部分金属原子(离子)从某个团簇中分化出去,同时又会有另一些原子组合到该团簇中,此起彼伏,不断发生着这样的涨落过程,似乎原子团簇本身在“游动”一样,团簇的尺寸及其内部原子数量都随时间和空间发生着改变的现象。 浓度起伏是指在多组元液态金属中,由于同种元素及不同元素之间的

金属凝固原理复习思考题-2011

凝固过程模型的作用。(1)物理模型和数学模型可以定性和定量的描述凝固现象。(2)通过电子计算机数值模拟对凝固过程的研究,有效的控制凝固过程,保证铸件的质量。 为什么说液态金属的结构更接近固态而非气态。(1)能量角度:以面心立方结构其汽化潜热比熔化潜热约大28倍。(2)液态与固态相比,其原子结合键的削弱是不大的。(3)金属由固态转变为液态过程中熵的增值小,可以再次说明,在熔点附近金属的液态结构与固态结构相差不会太大。 液态金属的微观结构有何特点。(1)液体金属原子以近程有序排列排列(2)有能量起伏现象:由于液体中原子热运动的能量较大,每个原子在三维方向都有相邻的原子,经常相互碰撞,交换能量。(3)存在结构起伏:液体中存在的能量起伏造成每个原子集团内具有较大动能的原子能克服邻近原子的束缚,(除了在集团内产生很强的热运动外)还能成簇地脱离原有集团而加入到别的原子集团中,或组成新的原子集团。 液态金属的性质对铸件质量有何影响。 ①粘度对铸坯质量的影响(1)对液态金属流动状态的影响:液态金属流动状态分为紊流和层流。受粘度影响液态金属的流动阻力流动状态。而流动状态直接影响铸坯宏观质量,如气孔等。(2)对液态金属对流的影响:运动粘度越大,对流强度越小。近期研究表明,铸坯的宏观偏析主要受对流的影响。(3)对液态金属净化的影响:粘度越大,夹杂物上浮速度越小,越容易滞留在铸坯中。 ②表面张力对铸坯质量的影响(1)表面张力产生附加压力P=2σ/r,提高金属液中气体析出的阻力。(2)表面张力产生附加压力P=2σ/r,影响金属液与铸型的相互作用。附加压力为正值时(润湿),铸坯表面光滑,但反映铸型型腔的能力较差。附加压力为负值时(不润湿),金属液能很好地反映铸型型腔,但是容易与铸型粘结(粘砂),阻碍收缩,甚至产生裂纹。宽、窄结晶温度范围合金流动停止的机理和特点。 纯金属和窄结晶温度范围:(a)过热量未完全散失前为纯液态流动。(b)冷的前端在型壁上凝固结壳。(c)后边的金属液在被加热的管道中流动,冷却强度下降。由于液流通过I 区终点时,尚有一定的过热度,将已经凝固的壳重新熔化,为第II区。所以,该区是先形成凝固壳,又被完全熔化。第III区是末被完全熔化而保留下来的一部分固相区,在该区的终点金属液耗尽了过热热量。在IV区,液相和固相具有相同的温度——结晶温度。由于在该区的起点处结晶开始较早,断面上结晶完毕也较早,往往在它附近发生堵塞。前端液态金属凝固收缩,形成吸力,产生喇叭状缩孔。 宽结晶温度范围合金:(a)有过热,纯液态流动。(b)温度低于液相线,析出晶体。析出的晶体顺流前进,并不断长大。前端冷却快,晶粒粗大。(c)前端晶粒达到一定数量,结成一个连续的网络,阻碍后边的液态金属流动,流动停止。所联成的网受到后面液态金属向前的推力,造成前突特征。

《金属凝固原理》思考题解答

金属凝固原理思考题 1. 表面张力、界面张力在凝固过程的作用和意义。 2. 如何从液态金属的结构特点解释自发形核的机制。 答:晶体熔化后的液态结构是长程无序,而短程内却存在不稳定的、接近有序的原子集团。由于液态中原子运动较为强烈,在其平衡位置停留时间甚短,故这种局部有序排列的原子集团此消彼长,即结构起伏和相起伏。当温度降到熔点以下,在液相中时聚时散的短程有序原子集团,就可能成为均匀形核的晶胚,从而进行均匀形核。 3. 从最大形核功的角度,解释0/=?dr G d 的含义。 4. 表面张力、界面张力在凝固过程和液态成形中的意义。 5. 在曲率为零时,纯镍的平衡熔点为1723K ,假设镍的球形试样半径是1cm ,1μm 、μm ,其熔点温度各为多少已知△H=18058J/mol ,V m =606cm 3/mol ,σ=255×107J/cm 2 6. (与第18题重复)证明在相同的过冷度下均质形核时,球形晶核与立方形晶核哪种更易形成。 答:对于球形晶核:过冷液中出现一个晶胚时,总的自由能变化为ΔG=(4πr 3ΔG V /3)+4πr 2σ。临界晶核的半径为r *,由d ΔG/dr=0求得:r *=-2σ/ΔG v =2σT m /L m ΔT ,则临界形核的功及形核功为:ΔG *球=16πσ3/3ΔG v 2=16πσ3T m 2/3(L m ΔT)2. 对于立方形晶核:同理推得临界半径形r *=-4σ/ΔG v ,形核功ΔG *方=32σ3/ΔG v 2。 则ΔG *球<ΔG *方,所以在相同的过冷度下均质形核时,球形晶核比立方形晶核更容易。 7. 用平面图表示,为什么晶体长大时,快速长大的晶体平面会消失,而留下长的速度较慢的平面。 8.用相变热力学分析为何形核一定要在过冷的条件下进行。 答:在一定温度下,从一相转变为另一相的自由能变化:ΔG=ΔH-T ΔS 。令液相到固相转变的单位体积自由能变化为:ΔG V =G S -G L ,(G S 、G L 分别为固相和液相单位体积自由能)。由G=H-S 可知,ΔG V =(H S -H L )—T(S S -S L )。由于恒压下,ΔH P =H S -H L =—L m ,ΔS m =S S -S L =—L m /T m ,(L m 为熔化热,ΔS m 为熔化熵)。整理以上各式得:m m V T T L G ?-= ?,其中ΔT=T m -T 。由上式可知:要使V G ?<0,必须使ΔT>0,即T

