基础隔震结构地震能量分布及耗散研究

基础隔震结构地震能量分布及耗散研究
基础隔震结构地震能量分布及耗散研究

抗震设计中反应谱的应用

抗震设计中反应谱的应用 一.什么是反应谱理论 在房屋工程抗震研究中,反应谱是重要的计算由结构动力特性所产生共振效应的方法。它的书面定义是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应和加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力和变形”,反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自 振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。地震时结构 所受的最大水平基底剪力,即总水平地震作用为: FEK = kβ(T)G 式中,k为地震系数,β(T)则是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震 时结构振动加速度的放大倍数。 β(T)=Sa(T)/a 反应谱理论建立在以下基本假定的基础上:1)结构的地震反应是线弹性的,可以采用叠加原理进行振型组合;2)结构物所有支承处的地震动完全相同:3)结构物最不利地震反应为其最大地震反应:4)地震动的过程是平稳随机过程。 二.实际房屋抗震设计中的应用 为了进行建筑结构的抗震设计,必须首先求得地震作用下建筑结构各构件的内力。一般而言,求解建筑结构在地震作用下构件内力的方法主要有两种,一种是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决于动力学模型的准确性和所选取地震波是否适当,并且对于工程技术人员来说,这种方法不易掌握;第二种方法是根据地震作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地震影响的等效力,即地震作用,然后进行抗震计算,抗震规范实际上采用了第二种方法,即地震作用反应谱法。实践也证明此方法更适合工程技术人员采用。 由于目前抗震规范中的地震作用反应谱仅考虑结构发生弹性变形情况下所得的反应谱,因此当结构某些部位发生非线性变形时,抗震规范中的反应谱就不能适用,而应采用弹塑性反应谱来进行计算。因此选用合适的弹塑性反应谱并提出适当的地震作用计算方法在我国抗震设计中具有重要的现实意义。弹塑性反应谱种类繁多,主要包括等延性强度需求谱和等强度延性需求谱,其实质是确定强度折减系数R,延性系数μ,以及结构周期T之间的关系。下面就普通房屋设计中的弹塑性反应谱设计来举例说明。 反应谱是指单自由度体系对于某地面运动加速度的最大反应与体系的自振特性(自振周期和阻尼比)之间的函数关系。抗震规范中所采用的弹性反应谱如图1所示?,它是在计算了大量地面运 动加速度的基础上,确定地震影响系数α与特征周期T之间关系的曲线

浅议高层建筑结构设计中的隔震减震措施 潘克君

浅议高层建筑结构设计中的隔震减震措施潘克君 摘要:地震灾害已经成为当前对于人类生活造成破坏严重性最大的一种地质类 自然灾害,随着建筑行业的不断发展和进步,很多高层建筑拔地而起,对于当代 建筑结构设计中的隔震减震措施也需要提供相应的重视,目前已经逐步通过了各 种结构来增强建筑的隔震减震效果,隔震减震结构是一种能够通过建筑物内部相 关结构吸收地震过程中所产生巨大能量的构造物。 关键词:高层建筑;结构设计;隔震减震 1 抗震技术在高层建筑结构设计中的应用的必要性 我国是世界上地震频发的国家,每年,地震对我国经济造成的损害数以亿计,地震的存在严重威胁到人们的生命安全和财产安全,其破坏的巨大性和不可预测 性给我国的许多建筑物和构筑物造成了巨大的破坏。在国家抗震规范中明确规定:“小震不坏,中震可修,大震不倒”,对于小的地震,要求是在地震中建筑物和构 筑物的不发生破坏,不影响主体结构的受力;对于中型的地震,要求建筑物和构 筑物在地震后能够通过修理可继续使用;对于大型地震,要求建筑物和构筑物在 地震中不倒塌。随着我国在实际工程项目中的不断探索和实践,我国对于抗震已 经积累了丰富的经验,使得在地震中由于建筑物和构筑物的损害造成的人员伤亡 不断减少,对房屋的影响和造成的经济损失也不断减少。尽管我们在控制人员伤 亡方面和控制经济损失上面取得了长足的进展,也反映了我国对于人们的住房结 构设计以生活安全为主要目标的原则,但是由于地震的破坏力和不可预见性,在 地震中还是有许多建筑物和构筑物发生了破坏,使得其不能够再继续使用,造成 了较大的经济损失。在此背景下,进一步优化建筑物的抗震设计,避免人员伤亡 和保护房屋建筑已成为亟待解决的问题,同时也是建筑设计单位必须考虑的问题。房屋结构作为住宅建设中最关键的部分,合理的设计可以保证房屋的安全系数, 从而提高整个工程的质量。大多数房屋在设计时遵循“经济、实用、安全”的原则,还要以抗震设计原则为依据,结合瞬变地震本身的特点和不确定性,确保安全和 设计思路,以应对自然灾害。 2建筑结构隔震减震介绍 建筑物内部的阻尼大小有利于地震能量消耗。而减震措施恰好利用这一点, 借助建筑阻尼增加吸取地震能量,以此来维护主体结构,降低震害。隔震技术被 广泛应用到高层建筑中,特别是汶川地震后涌现出较多的隔震建筑。因隔震设计 选取的材料和以往设计存在差异,和传统抗震设计对比,当前的隔震设计,特别 是高层隔震设计具有一定难度。隔震措施存在时间限制,不仅能应用到新建结构,而且在建筑物建成后可通过阻尼增加来实现减震。从适用部位层面而言,减震措 施较为广泛,无论是上部结构,还是隔震夹层均适用。而消能减震技术利用消能 减震装置配设来提高结构阻尼比,进而防控结构变形问题,借助附加装置来吸取 地震能量,实现主体结构的全面防护,让主体结构遭受地震灾害时不会出现严重 破坏。依照数据统计可知,消能减震结构能够显著增强抗震性能。另外,抗震构 造还能够依据未采用消能减震之前的结构来降低。 3 隔震措施 3.1 隔震构造措施 隔震结构在地震时会发生较大的水平位移,为保证隔震层在罕遇地震下具有 发生较大变形的能力,设计时在上部结构的周边设置竖向隔离缝,缝宽取为

