数字信处理技术的应用与发展

数字信处理技术的应用与发展
数字信处理技术的应用与发展

数字信处理技术的应用

与发展

文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

关于数字信号处理技术的应用与发展摘要:在现代化科学技术发展的过程中,数字化信号处理技术已经深入应用到各行各业的发展之中,例如工业控制、医疗卫生事业等,都有所涉猎,甚至在国防军事方面也得到了一定的应用,可以说在当前社会发展的进程中,已经完全不能脱离开数字信号处理技术的应用了。正是因为如此,本文对其应用以及今后的发展予以一定的阐述,希望在今后的应用中可以得到更加广阔的发展空间。

关键词:数字信号处理技术;实现方法;应用;发展前景

在我国近几年的发展进程中,数字信号的相关处理技术已经得到了质的的飞跃,这是一种对数字以及符号进行转化,并且排列成为有效序列的一种技术,这一技术主要应用在计算机以及其他相关设备中,并且在计算方法上具有特殊之处,主要是采用了数值计算法,可以达到方便信息应用的效果。本文主要探讨了这一技术在图形处理以及机器人控制等方面的应用,希望在未来的时代发展中,这一技术可以具有更加广泛的应用。

1、数字信号处理技术所具有的特点以及实现方式

在数字信号的处理上,主要可以通过三种途径得以实现。第一种途径是采用软件得以实现的,这种方式主要应用在编程的过程中,这套程序既能通过处理者的开发得到应用,也可以通过现有的程序进行处理。第二种实现方式是运用专用硬件,例如加法器或者乘法器等,将其构成一个专用的数字网络,以实现对信号处理的能力。第三种实现途径是将前两种方式进行有效的结合。这种方式目前较为普遍,广泛应用在数字信号处理的过程中。

从这一技术的优势上来看,数字信号处理的相关技术合理的应用了计算机设备,针对不同的系统具有不同的处理功能,满足各行业的需要,所以与其他技术相比具有一定的优越性。除此之外,在系统的稳定性上,这一技术得到了进一步的提升,经过对数据的耦合,有效的降低了电路中产生阻抗匹配的情况,并且在安全性方面也得到了进一步的提升,更有助于在大规模生产中的应用。同时在其他方面也具有一定的优越性,所以受到各界人士的广泛好评。

2、数字信号处理技术在当前行业中的应用

图形图像领域

首先,这一技术可以应用在图形图像领域,DVD的主要工作原理是运用了图像压缩技术,将活动图像进行压缩与转码,最终呈现在人们的眼前,在采用了这一技术后,整个过程得到了明显的进步,同时还可以应用在对大气甚至气象云图的研究方面。只要是与图形图像相关的领域中,都可以运用这一技术对于信号进行处理,除此之外,在压缩、识别以及编码等一些环节中,这一技术也会有所涉猎。

机器人控制领域

随着现代科学技术水平的不断提升,相关技术的发展都呈现出快速增长的趋势,同时在人工智能方面也得到了突出的发展。因此机器人的出现也就应该更加适应时代的发展,在控制方面运用数字信号处理的相关技术,可以在信息实时性的接收以及反应方面都得到进一步的提升。相关研究人员通过对数字信号处理技术的应用可以将控制系统的水平得到进一步的提升,为今后的研究工作提供了重要的发展契机。

生物医药的处理领域

在这一领域的应用中,数字信号处理技术主要是在诊断检查以及监护等工作中得到进一步的凸显,并且为脑神经学与细胞学等相关学科的研究工作提供了重要的技术指导。在对心电以及脑电等自动分析的过程中,数字信号处理技术的应用也是相当重要,为今后生物医药的研究工作提供了前提保障,同时也有效的降低了死亡事件的发生。

电力系统领域

首先,数字信号处理技术可以用于电力系统模拟量采集和测量领域。使用交流采用技术后,经过二次PT、CT的变换后,直接对每周波的多点采样值采用数字信号处理技术进行计算,得到电流和电压的相角和有效值,免去了变送器环节。其次,数字信号处理技术可以用于变电站自动化领域。变电站自动化元件较多,开关量和模拟量比较分散且对实时性要求较高,采用数字信号处理技术能够对各种信息进行快速、准确的采集和处理,尤其在并行处理上可实现多机多任务操作,使用非常灵活且方便,片内诸多的接口使调速器、励磁机继电保护的挂网监控更容易。

气体检测领域

社会的发展使得环境受到很多污染,在气体检测和治理方面,气体污染物的检测受到人们越来越多的关注和重视,同时在有害气体、易燃易爆气体泄漏的环境下工作时,气体检测对工作人员人身安全的保障显得尤为重要。目前对大气污染物的检测广泛采用可调谐二极管吸收光谱技术(TDLAS),可调谐二极管吸收光谱技术目前采用波长调制技术和二次谐波的检测技术进行调制检测,对采集的信号采用数字信号处理的方法,具有准确度高、稳定性好的优点,对于大气污染物的检测和治理至关重要。

数字信号处理技术在噪声测量领域的应用

噪声长期暴露在强烈噪声环境中会严重危害人体健康,引起神经系统、心血管系统方面的疾病并导致听力受损,因此近年来市场上出现了各种噪声测量装置。目前在噪声测量技术中直接测量噪声的声强比较困难,而声压则是比较容易测得的物理量,将数字信号处理技术应用于噪声测量领域,可以研制出基于数字信号处理的噪声频谱分析仪,它集谱分析仪、积分声级计、噪声统计分析仪、数据采集器、数字式记录仪和噪声剂量计等几种功能于一体,具有信号处理的动态范围大、抗干扰能力、灵活性高和结构紧凑的优点。

3、数字信号处理技术的发展前景

(1)数字信号处理和微处理器的融合。微处理器的成本较低,并且可以执行智能定向控制任务,但缺点是数字信号处理功能比较差,因此限制了其使用范围。将数字信号处理技术与微处理器进行融合,正好可以弥补微处理器这一缺陷,用单一芯片的处理器实现具有智能控制和数字信号处理的两种功能,将加速个人通信机、智能电话和无线网络产品的开发,降低功耗和整个系统的成本。