纯金属的凝固习题与答案

纯金属的凝固习题与答案 1 说明下列基本概念 凝固、结晶、过冷、过冷度、结构起伏、能量起伏、均匀形核、非均匀形核、临界晶核半径、临界晶核形核功、形核率、生长线速度、光滑界面、粗糙界面、动态过冷度、柱状晶、等轴晶、树枝状晶、单晶、非晶态、微晶、液晶。 2 当球状晶核在液相中形成时,系统自由能的变化为σππ2 3344r G r G V +?=?, (1)求临界晶核半径c r ;(2)证明V V c c G A G c ?- ==?2 31 σ(c V 为临界晶核体积);(3)说明上式的物理 意义。 3 试比较均匀形核与非均匀形核的异同点,说明为什么非均匀形核往往比均匀形核更容易进行。 4 何谓动态过冷度?说明动态过冷度与晶体生长的关系。在单晶制备时控制动态过冷度的意义? 5 分析在负温度梯度下,液态金属结晶出树枝晶的过程。 6 在同样的负温度梯下,为什么Pb 结晶出树枝状晶而Si 的结晶界面却是平整的? 7 实际生产中怎样控制铸件的晶粒大小?试举例说明。 8 何谓非晶态金属?简述几种制备非晶态金属的方法。非晶态金属与晶态金属的结构和性能有什么不同。 9 何谓急冷凝固技术?在急冷条件下会得到哪些不同于一般晶体的组织、结构?能获得何种新材料? . 计算当压力增加到500×105 Pa 时锡的熔点的变化,已知在105 Pa 下,锡的熔点为505K ,熔化热7196J/mol ,摩尔质量为× 10-3 kg/mol ,固体锡的体积质量×103 kg/m 3 ,熔化时的体积变化为+%。 2. 考虑在一个大气压下液态铝的凝固,对于不同程度的过冷度,即:ΔT=1,10,100和200℃,计算: (a)临界晶核尺寸;(b)半径为r*的团簇个数; (c)从液态转变到固态时,单位体积的自由能变化ΔGv ; (d)从液态转变到固态时,临界尺寸r*处的自由能的变化 ΔGv 。 铝的熔点T m =993K ,单位体积熔化热ΔH f =×109 J/m 3 ,固液界面自由能γsc =93J/m 2 ,原子体积V 0=×10-29 m 3 。 3. (a)已知液态纯镍在×105 Pa(1个大气压),过冷度为319℃时发生均匀形核。设临界晶核半径为1nm ,纯镍的熔点为

液态成形原理名词解释及简答题

液态成形原理名词解释及简答题名词解释 过冷度:金属的理论结晶温度和实际结晶温度的差值 均质形核:在没有任何外来的均匀熔体中的形核过程 异质形核:在不均匀的熔体中依靠外来杂质或者型壁面提供的衬底进行形核的过程 异质形核速率的大小和两方面有关,一方面是过冷度的大小,过冷度越大形核速率越快。二是和界面有关界面和夹杂物的特性形态和数量来决定,如果夹杂物的基底和晶核润湿,那么形核速率大。 形核速率:在单位时间单位体积内生成固相核心的数目 液态成型:将液态金属浇入铸型之,凝固后获得具有一定形状和性能的铸件或者铸锭的方法 复合材料:有两种或者两种以上物理和化学性质不同的物质复合组成一种多相固体 定向凝固:使金属或者合金在熔体中定向生长晶体的方法 溶质再分配系数:凝固过程当中,固相侧溶质质量分数和液相侧溶质质

量分数的比值 流动性是确定条件下的充型能力,液态金属本身的流动能力叫做流动性液态金属的充型能力是指液态金属充满铸型型腔获得完整轮廓清晰 的铸件能力 影响充型能力的因素:(1)金属本身的因素包括金属的密度、金属的比热容、金属的结晶潜热、金属的粘度、金属的表面张力、金属的热导率金属的结晶特点。(2)铸型方面的因素包括铸型的蓄热系数、铸型的温度、铸型的密度、铸型的比热容、铸型的涂料层、铸型的透气性和发气性、铸件的折算厚度(3)浇注方面的因素包括液态金属的浇注温度、液态金属的静压头、浇注系统中的压头总损失和 影响液态金属凝固过程的因素:主要因素是化学成分冷却速度是影响凝固过程的主要工艺因素液态合金的结构和性质以及冶金处理 (孕育处理、变质处理、微合金化)等对液态金属的凝固也有重要影 响 液态金属凝固过程当中的液体流动主要包括自然对流和强迫对流,自然对流是由于密度差和凝固收缩引起的流动,由密度差引起的对流成为浮力流。凝固过程中由传热。传质和溶质再分配引起液态合金密度的不均匀,密度小的液相上浮,密度大的下沉,称为双扩散对流,凝固以及收缩引起的对流主要主要产生在枝晶之间,强迫对流是由液体受到各种方式的驱动力产生的对流,例如压力头。机械搅动、铸型震动、外加磁场。 铸件的凝固方式:层状凝固方式(动态凝固曲线之间的距离很小的时

相关文档
最新文档