隔震结构的基本原理及动力分析

隔震结构的基本原理及动力分析 摘要:本文根据现行的《建筑抗震设计规范》,介绍了隔震结构的基本原理、实用范围和设计与分析方法,并通过一隔震结构的设计实例说明隔着结构的优越性。 关键词:基础隔震;地震响应;时程分析法; 引言 目前,我国和世界各国普遍采用的传统抗震方法是将建筑物设计为“延性结构”,通过适当控制调整结构物的自身刚度和强度,使结构构件(如梁、柱、墙、节点等)在强烈地震时进入非弹性状态后具有较大的延性,从而通过塑性变形消耗地震能量,减轻建筑物的地震反应,使整个结构“裂而不倒”,这就是“延性结构体系”[1~3]。它的设防目标是“小震不坏”、“中震可修”、“大震不倒”。实践证明,这种方法对减轻地震灾害起到了积极作用,但是这种传统的结构抗震方法有其明显的不足,随着我国经济的高速发展,对建筑功能要求越来越高,结构的形式越来越多样化、复杂化,很多重要的建筑(电力、通讯中心、核电站、纪念性的建筑、海洋平台等)结构及内部设备的破化将造成巨大的经济损失。对这类建筑的抗震性能提出更高的要求——结构不允许进入塑性工作阶段,因此采用传统抗震方法很难满足此类建筑抗震要求。面对新的社会要求,各国地震工程专家一直寻求新的结构抗震设计途径,以隔震为代表的“结构振动控制技术”便是这种努力的结果[4~6]。 1、隔震结构的基本原理 结构隔震体系是指在建筑物上部结构的底部与基础面之间设置某种隔震装置,使之与固结于地基中的基础地面分离开来的一种结构体系[6]。隔震结构的基本原理可以用图1进一步阐明。图中三条曲线表示不同的阻尼大小,为普通中低层建筑的自振周期,为隔震层建筑的自振周期。 (a)加速度反应谱(b)位移反应谱 图1隔震原理 从图中可以看出,结构自振周期延长,结构的地震加速度反应减小,地震位移反应增大;结构阻尼增大,结构的地震加速度反应和位移反应均减小。隔震系统的水平刚度远远低于上部结构的抗侧刚度,因此,结构的自振周期大大延长,

建筑结构基础隔震概述

建筑结构基础隔震概述 发表时间:2017-06-15T14:45:19.083Z 来源:《建筑知识》2017年2期作者:李淼陈海彬[导读] 本文对其基本原理进行了概述,通过对基础隔震中粘弹性隔震支座、滑移隔震支座、摩擦摆隔震支座的原理及特点的介绍。 (华北理工大学建筑工程学院河北唐山 063000)【摘要】基础隔震支座是一种应用较为广泛的建筑隔震、减震措施,本文对其基本原理进行了概述,通过对基础隔震中粘弹性隔震支座、滑移隔震支座、摩擦摆隔震支座的原理及特点的介绍,对基础隔震支座的应用前景进行了分析。【关键词】基础隔震;抗震设计;橡胶隔震;摩擦摆隔震【中图分类号】TU31 【文献标识码】A 【文章编号】1002-8544(2017)02-0245-02 引言 我国地处环太平洋地震带与欧亚地震带之间,地震活动频度高、强度大、分布广,是一个震灾严重的国家。近些年来,四川的汶川地震、青海的玉树地震都给人民的生命财产安全造成严重损害。因此建筑结构设计中的抗震设计问题成为关系到民生的关键问题,随着新技术和新理念的发展,隔震和消能减震成为建筑结构抗震设计中减轻地震灾害的有效手段。目前研究较多隔震措施包括特殊材料隔震、基础隔震、层间隔震、无粘结支撑隔震、悬挂隔震等措施,但应用最广泛的隔震措施为基础隔震。 1.基础隔震概念及原理 基础隔震是在基础与上部结构之间设置中间隔震层,将上部结构与基础隔开,在地震作用下,隔震装置可以隔离地震能量的向上传输,以降低上部结构的地震反应[1]。与传统抗震措施相比,基础隔震有其独特的特点:传统抗震设计原则是小震不坏、中震可修、大震不倒,其主要做法是增加结构屈服段长度,但在遭遇地震时主体结构不可避免的要发生强烈晃动,而采用基础隔震措施可以有效的减小建筑物的晃动,使上部结构只发生微小的相对运动和变形,从而保证建筑物在水平地震作用下不发生损坏和倒塌。不仅能保证居住者的人身安全,还能保证建筑结构和内部设备的完好。 2.基础隔震分类及特点 基础隔震包括粘弹性隔震、滑移隔震、摩擦摆隔震等多种形式,隔震装置有夹层橡胶垫隔震装置、混合隔震装置等形式。 2.1 滑移隔震支座 滑移隔震按其隔震装置的不同可以分为滚轴滑移隔震和摩擦滑移隔震,滚轴滑移隔震利用滚轴和滚球作为摩擦装置,摩擦滑移隔震采用特殊的摩擦阻尼器进行隔震,两者的作用机理相似,通过在基础面上设置滑移层,隔开基础与上部结构,从而抑制地震能量的向上传递。当地震作用较大时,水平地震作用力大于滑移层的摩阻力,滑移面产生相对滑移,通过滑移耗散地震能量,并阻止能量的传递。滑移隔震的关键问题在于隔震支座的选择,由于全部上部结构的重力荷载均由滑移支座承担,因此支座必须具有足够大的强度;为了更有效的隔震,要求滑移面的摩擦系数较小,同时还需要设置一定的滑移范围保证滑移量。国内外学者对此进行了大量的试验研究[2-3],并提出了新的隔震装置和摩擦面材料,为滑移隔震的推广应用提供基础。 2.2 粘弹性隔震支座 粘弹性隔震主要是通过粘弹性阻尼器作为隔震装置,是一种典型的速度相关型隔震支座,通过粘弹性材料的变形性能减小结构地震动作用[4]。目前应用最多的是叠层橡胶隔震支座,可以分为天然橡胶隔震支座和铅芯橡胶隔震支座,天然橡胶隔震支座由钢板层和橡胶层粘结而成,在提供较大的竖向刚度的同时,限制了横向变形。铅芯橡胶隔震支座则是在天然橡胶支座中心增加铅芯制作而成,在相同橡胶层和钢板层条件下,其水平抗变形能力将大大提高,提高了粘弹性隔震装置在大震作用下的隔震性能。 2.3 摩擦摆隔震支座 摩擦摆隔震支座在本质上也是一种滑移支座,其最主要的优势在于具有自动复位功能,在较大地震作用下,滑移摩擦隔震支座产生的相对滑移很难进行复位,必须借助特制的复位阻尼装置,不但增加了成本,也影响其使用性能。Zayas等[5]在1985年,研发了摩擦摆隔震系统(FPS),通过特质的圆弧滑动面使得隔震装置具有自复位功能。经过20多年的研究,目前摩擦摆隔震支座的构造形式已有10余种,其地震敏感度、稳定性和自复位能力均得到显著提高,成为一种具有广泛发展前景的隔震支座 3.结语 进行隔震设计的建筑抗震性能较传统的抗震结构体系,安全性和可靠性均具有较大的提升,而基础隔震措施作为目前应用比较成熟的技术,已经具有大量的工程实例,其隔震性能经受住了实际地震作用的考验,随着新技术、新材料的研发,隔震减震技术必将在工程实际中得到更广泛的应用。 参考文献 [1]吕西林,朱玉华,施卫星.组合基础隔靈房屋模型振动台试验研究[J].土木工程学报,2001,(2):34-39. [2]周锡元,韩森,李大望.并联和串联基础隔震体系地震反应的某些特征[J].工程抗震与加固改造,1995,(4):1-5. [3]王荣辉,许群.竖向弹簧一滚球隔靂系统的水平地震作用[J].华南理工大学学报, 2003,31(6):11-12. [4]王烨华,周云,等.粘弹性阻尼减震结构研究与应用的新进展[J].防灾减灾工程学报,2006,26(1):109-120. [5]Zayas V,Low S and Mahin S.A simple pendulum technique for achieving seismic isolation[J]. Earthquake Spectra, 1990,6:34-37. 基金项目:国家自然科学基金(51478162)