(2)定点运算。虽然浮点数字信号处理技术的运算精度较高,动态范围更大,但是定点数字信号处理器的成本较低,而且对存储器的要求较低,比较省电。因此定点运算可编程数字信号处理器件仍然将是市场上的主流产品。

(3)内核结构的改进和工耗的降低。未来数字信号处理器的内核结构将进一度改善,多通道结构和单指令多种数据、特大指令字组在新的高性能处理器中占主导地位。此外,在不断提高数字信号处理器运算速度的同时,设备的功能将不断降低,从而确保在节省时间的同时降低成本。

(4)系统级集成。在未来系统级集成数字信号处理将是潮流,将几个数字信号处理芯核、专用处理单元、MPU芯核、外围电路单元和存储单元都集成在一个芯片上,成为数字信号处理系统级集成电路。

4、结语

综上所述,近年来数字信号处理技术在医药卫生、通信、电力系统、图像处理等领域得到了越来越多的应用,其发展速度前所未有,但同时也要求数字信号处理向着低功耗化和个人化的方向发展,从而满足不同用户的个性化需求。

参考文献:

[1]孙金林.数字信号处理技术的发展与思考[J].赤峰学院学报(科学教育版).2011(05)

[2]杨春顺.数字信号处理技术在短波收信设备中的应用[J].舰船电子工程.2008(06)

[3]赵思琦.数字信号处理技术的发展与思考[J].智富时代.2016(01)

数字信号处理技术的最新发展

数字信号处理技术的最新发展 电子与信息工程学院12S005044 郭晓江 摘要:数字信号处理(DSP,digital signal processing)是一门涉及许多领域的新兴学科,在现代科技发展中发挥着极其重要的作用。近年来,随着半导体技术的进步,处理器芯片的处理能力越来越强大,使得信号处理的研究可以主要放在算法和软件方面,不再像过去那样需要过多考虑硬件。由于它的出色性能,DSP目前被广泛应用于数字通信、信号处理、工业控制、图像处理等领域。自从数字信号处理器问世以来,由于它具有高速、灵活、可编程、低功耗和便于接口等特点,已在图形、图像处理,语音、语言处理,通用信号处理,测量分析,通信等领域发挥越来越重要的作用。随着技术成本的降低,控制界已对此产生浓厚兴趣,已在不少场合得到成功应用。数字信号处理(DSP)是广泛应用于许多领域的新兴学科,因其具有可程控、可预见性、精度高、稳定性好、可靠性和可重复性好、易于实现自适应算法、大规模集成等优点,广泛应用于实时信号处理系统中。DSP技术在数据通信、汽车电子、图像处理以及声音处理等领域应用广泛。 DSP国际发展现状 国外的商业化信号处理设备一直保持着快速的发展势头。欧美等科技大国保持着国际领先的地位。例如美国DSP research公司,Pentek公司,Motorola公司,加拿大Dy4公司等,他们很多已经发展到相当大的规模,竞争也愈发激烈。我们从国际知名DSP技术公司发布的产品中就可以了解一些当今世界先进的数字信号处理系统的情况。 以Pentek公司一款处理板4293为例,使用8片TI公司300 MHz的TMS320C6203芯片,具有19 200 MIPS的处理能力,同时集成了8片32 MB的SDRAM,数据吞吐600 MB/s。该公司另一款处理板4294集成了4片Motorola MPC7410 G4 PowerPC处理器,工作频率400/500 MHz,两级缓存256K×64 bit,最高具有16MB 的SDRAM。 ADI公司的TigerSHARC芯片也由于其出色的协同工作能力,可以组成强大的处理器阵列,在诸多领域(特别是军事领域)获得了广泛的应用。以英国Transtech DSP公司的TP-P36N为例,它由4~8片TS101b(TigerSharc)芯片构成,时钟250 MHz,具有6~12 GFLOPS的处理能力。 DSP应用产品获得成功的一个标志就是进入产业化。在以往的20年中,这一进程在不断重复进行,而且周期在不断缩小。在数字信息时代,更多的新技术和新产品需要快速地推上市场,因此,DSP的产业化进程还是需要加速进行。随着竞争的加剧,DSP生产商随时调整发展规划,以全面的市场规划和完善的解决方案,加上新的开发历年,不断深化产业化进程。 2002年1月7日~11日,在美国拉斯维加斯举行的全球最大的消费类电子产品展CES (Consumer Electronic Show),以及2月1 日在英国伦敦科学博物馆开幕“通向未来”科学技术展,展示了最新研究开发的DSP 新技术新产品在通信领域的应用。DSP制造商新推出一系列的产品,并且都瞄准了通信领域的应用。 作为处理数字信号的DSP技术,为人们快速的获取、分析和利用有效信息奠定

DSP技术与算法实现学习报告

DSP技术与算法实现学习报告 一.课程认识 作为一个通信专业的学生,在本科阶段学习了数字信号处理的一些基本理论知识,带着进一步学习DSP技术以及将其理论转化为实际工程实现的学习目的,选择了《DSP技术与算法实现》这门课程。通过对本课程的学习,我在原有的一些DSP基础理论上,进一步学习到了其一些实现方法,系统地了解到各自DSP芯片的硬件结构和指令系统,受益匪浅。 本门课程将数字信号处理的理论与实现方法有机的结合起来,在简明扼要地介绍数字信号处理理论和方法的基本要点的基础上,概述DSP的最新进展,并以目前国际国内都使用得最为广泛的德克萨斯仪器公式(TI,Texas Instruments)的TMS320、C54xx系列DSP为代表,围绕“DSP实现”这个重点,着重从硬件结构特点,软件指令应用和开发工具掌握出发,讲解DSP应用的基础知识,讨论各种数字信号处理算法的实现方法及实践中可能遇到的主要问题,在此基础上实现诸如FIR、IIR、FFT等基本数字信号处理算法等等。 1.TI的DSP体系 TI公司主要推出三大DSP系列芯片,即TMS320VC2000,TMS320VC5000,TMS320VC6000系列。 TMS320VC200系列主要应用于控制领域。它集成了Flash存储器、高速A/D转换器、可靠的CAN模块及数字马达控制等外围模块,适用于三相电动机、变频器等高速实时的工控产品等数字化控制化领域。 TMS320VC5000系列主要适用于通信领域,它是16为定点DSP芯片,主要应用在IP 电话机和IP电话网、数字式助听器、便携式音频/视频产品、手机和移动电话基站、调制调解器、数字无线电等领域。它主要分为C54和C55系列DSP。课程着重讲述了C54系列的主要特性,它采用改进哈弗结构,具有一个程序存储器总线和三个数据存储器总线,17×17-bit乘法器、一个供非流水的MAC(乘法/累加)使用的专用加法器,一个比较、选择、存储单元(Viterbi加速器),配备了双操作码指令集。 TMS320VC6000系列主要应用于数字通信和音频/视频领域。它是采用超长指令字结构设计的高性能芯片,其速度可以达到几十亿MIPS浮点运算,属于高端产品应用范围。