高层隔震结构的抗倾覆设计方法

目录 摘要......................................................................................................................................... I Abstract ..................................................................................................................................... II 第1章绪论. (1) 1.1研究背景及意义 (1) 1.2高层隔震建筑结构国内外研究现状综述............................................................. .3 1.2.1 高层隔震建筑结构国内研究现状............................................................... .3 1.2.2 高层隔震建筑结构国外研究现状 (4) 1.3本文研究的内容 .................................................................................................... .6第2章高层隔震结构有限元分析模型................................................................................. .7 2.1引言 (7) 2.2软件概述 (7) 2.3隔震设计方法及软件实现流程 (8) 2.3.1上部结构设计 (8) 2.3.2隔震层设计 (9) 2.3.3下部结构设计 (9) 2.3.4基础设计 (10) 2.3.5时程分析方法计算隔震结构的技术原理 (10) 2.4框架-剪力墙高层隔震结构实例计算分析 (11) 2.4.1工程概况 (11) 2.4.2隔震层布置 (12) 2.4.3地震波的选取 (15) 2.4.4水平向减震系数确定 (16) 2.4.5罕遇地震下隔震层的计算 (19) 2.5与ETABS结果的对比分析 (20) 2.5.1计算模型 (20) 2.5.2不同设计软件隔震结构周期计算结果对比 (21) 2.5.3ETABS与YJK计算结果分析对比 (22) 2.6本章小结 (23) 第3章高层隔震结构的倾覆判定条件 (24) 3.1 引言 (24) 3.2 隔震结构整体抗倾覆比计算公式 (24) Ⅰ

并联复合隔震结构的地震响应和滞回特性分析

IndustrialConstructionVol畅44,No畅1,2014 工业建筑 2014年第44卷第1期 并联复合隔震结构的地震响应和滞回特性分析 倡 袁 颖1  周爱红1  杨树标2  何国峰 1 (1.石家庄经济学院勘查技术与工程学院,石家庄 050031;2.河北工程大学土木工程学院,河北邯郸 056038) 摘 要:在建立并联复合隔震结构运动微分方程的基础上,通过数值模拟,计算并研究了不同加速度峰值下,给定摩擦承压比的多自由度并联复合隔震结构的自振周期、最大基底剪力、最大基底剪力系数、最大层间位移、层间速度、层间加速度等地震响应以及隔震层的滞回特性,并与普通抗震结构、夹层橡胶垫隔震结构、摩擦滑移结构进行了全面对比分析和讨论。结果表明:并联复合隔震结构由于充分利用了复合隔震支座的优点,能够显著降低结构的地震响应,并且具有优良的滞回耗能特性。 关键词:并联复合隔震;摩擦滑移隔震;夹层橡胶垫隔震;地震响应;滞回特性 DOI:10.13204/j.gyjz201401007 SEISMICRESPONSEANDHYSTERETICPERFORMANCEANALYSISOFPARALLEL COMPOSITEISOLATEDSTRUCTURE YuanYing1  ZhouAihong1  YangShubiao2  HeGuofeng 1 (1.SchoolofProspectingTechnologyandEngineering,ShijiazhuangUniversityofEconomics,Shijiazhuang050031,China; 2.SchoolofCivilEngineering,HebeiUniversityofEngineering,Handan056038,China) Abstract:Thedifferentialequationofmotionforparallelcompositeisolationstructurewasformulatedfirstly.Then,takingthemulti-degreeoffreedomsparallelisolatedstructurewithagivenfrictionbearingratioforanillustrativeexample,theseismicresponsesunderdifferentaccelerationpeakvalues,suchasnaturalperiodofvibration,themaximumbaseshear,themaximumbaseshearcoefficient,themaximumdisplacement,velocityandacceleration, andthehystereticperformancewerecalculatedandstudiedbynumericalsimulationmethod.Andthecalculationresultswerecomparedwiththoseofordinaryaseismicstructure,isolatedstructurewithlaminatedrubberbearingsandisolatedstructurewithfrictionslidingbearingscomprehensivelyanddiscussedindetail.Finally,someconclusionsweremadethattheisolationeffectofparallelcompositeisolatedstructurecouldreducetheseismicresponsedramaticallyduetothefulluseofthemeritsofcompositeisolatedbearings,andthehystereticenergydissipationperformancewasalsoexcellent. Keywords:parallelcompositeisolation;isolationwithfrictionslidingbearing;isolationwithlaminatedrubberbearing;seismicresponse;hystereticperformance 倡国家自然科学基金项目(41204075);国家大坝工程技术研究中心开放基金资助项目(NDSKFJJ1201)。 第一作者:袁颖,男,1976年出生,博士,副教授,硕士生导师。电子信箱:yuanyingson@163.com收稿日期:2013-05-15 近十几年来,在世界范围内,地震频发,比如 2001年印度7畅9级地震,2004年的印尼9畅0级地震,2005年巴基斯坦7畅8级地震,2007年秘鲁7畅5级地震,2008年中国汶川8畅0级地震,2011年日本9畅0级地震等,造成了巨大的人员伤亡和经济损失。在目前水平下,对地震进行准确预报很困难,因此,对建筑物进行结构抗震设计和设防以保证建筑物和人民生命财产安全是十分必要的。 隔震技术是工程抗震领域中的研究热点,在结构底部安装隔震支座是一种行之有效的减震方法。从20世纪60年代末起,国外学者开展了相关的研 究工作,并取得了很多研究成果[1-5] 。世界上许多国家都修建了隔震建筑,日本和美国等国家的有些 隔震建筑还经受过强震考验,隔震效果明显,并取得 了巨大的经济效益和社会效益[6-7] 。我国自2001年将隔震消能技术写进了GB50011—2001枟建筑抗震设计规范枠以来,隔震理论和应用的研究也得到 了迅速发展[8-9] 。 本文在以往工作基础上[10-12] ,对并联复合隔震体系进行了理论分析,建立了并联复合隔震的力学

地震结构设计谱理论

抗震结构设计谱理论 一、绪论 1.1 抗震结构设计谱的背景 反应谱理论是描述地震工程和抗震设计中结构体系激励和响应关系的重要工具。由于反应谱可以直接给出地震动作用下单自由度体系的最大反应,因而成为结构动力分析和抗震设计中关注的焦点。抗震设计谱是以地震动记录资料为依据,经统计分析和平滑化处理,结合当前经济发展水平和要求的基础上确定的。然而,由于地震动的复杂性以及对反应谱规律认识的不足,使得抗震规范设计谱往往不能全面准确地反映地震动的客观特征,这也就不可避免地影响到其使用范围和结构的抗震安全。另外,设计谱的传统建立方法对已获取大量地震动记录的国家和地区是来说是可行的,但对缺少地震动记录的地区来说如何确定设计谱也是值得探讨的。因此,揭示地震动的普遍规律和新特征,解决这一领域面临的诸多问题依然是地震工程界的重要课题。 1.2 反应谱概念与研究意义 抗震设计中采用的地震动参数习惯上称为设计地震,尽管工程界早已习惯于选择地震动的幅值、频谱和持时三要素作为工程地震动参数,但由于反应谱不能有效地反映持时的影响,因此,世界上绝大多数国家的抗震设计规范选择幅值和频谱作为设计参数。通常使用的地震动参数包括峰值加速度(或有效峰值加速度)和规准设计谱。因此,设计地震主要归结为设计谱的研究。在输入的地震动加速度时程给定后,以阻尼常数作为参数时,单自由度体系的最大相对位移反应、最大相对速度反应和最大绝对加速度反应,针对无阻尼固有周期画成的图形,分别称为相对位移反应谱、相对速度反应谱和绝对加速度反应谱,总称为地震反应谱。或者简称为位移反应谱、速度反应谱和加速度反应谱,总称为反应谱。 设计反应谱的演变是一个随着震害经验和强震记录的积累以及对地震动反应谱特性的不断认识而逐渐深入的过程,无论是考虑场地条件,还是考虑近远震的影响,从实质上讲,设计反应谱的演变都是朝着场地地震环境相关性设计反应谱的方向发展,而场地地震环境的区别主要表现在场地特征周期和反应谱谱值上,我国《地震动参数区划图》也将反应谱的特征周期和地震动加速度作为反应

建筑结构减隔震及结构控制技术的现状和发展趋势

建筑结构减隔震及结构控制技术的现状和发展趋势 张建东 上传时间:2006-06-26 nantong 一、传统的抗震方法 地震是由于地面的运动,使地面上原来处于静止的建筑物受到动力作用而产生强迫振动,因而在结构中产生内力、变形和位移。经过简化后模型的动力学分析,即一次次的震害分析进行修正、补充,得到一些建筑物在地震作用下的反应机理及破坏形式,提出了一些建筑物抗争的计算方法及设计的基本原则。这些在实际应用中得到了很不错的效果。 1、概念设计的一些原则 1)总体屈服机制。例如强柱弱梁。 2)刚度与延性均衡。砌体结构中为提高延性设构造柱与圈梁,形成一个较弱的框架。 3)强度均匀。结构在平面和立面上的承载力均匀。 4)多道抗震防线。 5)强节点设计。 6)避开场地卓越周期区。 2、在此基础上作结构地震反应分析,其分析方法主要有: ①地震荷载法; ②振型分解法; ③动力时程分析法。现在还发展了push-over法、能力谱等方法。抗震设防目标也从单一的、基于生命安全的性态标准发展到基于各种性态,强调“个性”设计的设计理念。 3、传统抗震方法的缺点与不足