数字信号处理的应用和发展前景

数字信号处理的应用与发展趋势 作者:王欢 天津大学信息学院电信三班 摘要: 数字信号处理是应用于广泛领域的新兴学科,也是电子工业领域发展最为迅速的技术之一。本文就数字信号处理的方法、发展历史、优缺点、现代社会的应用领域以及发展前景五个方面进行了简明扼要的阐述。 关键词: 数字信号处理发展历史灵活稳定应用广泛发展前景 数字信号处理的简介 1.1、什么是数字信号处理 数字信号处理简称DSP,英文全名是Digital Signal Processing。 数字信号处理是利用计算机或专用处理设备以数字的形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。 DSP系统的基本模型如下: 数字信号处理是一门涉及许多学科且广泛应用于许多领域的新兴学科。它以众多的学科为理论基础,所涉及范围及其广泛。例如,在数学领域、微积分、概率统计、随即过程、数值分析等都是数字信号处理的基本工具;同时与网络理论、信号与系统、控制论、通信理论、故障诊断等学科也密切相关。近年来的一些新兴学科,如人工智能、模式识别、神经网络等,都是与数字信号处理密不可分的。数字信号处理可以说许多经典的理论体系作为自己的理论基础,同时又使自己成为一门新兴学科的理论基础。 1.2、数字信号系统的发展过程 数字信号处理技术的发展经历了三个阶段。 70 年代DSP 是基于数字滤波和快速傅里叶变换的经典数字信号处理, 其系统由分立的小规模集成电路组成, 或在通用计算机上编程来实现DSP 处理功能, 当时受到计算机速度和存储量的限制,一般只能脱机处理, 主要在医疗电子、生物电子、应用地球物理等低频信号处理方面获得应用。 80 年代DSP 有了快速发展, 理论和技术进入到以快速傅里叶变换(FFT) 为主体的现代信号处理阶段, 出现了有可编程能力的通用数字信号处理芯片, 例如美国德州仪器公司(TI公司) 的TMS32010 芯片, 在全世界推广应用, 在雷达、语音通信、地震等领域获得应用, 但芯片价格较贵, 还不能进 入消费领域应用。 90 年代DSP 技术的飞速发展十分惊人, 理论和技术发展到以非线性谱估计为代表的更先进的信号处理阶段, 能够用高速的DSP 处理技术提取更深层的信息, 硬件采用更高速的DSP 芯片, 能实时地完成巨大的计算量, 以TI 公司推出的TMS320C6X 芯片为例, 片内有两个高速乘法器、6 个加法器, 能以200MHZ 频率完成8 段32 位指令操作, 每秒可以完成16 亿次操作, 并且利用成熟的微电子工艺批量生产,使单个芯片成本得以降低。并推出了C2X 、C3X 、C5X 、C6X不同应用范围的系列, 新一代的DSP 芯片在移动通信、数字电视和消费电子领域得到广泛应用, 数字化的产品性能价 格比得到很大提高, 占有巨大的市场。 1.3、数字信号处理的特点

数字信号处理技术及发展趋势

数字信号处理技术及发展趋势 贵州师范大学物电学院电子信息科学与技术 罗滨志 120802010051 摘要 数字信号处理的英文缩写是DSP,而数字信号处理又是电子设计领域的术语,其实现的功能即是用离散(在时间和幅度两个方面)所采样出来的数据集合来表示和处理信号和系统,其中包括滤波、变换、压缩、扩展、增强、复原、估计、识别、分析、综合等的加工处理,从而达到可以方便获得有用的信息,方便应用的目的【1】。而DPS实现的功能即是对信号进行数字处理,数字信号又是离散的,所以DSP大多应用在离散信号处理当中。 从DSP的功能上来看,其发展趋势日益改变着我们的科技的进步,也给世界带来了巨大的变化。从移动通信到消费电子领域,从汽车电子到医疗仪器,从自动控制到军用电子系统中都可以发现它的身影【2】。拥有无限精彩的数字信号处理技术让我们这个世界充满变化,充满挑战。 In this paper Is the abbreviation of digital signal processing DSP, the digital signal processing (DSP) is the term in the field of electronic design, the function of its implementation is to use discrete (both in time and amplitude) sampling represented data collection and processing of signals and systems, including filtering, transformation, compression, extension, enhancement, restoration, estimation, identification, analysis, and comprehensive processing, thus can get useful information, convenient for the purpose of convenient application [1]. And DPS the functions is to digital signal processing, digital signal is discrete, so most of DSP applications in discrete signal processing. From the perspective of the function of DSP, and its development trend is increasingly changing our of the progress of science and technology, great changes have also brought the world. From mobile communication in the field of consumer electronics, from automotive electronics to medical equipment, from automatic control to the military electronic systems can be found in the figure of it [2]. Infinite wonderful digital signal processing technology to let our world full of changes, full of challenges