传统抗震结构主要利用主体结构构件屈服后的塑性变形能和滞回耗能来耗散地震能量,这使得这些区域的耗能性能变得特别重要,而一旦由于某些因素导致这些区域产生问题,将严重影响到结构的抗震性能,产生严重破坏,由于破坏部位位于主要结构构件,其修复是很难进行的。 由于传统抗震结构是以防止结构倒塌为目标,其抗震性能在很大程度上依赖于结构(构件)的延性,以往的许多研究也注重于提高结构(构件)的延性方面,却忽略了对结构损伤程度的控制。 4、传统的抗震方法在提高结构性能方面有较多困难。 传统抗震结构的耗能能力主要依赖于主体结构的延性。既要求主体结构强度高,又要求延性好,很难实现。 1)框架结构 许多研究者推荐强柱弱梁体系作为最合适的抗震框架体系。该体系可将地震输入能量分散在结构的许多部位耗散掉,甚至可以控制塑性铰出现的顺序与部位,延性对于使建筑物在罕遇地震中保存下来固然很重要,但这些预期的塑性铰区在中等程度的地震中也会产生,延性也同时应被看作是一种“破坏”。后期修复费用也很高。 2)剪力墙结构 剪力墙结构体系具有抗侧刚度大,在水平地震作用下的侧移小,其总的水平地震作用也大等特点,常见的震害一般来说为墙面的斜向裂缝或是底部楼层的水平施工缝发生水平错动,当底部屈服后,剪力墙的抗侧作用就很小,且剪力墙的耗能也基本集中与底部塑性铰区域,上部墙体对抵御强震无显著作用。而且剪力墙要承担一定的竖向荷载,因此底部的破坏也十分难修复。 3)框架-剪力墙结构 从抗震概念设计来说,框架-剪力墙结构具有了多道抗震防线。有框架和墙体组成的抗震结构中,框架的刚度小,承担的地震作用力小,而弹性极限变形值和延性却较小。整个结构在地震作用下,墙体很快超过自身的较小弹性极限变形,出现裂缝,水平承载力下降,此时框架尚未充分发挥自身的水平抗力;墙体开裂后,框架承担的地震力增大,同时由于结构刚度的变化,地震作用效应也发生了变化。但无论是剪力墙还是框架,都是主体结构的一部分,损伤坏后的修复工作都是比较困难的,而且花费也不小。 二、减振、隔震和振动控制的现状

基础隔震综述

基础隔震研究进展综述 摘要:基础隔震技术是一种结构控制技术在工程中应用广泛,其有造价低廉,施工便捷、控制效果佳,受到国内外的重视。本文综述了基础隔震的概念,以及研究进展。 关键词:基础,隔震,支座,阻尼,进展 一、引言 近年来我国在结构的隔震研究十分活跃,工程应用日益增多,已开始从理论和试验研究、方案设计、结合实际工程进行分析研究,在我国新的《建筑抗震设计规范》中,已增加了隔震专门章节。工程结构应用橡胶支座的推荐性设计标准亦已批准。在国际方面,自第一届国际结构控制会议于年在美国洛杉矶召开以来,大约每9 年召开一次,有关领域的文章也常见于国内外期刊和会议上。 二、概念 建筑结构隔震的本质思想是通过增加能够提供柔性和适当耗能装置(阻尼)的隔震层(系统),以达到减小结构振动的目的。基础隔震,就是在建筑物的基础和上部结构之间设置一个隔震层,延长结构的振动周期,适当增加结构的阻尼,使结构的位移集中于隔震层,上部结构像刚体一样,自身相对位移很小,从而使建筑物不发生破坏或倒塌。基础隔震技术的基本原理是通过设置在结构物底部与基础顶面之间的隔震消能装置,增加结构的变形能力和滞变阻尼。变形能力的增加,使得结构在地震作用下保持不倒;而阻尼的增大可以吸收更多的地震能量从而大大减小地震作用、基底位移和结构变形。同时,结构变形能力的增大导致了结构产生的第一振型周期变长。这与增大的阻尼相结合,就可以大大降低地震影响系数,并且结构底部有足够的横向变形能力和滞变阻尼,使得结构底部的应力分布较为均匀,避免了常见的结构底部首先破坏的可能性。 三、基础隔震体系的主要类型 基础隔震体系按隔震机理不同可划分为橡胶支座隔震体系、滑动摩擦隔震体

结构动力学:理论及其在地震工程中的应用

5章 动力反应的数值计算 如果激励[作用力)(t p 或地面加速度)(t u g ]是随时间任意变化的,或者体系是非线性的,那么对单自由度体系的运动方程进行解析求解通常是不可能的。这类问题可以通过数值时间步进法对微分方程进行积分来处理。在应用力学广阔的学科领域中,有关各种类型微分方程数值求解方法的文献(包括几部著作中的主要章节)浩如烟海,这些文献包括这些方法的数学进展以及它们的精度、收敛性、稳定性和计算机实现等问题。 然而,本章仅对在单自由度体系动力反应分析中特别有用的很少几种方法进行简要介绍,这些介绍仅提供这些方法的基本概念和计算算法。尽管这些对许多实际问题和应用研究已经足够了,但是读者应该明白,有关这个主题存在大量的知识。 5.1 时间步进法 对于一个非弹性体系,欲采用数值求解的运动方程为 )(),(t p u u f u c u m s =++ 或者 )(t u m g - (5.1.1) 初始条件 )0(0u u = )0(0u u = 假定体系具有线性粘滞阻尼,不过,也可以考虑其他形式的阻尼(包括非线性阻尼),后面会明显看到这一点。然而由于缺乏阻尼信息.因此很少这样做,特别是在大振幅运动时。作用力)(t p 由一系列离散值给出: )(i i t p p = ,0=i 到N 。时间间隔 i i i t t t -=?+1 (5.1.2)

图5.1.1 时间步进法的记号 通常取为常数,尽管这不是必需的。在离散时刻i t (表示为i 时刻)确定反 应,单自由度体系的位移、速度和加速度分别为i u 、i u 和i u 。假定这些值是已知的,它们在i 时刻满足方程 i i s i i p f u c u m =++)( (5.1.3) 式中,i s f )(是i 时刻的抗力,对于线弹性体系,i i s ku f =)(,但是如果体系是非弹性的,那么它会依赖于i 时刻以前的位移时程和速度。将要介绍的数值方 法将使我们能够确定i +1时刻满足方程(5.1.1)的反应1+i u 、1+i u 和1+i u ,即在i +1时刻 1111)(++++=++i i s i i p f u c u m (5.1.4) 对于i =0,1,2,3,…,连续使用时间步进法,即可给出i =0,l ,2,3,… 所有瞬时所需的反应。已知的初始条件)0(0u u =)0(0u u =和提供了起动该方法的必要信息。 从i 时刻到i +1时刻的步进一般不是精确的方法,许多在数值上可以实现的近似方法是可能的。对于数值方法,有三个重要的要求:(1)收敛性一随着时间步长的减少,数值解应逼近精确解;(2)稳定性一在存在数值舍入误差的情况下,数值解应是稳定的;(3)精度一数值方法应提供与精确解足够接近的结果。这些重要的问题在本书中均作简要的讨论,全面的论述可在着重微分方程数值解法的书中找到。 本章介绍三种类型的时间步进法:(1)基于激励函数插值的方法;(2)基于速度和加速度有限差分表达的方法;(3)基于假设加速度变化的方法。前两类中各

隔震技术与传统抗震技术的区别及优点

隔震技术与传统抗震技术的区别及优点 传统建筑把上部结构和基础牢固地连接在一起,这样地震时地面运动的能量就经过基础传输到上部结构,使结构发生振动和变形,当结构受力超过其结构强度时,便发生破坏甚至倒塌。为了抵抗地震的破坏,传统建筑物抗震技术是通过增大梁柱截面的尺寸、增加梁柱配筋和提高建筑材料强度等方法来实现。但这种以刚克刚的办法会导致结构刚度越大,向上部结构传递的地震作用越强的结果。简单地说,传统建筑的抗震思想可以概括为“以刚制刚”。  建筑隔震技术不同于传统的抗震技术,其“灵魂”是“以柔克刚”。目前工程界最常用的叠层橡胶支座隔震系统一般是在基础和上部结构之间,设置专门的橡胶隔震支座和耗能元件(如阻尼器和滑板支座等),形成刚度很低的柔性底层,称为隔震层,以延长整个结构体系的自振周期、增大阻尼,减少输入上部结构的地震能量,达到预期防震要求。  相对于传统抗震技术,采用隔震技术更有以下优点: 1、更安全可靠 隔震建筑的设计目标是“双保护”不仅保证结构主体及非结构构件安全,同时要保证内部设备功能完好,地震后能够正常运转。隔震结构的地震反应仅为传统抗震结构(非隔震结构)地震反应的1/6~1/3。目前全世界已有6000多栋橡胶支座隔震建筑,有多栋隔震建筑经受了地震的考验,显示出良好的隔震效果。 2、更经济 从短期和直接的经济投入角度分析:一方面,隔震结构增设某些装置(隔震支座等),增加了结构的造价;另一方面,由于采用隔震设计,主体结构所承受的地震作用大大减小,因此,构件截面减孝构件配筋减少、跨度增大和高度增加等等,减少了结构的造价。对我国已有的隔震结构调查显示,隔震结构的造价与所在地区设防烈度、结构类型和结构层数等相关。一般而言,在7度及以下地区采用隔震技术,造价会略有增加或基本持平,但结构会更加安全;而在7度以上地区采用隔震技术,在结构安全性得到极大提高的同时,还能显著降低工程造价。  从长期角度分析,即考虑到未来该建筑遭遇较大地震的情况。传统的建筑遭遇地震时,其经济损失包括直接经济损失和间接经济损失两个方面。直接经济损失是指地震后建筑加固维修和重建的费用以及室内设备、物品维修和更换的费用。间接经济损失是指由地震造成的建筑、设备和物品等损坏导致的企业、工厂等不能正常工作和生产所带来的经济损失。地震所带来的直接经济损失是显而易见的,间接经济损失也是非常巨大的,间接经济损失有时甚至为超过直接经济损失。在遭遇较大地震时,隔震建筑及室内设备、物品不损坏或轻微损坏(不维修或简单维修即可使用),因此,采用隔震技术从根本上避免或者大大降低了直接经济损失,从而有效地降低间接经济损失。隔震建筑具有传统抗震建筑无法比拟的经济效益。  3、检修更方便 隔震结构的隔震效果,主要通过隔震支座实现,因此其抗震性能检测的主要对象是隔震支座,这比检测结构本身要快捷方便很多,它能确保地震后的快速修复,对震后快速恢复生产和生活具有十分重要的意义。  4、上部结构设计更自由 由于采用隔震技术,上部结构地震作用大大减小,因此,结构选型更自由灵活。  5、节约资源