数字信号处理技术综述

数字信号处理 数字信号处理是20世纪60年代,随着信息学科和计算机学科的高速发展而迅速发展起来的一门新兴学科。数字信号处理是把信号用数字或符号表示成序列,通过计算机或通用(专用)信号处理设备,用数值计算方法进行各种处理,达到提取有用信息便于应用的目的。例如:滤波、检测、变换、增强、估计、识别、参数提取、频谱分析等。信号处理技术—直用于转换或产生模拟或数字信号,其中应用的最频繁的领域就是信号的滤波。此外,从数字通信、语音、音频和生物医学信号处理到检测仪器仪表和机器人技术等许多领域中,都广泛地应用了数字信号处理技术。在本文中,主要介绍数字信号处理中两个方面:傅立叶变换和数字滤波器。 首先,从信号处理的发展来看,傅立叶的思想及其分析方法毫无疑问具有极其重要的地位,因为它开创了对信号进行频谱分析的理论,从而解决了许多复杂的处理过程。 传统的信号分析方法分别在时域和频域使用傅立叶变换进行处理。傅立叶变换以及其数字实现方法——快速傅立叶变换允许把一个信号分解成多个独立的频率分量和幅度分量。这样很容易区分开有用信号和噪声。 但是经典傅立叶变换工具的主要缺陷是不能把时间和频率信息结合起来给出频率是怎样随时间变化的。对于非平稳信号,传统的傅立叶变换显然不行,因为它无法给出所需信号频率出现的时间区域,也就无法真正了解频率随时间的变化情况。 短时傅立叶变换是一种能对信号同时进行时间域和频率域分析的工具。它的基本思想是:通过对所感兴趣的时刻附近的一小部分信号进行傅立叶分析,以确定该时刻的信号频率。因为时间间隔与整个信号相比是很短的(如语音信号),因此把这个处理过程叫做短时傅立叶变换。 为实现STFT,研究人员一开始使用的是窗口。实际上,它只给了我们关于信号的部分信息,STFT分析的精度取决于窗的选取。这正难点所在,比如:时间间隔应取多大;我们要确定什么样的窗口形状才能给中心点一个较大的权值,而给边缘点一个较小的权值;不同的窗口会产生不同的短时分布。还应该注意到的是:信号的特性由于窗函数的特性有所扰乱,信号恢复原状需要适当的整理并对信号进行估计。因此,STFT并不总能给我们一个清晰的表述。这就需要更好的方法来表示事件和频率的关系。 因此,研究时间—频率分布的动机是为了改进STFT,其基本思想是获得一个时间和频率的联合函数,用于精确的描述时域和频域的信号能量。 经典傅立叶分析只能把信号分解成单个的频率分量,并且建立其每一个分量的相对强度,但能量频谱并没有告诉我们那些频率在什么时候出现。时—频分布

FPGA在高速数字信号处理中的使用

由于成本、系统功耗和面市时间等原因,许多通讯、视频和图像系统已无法简单地用现有DSP处理器来实现,现场可编程门阵列(FPGA)尤其适合于乘法和累加(MAC)等重复性的DSP任务。本文从FPGA与专用DSP器件的运算速度和器件资源的比较入手,介绍FPGA 在复数乘法、数字滤波器设计和FFT等数字信号处理中应用的优越性,值得(中国)从事信号处理的工程师关注。 Chris Dick Xilinx公司 由于在性能、成本、灵活性和功耗等方面的优势,基于FPGA的信号处理器已广泛应用于各种信号处理领域。近50%的FPGA产品已进入各种通信和网络设备中,例如无线基站、交换机、路由器和调制解调器等。FPGA提供了极强的灵活性,可让设计者开发出满足多种标准的产品。例如,万能移动电话能够自动识别GSM、CDMA、TDMA或AMPS等不同的信号标准,并可自动重配置以适应所识别的协议。FPGA所固有的灵活性和性能也可让设计者紧跟新标准的变化,并能提供可行的方法来满足不断变化的标准要求。 复数乘法 复数运算可用于多种数字信号处理系统。例如,在通讯系统中复数乘积项常用来将信道转化为基带。在线缆调制解调器和一些无线系统中,接收器采用一种时域自适应量化器来解决信号间由于通讯信道不够理想而引入的干扰问题。量化器采用一种复数运算单元对复数进行处理。用来说明数字信号处理器优越性能的指标之一就是其处理复数运算的能力,尤其是复数乘法。 一个类似DSP-24(工作频率为100MHz)的器件在100ns内可产生24×24位复数乘积(2个操作数的实部和虚部均为24位精度)。复数乘积的一种计算方法需要4次实数乘法、1次加法和1次减法。一个满精度的24×24实数管线乘法器需占用348个逻辑片。将4个实数乘法器产生的结果组合起来所需的2个48位加法/减法器各需要24个逻辑片(logic slice)。这些器件将工作在超过100MHz的时钟频率。复数乘法器采用一条完全并行的数据通道,由4×348+2×24=1440个逻辑片构成,这相当于Virtex XCV1000 FPGA所提供逻辑资源的12%。计算一个复数乘积所需的时间为10ns,比DSP结构的基准测试快一个数量级。为了获得更高的性能,几个完全并行的复数乘法器可在单个芯片上实现。采用5个复数乘法器,假设时钟频率为100MHz,则计算平均速率为每2ns一个复数乘积。这一设计将占用一个XCV1000器件约59%的资源。 这里应该强调的一个问题是I/O,有这样一条高速数据通道固然不错,但为了充分利用它,所有的乘法器都须始终保持100%的利用率。这意味着在每一个时钟来临时都要向这些单元输入新的操作数。 除了具有可实现算法功能的高可配置逻辑结构外,FPGA还提供了巨大的I/O带宽,包括片上和片外数据传输带宽,以及算术单元和存储器等片上部件之间的数据传输带宽。例如,XCV1000具有512个用户I/O引脚。这些I/O引脚本身是可配置的,并可支持多种信号标准。实现复数乘法器的另一种方法是构造一个单元,该单元采用单设定或并行的24x24实数乘法器。这种情况下,每一个复数乘法需要4个时钟标识,但是FPGA的逻辑资源占用率却降到了最低。同样,采用100MHz系统时钟,每隔40ns可获得一个新的满精度复数乘积,这仍是DSP结构基准测试数据的2.5倍。这一设定方法需要大约450个逻辑片,占一个XCV1000器件所有资源的3.7%(或XCV300的15%)。 构造一条能够精确匹配所需算法和性能要求的数据通道的能力是FPGA技术独特的特性之一。而且请注意,由于FPGA采用SRAM配置存储器,只需简单下载一个新的配置位流,同样的FPGA硬件就可适用于多种应用。FPGA就像是具有极短周转时间的微型硅片加工厂。