关于抗拔对于基础隔震结构对地震响应的效果研究

关于抗拔对于基础隔震结构对地震响应的效果研究 Panayiotis C. Roussis, M.ASCE1 摘要:不利的拉力或上拔力会对隔震系统和上部结构带来不利的影响,而隔震 支座在一定条件下会出现这种不利的的拉力或上拔力。本研究报告是根据XY 摩擦摆(FP)滑移隔震系统做出的关于抗拔对于隔震结构对地震响应的影响的 研究。作为新一代隔震硬件,抗拔的FP隔震装置——XY- FP能够凭借它具有 承受拉力的特性对上部结构提供抗拔力。为了更好的理解隔震装置的拉拔或拉 力现象以及他们对结构性能和隔震系统的影响,进行了对隔震的实际建筑受双 向水平地震激励的非线性时程分析。分析采用了增强版的3D-BASIS- ME(有 限元)程序,这个程序曾做过改进,新增了能够模拟XY- FP隔震装置拉力特性 的单元。结果表明:通过增加隔震系统摩擦力,XY-FP隔震装置中的拉力,不 管是对整个隔震系统响应还是上部结构响应没有任何显著的影响。 DOI: 10.1061/ASCEST.1943-541X.0000070 CE数据库主题词:基础隔震;抗拔力;拉力;非线性分析 前言 隔震设备硬件显著的发展以及与之平行的分析模型和实验验证技术领域的研究 的发展已经促进了隔震装置被越来越多的认可。最根本的隔震的基本原则包括 通过提供额外的灵活性和耗能能力来防止去耦结构对水平地面的破坏,从而在 地震事故(1999年的naeim和kelly)中减轻结构振动和破坏的严重性。然而,在一定的条件下(例如:有较大高宽比的细长的上部结构和在支撑柱和挡墙下 有合并支座的结构),隔离支座能承受不良的拉力或拔力,以防它们的发生可 能会对隔离系统和上部结构产生有害的影响。尤其是,拔力的出现(在滑动支 座和合梢固定橡胶支座中)可能导致上部结构的倾覆或隔离支座的毁坏(由于

《结构动力学》课程作业解析

研究生课程考核试卷 (适用于课程论文、提交报告) 科目:结构动力学大作业教师: 姓名:学号: 专业:岩土工程类别:专硕 上课时间:2015年9 月至2015 年11 月 考生成绩: 卷面成绩平时成绩课程综合成绩阅卷评语: 阅卷教师(签名)

重庆大学研究生院制 土木工程学院2015级硕士研究生考试试题 1 题目及要求 1、按规范要求设计一个3跨3层钢筋混凝土平面框架结构(部分要求如附件名单所示;未作规定部分自定)。根据所设计的结构参数,求该结构的一致质量矩阵、一致刚度矩阵; 2、至少采用两种方法求该框架结构的频率和振型; 3、输入地震波(地震波要求如附件名单所示),采用时程分析法,利用有限元软件或自编程序求出该框架结构各层的线性位移时程反应。

2 框架设计 2.1 初选截面尺寸 取所设计框架为3层3跨,跨度均为4.5m ,层高均为3.9m 。由于基础顶面离室内地面为1m ,故框架平面图中底层层高取 4.9m 。梁、柱混凝土均采用C30, 214.3/c f N mm =,423.010/E N mm =?,容重为325/kN m 。 估计梁、柱截面尺寸如下: (1)梁: 梁高b h 一般取跨度的 112 1 8 ,取梁高b h =500mm ; 取梁宽300b b mm =; 所以梁的截面尺寸为:300500mm mm ? (2)柱: 框架柱的截面尺寸根据柱的轴压比限值,按下列公式计算: ①柱组合的轴压力设计值...E N F g n β= 其中:β:考虑地震作用组合后柱轴压力增大系数; F :按简支状态计算柱的负荷面积; E g :折算在单位建筑面积上的重力荷载代表值,可近似取为 21214/KN m ; n :验算截面以上的楼层层数。 ②c N c N A u f ≥ 其中:N u :框架柱轴压比限值;8度(0.2g ),查抗震规范轴压比限值0.75N u =; c f :混凝土轴心抗压强度设计值,混凝土采用30C ,2 14.3/c f N mm =。

反应谱设计抗震

一、结构抗震 结构抗震理论的发展,大体上可以划分为静力、反应谱和动力三个阶段。(一)静力理论阶段 该理论认为,结构物所受的地震作用,可以简化为作用于结构的等效水平静力F,其大小等于结构重力荷载G乘以地震系数k,即 F = kG k为地震系数,其数值与结构动力特性无关,是根据多次地震灾害分析得出的,k≈1/10。 (二)反应谱理论阶段 反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。地震时结构所受的最大水平基底剪力,即总水平地震作用为: FEK = kβ(T)G 式中,k为地震系数,β(T)则是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震时结构振动加速度的放大倍数。 β(T)=Sa(T)/a 二、反应谱局限性: 1. 反应谱理论尽管考虑了结构的动力特性,然而在结构设计中,它仍然把地震惯性力作为静力来对待,所以它只能称为准动力理论。

2. 表征地震动的三要素是振幅、频谱和持时。在制作反应谱过程中虽然考虑了其中的前两个要素,但始终未能反映地震动持续时间对结构破坏程度的重要影响。 3. 反应谱是根据弹性结构地震反应绘制的,引用反映结构延性的结构影响系数后,也只能笼统地给出结构进入弹塑性状态的结构整体最大地震反应,不能给出结构地震反应的全过程,更不能给出地震过程中各构件进入弹塑性变形阶段的内力和变形状态,因而也就无法找出结构的薄弱环节。 三、反应谱设计抗震的局限性 1.反应谱方法是一种拟静力方法,虽然能同时考虑结构各频段整栋的振幅最大值和频谱两个主要因数,但对于持时这一要素未能得到体现,震害调查表明,有些按反应谱理论设计的结构,在未超过设防烈度的地震中,也遭受了严重的破坏。 2.反应谱方法忽略了的地震作用的随机性,不能考虑结构在罕遇地震下逐步进入塑性时,因其周期、阻尼、振型等动力特征的改变,而导致结构中的内力重新分布这一现象。 3.反应谱方法假设结构所有支座处的震动完全相同,忽略其基础与上层间的互相作用。