DSP常见算法的实现

3.6 常见的算法实现 在实际应用中虽然信号处理的方式多种多样,但其算法的基本要素却大多相同,在本节中介绍几种较为典型的算法实现,希望通过对这些例子(单精度,16bit )的分析,能够让大家熟悉DSP 编程中的一些技巧,在以后的工作中可以借鉴,达到举一反三的效果。 1. 函数的产生 在高级语言的编程中,如果要使用诸如正弦、余弦、对数等数学函数,都可以直接调用运行库中的函数来实现,而在DSP 编程中操作就不会这样简单了。虽然TI 公司提供的实时运行库中有一些数学函数,但它们所耗费的时间大多太长,而且对于大多数定点程序使用双精度浮点数的返回结果有点“大材小用”的感觉,因此需要编程人员根据自身的要求“定制”数学函数。实现数学函数的方法主要有查表法、迭代法和级数逼近法等,它们各有特点,适合于不同的应用。 查表法是最直接的一种方法,程序员可以根据运算的需要预先计算好所有可能出现的函数值,将这些结果编排成数据表,在使用时只需要根据输入查出表中对应的函数值即可。它的特点是速度快,但需要占用大量的存储空间,且灵活度低。当然,可以对上述查表法作些变通,仅仅将一些关键的函数值放置在表中,对任意一个输入,可根据和它最接近的数据采用插值方法来求得。这样占用的存储空间有所节约,但数值的准确度有所下降。 迭代法是一种非常有用的方法,在自适应信号处理中发挥着重要的作用。作为函数产生的一种方法,它利用了自变量取值临近的函数值之间存在的关系,如时间序列分析中的AR 、MA 、ARMA 等模型,刻画出了信号内部的特征。因为它只需要存储信号模型的参量和相关的状态变量,所以所占用的存储空间相对较少,运算时间也较短。但它存在一个致命的弱点,由于新的数值的产生利用了之前的函数值,所以它容易产生误差累积,适合精度要求不高的场合。 级数逼近法是用级数的方法在某一自变量取值范围内去逼近数学函数,而将自变量取值在此范围外的函数值利用一些数学关系,用该范围内的数值来表示。这种方法最大的优点是灵活度高,且不存在误差累积,数值精度由程序员完全控制。该方法的关键在于选择一个合适的自变量取值区间和寻找相应的系数。 下面通过正弦函数的实现,具体对上述三种方法作比较。 查表法较简单,只需要自制一张数据表,也可以利用C5400 DSP ROM 内的正弦函数表。 迭代法的关键是寻找函数值间的递推关系。假设函数采样时间间隔为T ,正弦函数的角频率为ω,那么可以如下推导: 令()()()T T ω?β?αω?-+=+sin sin sin 等式的左边展开为 T T side left ω?ω?sin cos cos sin _+= 等式的右边展开为 ()T T side right ω?βωα?sin cos cos sin _-+= 对比系数,可以得到1,cos 2-==βωαT 。令nT =?,便可以得到如下的递推式: [][][]21cos 2---=n s n s T n s ω

数字信号处理的新技术及发展

数字信号处理的新技术及发展 摘要:数字信号处理是一门涉及许多学科而又广泛应用于许多领域的新兴学科。本文简述了数字信号处理技术的发展过程,分析了数字信号处理技术在多个领域应用状况,介绍了数字信号处理技术的最新发展,对数字信号处理技术的发展前景进行了展望。 关键词:信号数字信号处理信息技术DSP 0引言 自从数字信号处理(Digital Signal Processor)问世以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生,并到迅速的发展。由于它具有高速、灵活、可编程、低功耗和便于接口等特点,已在图形、图像处理,语音、语言处理,通用信号处理,测量分析,通信等领域发挥越来越重要的作用。随着技术成本的降低,控制界已对此产生浓厚兴趣,已在不少场合得到成功应用。 1数字信号处理技术的发展历程 DSP的发展大致分为三个阶段: 在数字信号处理技术发展的初期(二十世纪50-60年代),人们只能在微处理器上完成数字信号的处理。直到70年代,有人才提出了DSP的理论和算法基础。一般认为,世界上第一个单片DSP芯片应当是1978年AMI公司发布的S281l。1979年美国Intel公司发布的商用可编程器件2920是DSP芯片的一个重要里程碑。这两种芯片内部都没有现代DSP芯片所必须有的单周期乘法器。1980年,日本NEC公司推出的mPD7720是第一个具有硬件乘法器的商用DSP芯片,从而被认为是第一块单片DSP器件。 随着大规模集成电路技术的发展,1982年美国德州仪器公司推出世界上第一代DSP芯片TMS32010及其系列产品,标志了实时数字信号处理领域的重大突破。Ti公司之后不久相继推出了第二代和第三代DSP芯片。90年代DSP发展最快。Ti公司相继推出第四代、第五代DSP芯片等。 随着CMOS技术的进步与发展,日本的Hitachi公司在1982年推出第一个基于CMOS工艺的浮点DSP芯片,1983年日本Fujitsu公司推出的MB8764,其指

DSP技术综述

DSP技术综述 班级:7 学号: 姓名:

【摘要】数字信号处理(DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。它是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。本文概述了数字信号处理技术的发展过程,分析了DSP处理器在多个领域应用状况,介绍了DSP的最新发展,对数字信号处理技术的发展前景进行了展望。 【Abstract】:Digital signal processing (DSP) is the one who is widely used in many disciplines involved in many areas of emerging disciplines. It is a through the use of mathematical skills execution conversion or extract information, to deal with real signal method, these signals by digital sequence said.This paper outlines the development of digital signal processing technology, processes, analyzes the DSP processor, application status in many areas, introduced the latest developments in DSP, digital signal processing technology for the future development prospects. 【关键词】数字信号处理;DSP平台;DSP发展趋势【Key words】Signal digital signal processing ; DSP platform ; the development trend of DSP