高层隔震结构研究现状分析及展望

高层隔震结构研究现状分析及展望 发表时间:2019-03-07T12:51:36.530Z 来源:《建筑学研究前沿》2018年第33期作者:马永宏 [导读] 随着高层结构建筑水平的提高,隔震技术也逐步应用在高层建筑中,高层隔震结构的橡胶支座很有可能在大震下产生超过极限应变的水平变形 浙江绿城东方建筑设计有限公司上海分公司上海 200040 摘要:随着高层结构建筑水平的提高,隔震技术也逐步应用在高层建筑中,高层隔震结构的橡胶支座很有可能在大震下产生超过极限应变的水平变形,失效退出工作,导致结构倒塌。本文阐述了高层隔震结构的国内外应用现状,并总结了在理论计算、实验研究方面进展,并对研究趋势作出展望。 关键词:高层建筑;隔震;橡胶支座 1、前言 隔震技术是一种较为成熟的工程震动被动控制技术,依靠延长结构周期来降低地震反应。但是高层隔震技术研究的历史还不长,还有很多问题没有解决。与普通多层建筑相比,其自振周期较长,隔震效果较不明显。高层建筑因为高宽比过大,容易倾覆,支座有受拉破坏,结构倒塌的可能性。近年,随着隔震结构高宽比的增大,隔震支座更容易因为超过极限变形而破坏。 在历次的地震中,高层隔震建筑并未发生倒塌,但在大震作用下,隔震层变形过大受到损伤,容易引发结构连续性倒塌或者整体性倾覆,带来的生命和财产的损失难以估量,需要进行特别研究。 2、隔震结构国内外应用现状 日本是国际上利用隔震技术较早的国家,2003年竣工的楠叶塔楼城位于大阪枚方市,由41层的超高层建筑,24层的高层建筑和两栋中层建筑组成,总高度136.8m。采用隔震技术后该建筑物在地震响应减小了2/3。 我国最早的隔震建筑是 1993 年由周福霖院士设计的汕头市8层框架结构商住楼。目前,国内隔震建筑的数量已达6000余座,约占世界的一半。其中云南省占2000座,位居全国之首,最具代表性的是上海大学刘文光教授主持的云南省博物馆新馆工程。2010年,刘文光教授还主持设计了鸟巢大厦,该工程位于塔吉克斯坦,为一类高层住宅,地上21层,地下2层,总建筑高度77.3米。 预计2019年通航的北京新机场主体部分已经完工,是目前世界上最大的单体隔震建筑。北京新机场航站楼高铁下穿,结构会受到高铁运行振动的强烈影响。隔震技术的应用很好地解决了这个问题,是专家一致认为的最经济合理的方案。 3、高层隔震结构国内外研究现状 (1)隔震支座性能的实验研究 日本对新型隔震橡胶支座的研发一直走在前列,竹中工务店开发了适用于高层建筑的隔震橡胶支座[1]。支座的橡胶材料中加入了碳素物质,改进了产品性能,比普通产品的压缩变形、抗张拉强度提和极限拉应力可达到普通支座的2倍以上。 早期研究的重点主要是有效延长高层隔震结构的周期。具有代表性的是2004年,刘文光等学者对G6和G4橡胶隔震支座的水平刚度计算[2],结果表明低硬度橡胶隔震支座具备理想的竖向及水平性能,阻尼特性稳定,且隔震性能更为有效,将结构的周期进一步延长了近20%。 后为解决橡胶支座受拉破坏的问题,学者们着重开发抗拉装置的开发。2007年,祁皑[3]等人对隔震结构的高宽比限值进行了研究,提出在边缘隔震支座周围设置适量竖向钢筋的构造措施提高抗拉性能。2012年,苏健[4]又针对叠层橡胶支座抗拉性能的问题进行了研究,提出利用叠层橡胶支座的抗压能力来承受隔震层的拉力。2017年,陈鹏、周颖等人,设计了抗拉装置并进行了试验验证[5],在拉剪状态下,该装置能够有效发挥抗拉作用,保证支座水平向力学性能的发挥。 近年,很多学者隔震支座受拉破坏进行了有限元模拟研究。2014年,吴从晓等人提出了高烈度区高层隔震结构抗拉处理方法[6],并给出了其在ETABS软件中的模拟方法,并通过实例分析验证了装置效果。2015年,王建强等人采用Abaqus对铅芯橡胶支座进行有限元分析[7],模拟了极限压剪状态下支座内部钢片和橡胶的应力分布状态。 (2)理论计算模型的研究 Kelly和周锡元等曾提出由上部结构单质点与隔震层单质点组成的“双自由度模型”及计算公式。在多层规则隔震结构的应用中获得了满意结果。但该模型忽略了高阶振型的影响,有一定误差并随着结构高度的增加而增大。 近年,研究的重点在于如何快速有效地计算高层隔震结构的地震响应。2005年,付伟庆等人提出了高层隔震结构的“三自由度模型”[8],由上部结构双质点和隔震层单质点组成,研究结果表明地震响应计算结果与对原结构相近。2012年,刘文光等人提出了高层隔震结构地震响应的单纯质点法[9],可预测高层隔震结构各层地震反应包络值,并分析高层隔震结构加速度等响应的预测计算式。2014年,刘阳等人对高层隔震结构“三自由度等效模型”进行了研究,并发现其对弯剪型高层隔震结构的等效程度虽不如对剪切型高层隔震结构的高,但具有较高的等效精度[10]。 4、研究现状分析及展望 高层隔震结构对橡胶支座的水平和竖向性能都提出了更高的要求。高层建筑的隔震形式也趋于多样化。将隔震技术与结构半主动、主动控制技术结合,为有效的混合控制体系是一种趋势;高强度、高性能和三维减震支座等,也都是十分具有研究价值的课题。 首先,低硬度橡胶隔震支座可以有效延长建筑物的周期,使高层隔震结构隔震效果良好;但分析表明隔震支座在强震下,可能由于大变形发生受拉破坏,因此研究支座的破坏性形式和控制方法是必要的。 其次,根据刘阳等人的研究,可采用单纯质点法对高层隔震结构的地震响应进行包络分析,建立地震能量、结构参数和结构各层加速度、剪力及变形之间的关系,方便预测隔震支座的位移,防止破坏。 再次,目前所研究的抵抗支座破坏的装置主要为抗拉装置,例如在隔震层边缘的支座处增加构造钢筋,或者更改支座的构造来抗拉。而在强震中,很多支座出现拉应力的原因是因为变形超限。所以应考虑增加限位装置,达到防止支座破坏的目的。 最后,增加的限位装置,必须在限制支座位移的同时,保证上部结构隔震的有效性,所以必须进行数值模拟和实验,进行增加限位装

相关文档
最新文档