基于TMS320C6455的高速数字信号处理系统设计

基于TMS320C6455的高速数字信号处理系统设计 摘要:针对高速实时数字信号处理系统设计要求,本文提出并设计了基于dsp+fpga结构的高速数字信号处理系统,采用ti公司目前单片处理能力最强的定点dsp芯片tms320c6455为系统主处理器,fpga作为协处理器。详细论述了dsp外围接口电路的应用和设计,系统设计电路简洁、实现方便,可靠性强。 关键词:tms320c6455 fpga 数字信号处理系统设计 design of high-speed digital signal processing system based on tms320c6455 cao jingzhi,he fei,li qiang,ren hui,qin wei (department of tool development,china petroleum logging co.,ltd shaan xi xi’an 710077) abstract:according to the design needs of high-speed real-time digital signal processing system.the paper puts forward a design of high-speed digital signal processing system based on dsp+fpga structure,adopting ti company fixed-point dsp chip tms320c6455,the currently strongest capacity monolithic processor,for system main processor,and fpga as coprocessor.this paper describs the application and design of dsp periphery circuit interface in detail.the system design has simple circuit and realize convenient, reliability.

高速实时数字信号处理系统技术探析

高速实时数字信号处理系统技术探析  (毛二可院士 龙腾副教授)    高速实时数字信号处理(DSP)技术取得了飞速的发展,目前单片DSP芯片的速度已经可以达到每秒16亿次定点运算(1600MIPs到4800MIPs);最近TI宣布1GHz DSP已经准备投产。其高速度、可编程、小型化的特点将使信息处理技术进入一个新纪元。一个完整的高速实时数字信号处理系统包括多种功能模块,如DSP、ADC、DAC等等。本文的内容主要是分析高速实时数字信号处理系统的产生、特点、构成、以及系统设计中的一些问题,并对其中的主要功能模块分别进行了分析。  一、高速实时数字信号处理概述  1.信号处理的概念  信号处理的本质是信息的变换和提取,是将信息从各种噪声、干扰的环境中提取出来,并变换为一种便于为人或机器所使用的形式。从某种意义上说,信号处理类似于"沙里淘金"的过程:它并不能增加信息量(即不能增加金子的含量),但是可以把信息(即金子)从各种噪声、干扰的环境中(即散落在沙子中)提取出来,变换成可以利用的形式(如金条等等)。如果不进行这样的变换,信息虽然存在,但却是无法利用的;这正如散落在沙中的金子无法直接利用一样。  2.高速实时数字信号处理的产生  早期的信号处理主要是采用模拟的处理方法,包括运算放大电路、声表面波器件(SAW)以及电荷耦合器件(CCD)等等。例如运算放大电路通过不同的电阻组配可以实现算术运算,通过电阻、电容的组配可以实现滤波处理等等。模拟处理最大的问题是不灵活、不稳定。其不灵活体现在参数修改困难,需要采用多种阻值、容值的电阻、电容,并通过电子开关选通才能修改处理参数。其不稳定主要体现为对周围环境变化的敏感性,例如温度、电路噪声等都会造成处理结果的改变。  解决以上问题最好的方法就是采用数字信号处理技术。数字信号处理可以通过软件修改处理参数,因此具有很大的灵活性。由于数字电路采用了二值逻辑,因此只要环境温度、电路噪声的变化不造成电路逻辑的翻转,数字电路的工作都可以不受影响地完成,具有很好的稳定性。因此,数字信号处理已经成为信号处理技术的主流。  数字信号处理的主要缺点是处理量随处理精度、信息量的增加而成倍增长,解决这一问题的方法是研究高速运行的数字信号处理系统;这就是本文所探讨的主题:高速实时数字信号处理的理论与技术。 3.高速实时数字信号处理特点   高速实时数字信号处理的特点:  首先是高速度,其处理速度可以达到数百兆量级。

数字信号处理技术的应用和发展

数字信号处理技术的应用和发展 摘要互联网信息化技术的不断进步和应用范围的持续拓宽加速了数字时代的到来。数字信号处理技术是将声音、图片或者是视频进行信息的模拟再将其转化为数字信息,该技术也是数字时代的标志性技术,目前已经在仪器仪表、通信、计算机以及图像图形处理等领域得到了广泛应用。本文结合数字处理技术的特点,就其应用现状和发展方向进行了思考。【关键词】数字信号处理数字时代计算机技术发展 计算机、机械制造、通讯等技术的进步为数字信号处理技术的发展提供了基础。数字信息护理技术可以对更大层面的数据信息进行分析处理,作为数字信号处理环节中实用性较强的应用型技术综合了数字信号处理理论、硬件技术、软件技术等。分析数字信号技术的发展现状对于技术和优化和应用水平的提高有着重要的理论意义和现实意义。 1 数字信号处理技术概述 1.1 数字信号处理技术的特点 数据提取和转化是数字信号处理技术的本质特征,该技术就是将各类信号从复杂的环境中提取出来并将其转化为更加容易识别和利用的形式。高速的运算能力和高准确性的运算结果是数字信号处理技术的显著特征。通过独特的寻址模式和流水线结构是数字信号处理技术的主要运算方法。在一个指令周期内分别进行一次乘法和一次加法就是硬件乘法累加操作,该技术应用在实际的操作中速度可以达到800Mb/s。除此之外数字信号处理技术的稳定性也十分出色,通过二值逻辑的采用使得数字信号处理技术可以保证较强的环境使用能力。在软件的作用下数字处理技术可以实现参数的修改,保证较强的灵活性。 1.2 数字信号处理技术应用的意义

各类新技术的出现与发展对于社会生产和人类生活产生了巨大的影响,数字信号处理技术作为一项发展较快且适用性强的技术,其发展迅速在各个领域的应用水平也不断提高,销售价格也随之降低。目前应用中的数字信号处理技术的总线、资源及技术结构的标准化程度不断提高,一方面这会加剧我国的电子产品行业的竞争,另一方面也会促进电子产品和其他相关行业的进步与发展。 2 数字信号处理技术的应用思考 2.1 通信领域的应用 目前数字信号技术已经在众多领域得到了应用,通信领域中信号处理技术的应用推动了通信技术的发展和通信行业的变革。数字信号处理技术显著提高了通信信号和信息的处理效率和处理质量,为通信技术的进步与变革提供了基础,数字信号处理技术已经成为了通信理论中的一个新的学科,加快了无线系统成为主流通信方式的进程,数字信号处理技术对于通信行业的发展有着重要的支撑和引导作用,可视电话以及通信扩频等都需要数字信号处理技术参与的情况下才可以实现。 2.2 图像图形技术领域的应用 数字信号处理技术在图像图形技术领域的应用主要集中在有线电视机高品位卫星广播中,除此之外在MPEG2编码器和译码器、DVD活动中的图像压缩和解压中也发挥着重要的作用。数字信号处理技术的应用有效推动了信息处理速度和处理功能的提高,科技的不断进步加快了活动影像解压技术的快速发展。 2.3 仪器仪表领域中的应用 目前仪器仪表领域中相关测量工作中也有着数字信号处理技术的应用,于此同时该技术有取代高档单片机成为主流仪器仪表测量方式的趋势。在仪器仪表的开发和测量中应用数字信号处理技术有利于产品档次的提高,相较于传统的信息处理技术数字信号处理技术的内在资源

数字信号处理 详细分析 采样

离散傅里叶变换 一、问题的提出:前已经指出,时域里的周期性信号在频域里表现为离散的值,通常称为谱线;而时域里的离散信号(即采样数据)在频域里表现为周期性的谱。 推论:时域里的周期性的离散信号,在频域里对应为周期性的离散的谱线。 由于傅里叶变换和它的反变换的对称性,我们不妨对称地把前者称为时域的采样,后者称为频域的采样;这样,采用傅里叶变换,时域的采样可以变换成为频域的周期性离散函数,频域的采样也可以变换成列域的周期性离散函数,这样的变换被称为离散傅里叶变换,简称为DFT。图3-1就是使用采样函数序列作离散傅里叶变换的简单示例。 (a )时域的采样在频域产生的周期性 (b )频域的采样在时域产生的周期性 图3-1 采样函数的离散傅里叶变换 上图就是使用采样函数序列作离散傅立叶变换的简单示例,在时域间隔为s t 的采样函数 序列的DFT 是频域里间隔为s s t f 1 =的采样函数序列;反之,频域里间隔为s f 的采样函数序列是时域里间隔为w W f T 1=的采样函数序列,如图3-1(b)所示。 由于在离散傅立叶变换中,时域和频域两边都是离散值,因此它才是真正能作为数字信号处理的变换,又由于变换的两边都表现出周期性,因此变换并不需要在),(+∞-∞区间进行,只需讨论一个有限周期里的采样作变换就可以保留全部信息。 表3-1为傅立叶变换和傅立叶级数的关系

二、DFT 的定义和性质 离散傅里叶变换(DFT )的定义为: 1、非周期离散时间信号)(n x 的Fourier 变换定义为:ωωωd e n x e X n j j -∞ ∞-∑ =)()( (1) 反变换:ωπωππωd e e X n x n j j ?-= )(21)( )(ωj e X 的一个周期函数(周期为)π 2,上式得反变换是在)(ωj e X 的一个周期内求积分的。这里数字信号的频率用ω来表示,注意ω与Ω有所不同。设s f 为采样频率,则采样周期为 f T 1 =,采样角频率T s π2=Ω,数字域的频率s s f πω2= 式1又称为离散时间Fourier 变换(DTFT )2、周期信号的离散Fourier 级数(DFS ) 三、窗函数和谱分析 1、谱泄露和栅栏效应 离散傅立叶变换是对于在有限的时间间隔(称时间窗)里的采样数据的变换,相当于对数据进行截断。这有限的时间窗既是DFT 的前提,同时又会在变换中引起某些不希望出现的结果,即谱泄露和栅栏效应。 1)谱泄露 以简单的正弦波的DFT 为例,正弦波具有单一的频率,因而在无限长的时间的正弦波,应该观察到单一δ函数峰,如下图示,但实际上都在有限的时间间隔里观察正弦波,或者在时间窗里作DFT ,结果所得的频谱就不再是单一的峰,而是分布在一个频率范围内,下图(b )示。这样信号被时间窗截断后的频谱不再是它真正的频谱,称为谱泄露。

高速实时数字信号处理硬件技术发展概述

高速实时数字信号处理硬件技术发展概述 摘要:在过去的几年里,高速实时数字信号处理(DSP)技术取得了飞速的収展,目前单片DSP芯片的速度已经可以达到每秒80亿次定点运算(8000MIPS);其 高速度、可编程、小型化的特点将使信息处理技术迚入一个新纪元。一个完整的高速 实时数字信号处理系统包括多种功能模块,如DSP,ADC,DAC,RAM,FPGA,总线接口等技术本文的内容主要是分析高速实时数字信号处理系统的特点,构成,収展过程和系统设计中的一些问题,幵对其中的主要功能模块分别迚行了分析。最后文中介绍了一种采用自行开収的COTS产品快速构建嵌入式幵行实时信号处理系统的设计方法。 1.概述 信号处理的本质是信息的变换和提取,是将信息仍各种噪声、干扰的环境中提取出来,幵变换为一种便于为人或机器所使用的形式。仍某种意义上说,信号处理类似于”沙里淘金”的过程:它幵不能增加信息量(即不能增加金子的含量),但是可以把信息(即金子)仍各种噪声、干扰的环境中(即散落在沙子中)提取出来,变换成可以利用的形式(如金条等)。如果不迚行这样的变换,信息虽然存在,但却是无法利用的,这正如散落在沙中的金子无法直接利用一样。 高速实时信号处理是信号处理中的一个特殊分支。它的主要特点是高速处理和实时处理,被广泛应用在工业和军事的关键领域,如对雷达信号的处理、对通

信基站信号的处理等。高速实时信号处理技术除了核心的高速DSP技术外,还包括很多外围技术,如ADC,DAC等外围器件技术、系统总线技术等。 本文比较全面地介绍了各种关键技术的当前状态和収展趋势,幵介绍了目前高性能嵌入式幵行实时信号处理的技术特点和収展趋势,最后介绍了一种基于COTS产品快速构建嵌入式幵行实时信号处理系统的设计方法。 2.DSP技术 2.1 DSP的概念 DSP(digital signal processor),即数字信号处理器,是一种专用于数字信号处理的可编程芯片。它的主要特点是: ①高度的实时性,运行时间可以预测; ②Harvard体系结构,指令和数据总线分开(有别于冯·诺依曼结构); ③RISC指令集,指令时间可以预测; ④特殊的体系结构,适合于运算密集的应用场合; ⑤内部硬件乘法器,乘法运算时间短、速度快; ⑥高度的集成性,带有多种存储器接口和IO互联接口; ⑦普遍带有DMA通道控制器,保证数据传辒和计算处理幵行工作; ⑧低功耗,适合嵌入式系统应用。 DSP有多种分类方式。其中按照数据类型分类,DSP被分为定点处理器(如ADI的ADSP218x/9xBF5xx,TI的TMS320C62/C64)和浮点处理器(如ADI的SHARC/Tiger SHARC系统·TI的TMS320C67)。 雷达信号处理系统对DSP的要求很高,通常是使用32bit的高端DSP;而且浮

dsp技术及应用试题及答案(一)

dsp技术及应用试题及答案(一) dsp技术及应用试题及答案【一】 1.1 DSP的概念是什么?本书说指的DSP是什么? 答:DSP有两个概念。一是数字信号处理(Digital Signal Processing),指以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理;二是数字信号处理器(Digital Signal Processor),指是一种特别适合于进行数字信号处理运算的微处理器,其主要应用是实时快速地实现各种数字信号处理算法。本书中的DSP主要指后者,讲述数字信号处理器的应用。 1.2 什么是哈佛结构和冯?诺伊曼结构?它们有什么区别? 答:(1) 冯·诺伊曼(Von Neuman)结构 该结构采用单存储空间,即程序指令和数据共用一个存储空间,使用单一的地址和数据总线,取指令和取操作数都是通过一条总线分时进行。当进行高速运算时,不但不能同时进行取指令和取操作数,而且还会造成数据传输通道的瓶颈现象,其工作速度较慢。 (2)哈佛(Harvard)结构 该结构采用双存储空间,程序存储器和数据存储器分开,

有各自独立的程序总线和数据总线,可独立编址和独立访问,可对程序和数据进行独立传输,使取指令操作、指令执行操作、数据吞吐并行完成,大大地提高了数据处理能力和指令的执行速度,非常适合于实时的数字信号处理。 1.3 已知一个16进制数3000H,若该数分别用Q0、Q5、Q15表示,试计算该数的大小。 答:3000H=12288。若用Q0表示,则该数就是12288;若用Q5表示,则该数就是12288*2-5=384;若用Q15表示,则该数就是12288*2-15=0.375 1.4 若某一个变量用Q10表示,试计算该变量所能表示的数值范围和精度。答:Q10能表示的数值范围是-32~31.9990234,其精度为2-10 1.5 若x=0.4567,试分别用Q15、Q14、Q5将该数转换为定点数。 答:Q15:x*215=int(0.4567*32768)=14965;Q14:x*214=int(0.4567*16384)=7482;Q5:x*25=int(0.4567*32)=14。 注意:结果都要取整;可以十进制也可以是十六进制。dsp技术及应用试题及答案【二】 2.1 TMS320C54x芯片的CPU主要由哪几部分组成? 答:CPU主要组成是40位的算术逻辑运算单元ALU; 40位的累加器A和B;

数字信号处理课程标准

. 课程标准 课程名称:数字信号处理 课程代码:05038 适用专业:通信技术 学时:72 学分:4.5 制订人: 审核:

《数字信号处理》学习领域(课程)标准 一、学习领域(课程)综述 (一)学习领域定位 “数字信号处理”学习领域由岗位群的“通信电力机务员岗位”行动领域转化而来,是构成通信技术专业框架教学计划的专业学习领域之一,其定位见表一: 表一学习领域定位 (二)设计思路 本学习领域注重培养分析问题、解决问题的能力、强化学生动手实践能力,遵循学生认知规律,紧密结合通信技术专业的发展需要,为将来从事通信技术产品的设计、检测奠定坚实的基础。将本课程的教学活动分析设计成若干项目或工作情景,以项目为单位组织教学、并以典型设备为载体,通过具体案例,按数字信号项目实施的顺序逐步展开,让学生在掌握技能的同时,引出相关专业理论知识,使学生在技术训练过程中加深对专业知识、技能的理解和应用、培养学生的综合职业能力,满足学生职业生涯发展的需要。 本课程在内容组织形式上强调了学生的主体性学习,在每个项目实施前,先提出学习目标,再进行任务分析,学生针对项目的各项任务进行相关知识的学习,并通过多种实践活动实施项目以实现学习目标。最后根据多元化的评分标准进行自我评价。 (三)学习领域(课程)目标 1. 方法能力目标: ●能根据项目任务或工作,制订项目完成工作计划; ●学会自我学习、收集和检索信息、查阅技术资料; ●在数字信号处理过程中会选择各种仪器仪表;

●学会学习和工作的方法,勤于思考、做事认真的良好作风; ●培养学生一丝不苟、刻苦钻研的职业道德; ●学会在产品制作过程中进行技术指导、质量管理和成本核算方法。 2. 社会能力目标: ●建立团结协作的精神,能与人沟通和合作完成工作任务; ●养成勇于创新、敬业乐业的工作作风; ●形成清晰的逻辑思维意识,正确辨别事物的真假; ●了解通信技术应用的发展前景,拓宽产品开发的思路; ●掌握产品生产工艺要求,培养工作的质量意识、安全意识; ●具有较强的社会责任感,为祖国发展强大贡献力量的责任意识; ●积累丰富的工作经验。 3. 专业(职业)能力目标: ●具备设计IIR数字滤波器的基本能力; ●具备设计FIR数字滤波器的基本能力; ●能够对基本的信号进行基本的运算; ●能够将模拟滤波器转化为数字滤波器 二、学习领域(课程)描述 学习领域描述包括学习领域名称、学期、参考学时、学习任务和学习领域目标等,见表二: 表二学习领域的描述

相关文档
最新文档