不饱和度及其应用

不饱和度及其应用
不饱和度及其应用

不饱和度及其应用

不饱和度又称为“缺氢指数”,用希腊字母Ω来表示,顾名思义,它是反映有机物分子不饱和程度的量化标志。烷烃分子中饱和程度最大,规定其Ω=0,其它有机物分子和同碳原子数的开链烷烃相比,每少2个H,则不饱和度增加1;有机物的不饱和度计算公式为:

Ω=双键数+ 叁键数×2 +环数

①如果任意一个烃的分子式为C x H y,则

②如果有机物为含氧衍生物,且碳链中不含—C=C—、—C≡C—或环,由于C=O与C=C等价,故可以看成烃来计算。

③对于碳的同素异形体,可以把它看成y等于0的烃来计算,即:

例如:C70的=71

常见的烃的不饱和度如下:

1、单烯烃和环烷烃的:Ω=1;

2、二烯烃:Ω=2

3、CH2 = CH—C≡CH:Ω=3

4、:Ω=4(可以看成一个环与三个双键构成)

5、:Ω=7、Ω=10

6、:Ω=2

7、:Ω=5 (立体封闭多面体型分子:Ω=面数-1)

8、:Ω=2

9、:Ω=4(2价基团)

10、:Ω=4(三价基团)

11、—C≡C—,Ω=2(二价基团)

12、:Ω=4

不饱和度的应用:

(1)可以辅助推导代学式;

(2)可以辅助推导分子中的结构单元

例题1:试写出2—甲基—5—乙基对苯二乙烯的分子式。

解:依据题意所给的名称可得:n(c)=13,Ω=6,则

n(H)=2×13 + 2 – 2×6 =16,

故分子式为C13H16

评析:

此题的常规解法为依据其名称,写出结构简式,再

根据结构简式确定出该分子的组成。这样的解法既费时,又易出错,而运用“不饱和度”来计算,则简捷而准确。

例题2:分子式为C8H8的烃能使溴水褪色,是合成某橡胶单体之一的材料,试确定其结构与名称。

解:由分子式可知:Ω= 5,则据分子式可知,该分子的结构中必含有一个苯环与一个碳碳双键,故其结构为(苯乙烯)。

例题3:某烃的分子式中含有一个苯环,两个C=C和一个C≡C,则它的分子式可能为()

A、C9H12

B、C17H20

C、C20H30

D、C12H20

解:因分子组成中含有一个苯环,两个碳碳双键,一个碳碳叁键,故不饱和度等于8,设此烃的分子式为C x H y,则由得:

y=2x-14

带入A、B、C、D中进行检验即可。

例题4:合成相对分子质量在20000——50000范围内的具有确定结构的有机化合物是一个新的研究领域。1993年报道合成了两种烃A和B,其分子式分别为C1134H1146和C1398H1278,其分子中含有三种结构单元(I——III):

(I)(II)—C≡C—(III)—C(CH3)3则:

(1)上述三种结构单元的不饱和度分别为 4 、 2 、0 ;B的不饱和度为760 。

(2)A分子中含有上述结构单元(I)、(II)、(III)的个数分别为多少?

解:设A分子中含有(I)、(II)、(III)结构单元的个数分别为x、y、z,则由“碳守恒”、“H守恒”、“不饱和度”列出方程组:

则有:

不饱和度的计算

不饱和度及其应用 不饱和度又称为“缺氢指数”,用希腊字母Ω来表示,顾名思义,它是反映有机物分子不饱和程度的量化标志。烷烃分子中饱和程度最大,规定其Ω=0,其它有机物分子和同碳原子数的开链烷烃相比,每少2个H,则不饱和度增加1; 计算有机物的不饱和度有二种方式: 一、根据化学式计算: 烃的分子式为C x H y,则 如果有机物为含氧衍生物,因氧为2价,C=O与C=C“等效”,所以在进行不饱和度的计算时可不考虑氧原子,如CH2=CH2、C2H4O、C2H4O2的Ω为1,氧原子“视而不见”。有机物分子中卤原子—X以及—NO2、—NH2等都视为相当于H原子(如:C2H3Cl的不饱和度为1)。 对于碳的同素异形体,可以把它看成y等于0的烃来计算, 即:例如:C70的=71 同分异构体的分子式相同,所以同分异构体的不饱和度也相同,因此只需注意双键数、三键数和环数,无需数H原子数。 不饱和度()又称缺H指数,有机物每有一不饱和度,就比相同碳原子数的烷烃少两个H原子,所以,有机物每有一个环,或一个双键(),相当于有一个不饱和度, 相当于2个,相当于三个。利用不饱和度可帮助推测有机物可能有的结构,写出其同分异构体。 常用的计算公式:

二、根据结构计算: 不饱和度= 双键数+ 三键数×2 + 环数(注:苯环可看成是三个双键和一个环) (注意环数等于将环状分子剪成开链分子时,剪开碳碳键的次数 ...........................,双键包括碳氧双键等)如:1、单烯烃和环烷烃的:Ω=1(二烯烃:Ω=2); 2、CH3—C≡CH:Ω=2(:Ω=2) 3、:Ω=4(可以看成一个环与三个双键构成):Ω=7 *4、立体封闭多面体型分子:Ω=面数-1 :Ω=5 :Ω=2 不饱和度的应用: (1)已知结构式较复杂有机物的化学式; (2)已知分子式判断其中可能含有的官能团及其数量(Ω大于4的应先考虑可能含苯环)。(3)辅助分析同分异构体(同分异构体间不饱和度相同) 例题1:求降冰片烯的分子式 例题2:右图是一种驱蛔虫药--山道年的结构简式,试确定其分子式为____________。

不饱和聚酯树脂的固化

不饱和聚酯树脂的固化 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

不饱和聚酯树脂的固化机理 引言 不饱和聚酯树脂(UPR)的固化似乎是从理论和实践上已研究得十分透彻的问题,但是因为影响固化反应的因素相当复杂,而在UPR的各种应用领域中,制品所出现的质量瑕疵在很大程度上几乎都与“固化”有关。所以,我们有对UPR的固化进行较深入探讨的必要。(探讨不饱和聚酯树脂的固化,首先应该了解与不饱和聚酯树脂固化有关的一些概念和定义)。 2.与不饱和聚酯树脂固化有关的概念和定义 固化的定义 液态UPR在光、热或引发剂的作用下可以通过线型聚酯链中的不饱和双键与交联单体的双键的结合,形成三向交联的不溶不熔的体型结构。这个过程称为UPR的固化。 固化剂 不饱和聚酯树脂的固化是游离基引发的共聚合反应,如何能使反应启动是问题的关键。单体一旦被引发,产生游离基,分子链即可以迅速增长而形成三向交联的大分子。 饱和聚酯树脂固化的启动是首先使不饱和C—C双键断裂,由于化学键发生断裂所需的能量不同,对于C—C键,其键能E=350kJ/mol,需350-550℃的温度才能将其激发裂解。显然,在这样高的温度下使树脂固化是不实用的。因此人们找到了能在较低的温度下即可分解产生自由基的物质,这就是有机过氧化物。一些有机过氧化物的O—O键可在较低的温度下分解产生自由基。其中一些能在50-150℃分解的过氧化物对树脂的固化很有利用价值。我们可以利用有机过氧化物的这一特性,选择其中的一些作为树脂的引发剂,或称固化剂。

固化剂的定义:不饱和聚酯树脂用的固化剂,是在促进剂或其它外界条件作用下而引发树脂交联的一种过氧化物,又称为引发剂或催化剂。 这里所说的“催化剂”与传统意义上的“催化剂”是不同的。在传统的观念上,“催化剂”这个术语是为反应物提供帮助的,它们在促进反应的同时,本身并没有消耗。而在UPR固化反应中,过氧化物必须在它“催化”反应以前,改变它本身的结构,因此对于用于UPR固化的过氧化物来说,一个较合适的名字应该叫做“起始剂”或“引发剂”。 说到过氧化物我们要有必要了解的两个概念是活性氧含量和临界温度。其中“活性氧”或“活性氧含量”是一个与固化剂有密切关系并常常被误会的概念。 活性氧含量:活性氧含量简单来说就是过氧化物中氧和过氧化物分子总量的百分比。 从这个概念本身来说,一个具有较低的分子量的过氧化物的活性氧含量可能相对较高。但这并不意味着活性氧含量高的过氧化物比活性氧含量低的过氧化物具有更多或更快的活性。(因为我们很多应用厂家是用活性氧含量作为考核固化剂的一个指标)事实上,活性氧含量仅仅是作为一个恒量任何一个特定的过氧化物的浓度和纯度的一个尺度。人们发现许多具有较高的活性氧含量的过氧化物并不适合用于固化树脂,因为它们在标准的固化温度下会很快地分解或“耗尽”,也就是它分解游离基的速度过快。由于游离基总是有一种彼此间相互结合的强烈倾向,当游离基产生的速度比它们被不饱和双键利用的速度快时,它们会重新组合或者终止聚合链,从而产生低分子量的聚合物而导致不完全固化的结果。(典型的例子就是过氧化氢)。

不饱和度巧解有机化学题 (2)

不饱和度巧解有机化学题 【鸣谢】 本节课为本人结合多年教学经验以及化学同仁们一起交流的结果。希望这节课能够进行推广,特别对于部分选择选修五教学的省份,更希望同仁们对不足之处提出宝贵意见。 【知识点引入】不饱和度又称缺氢指数,即有机物分子与碳原子数相等的开链烷烃相比较,每减少2个氢原子,则有机物的不饱和度增加1,用Ω表示。 【板书】一、不饱和度的概念以及标准 参考标准:烷烃Ω=0 【学生理解,传授知识】同学们进行,我们理解了不饱和度的概念之后,那我们接下来应该解决两个问题:其一,不饱和度如何进行计算?其二,不饱和度如何在有机化学题目中体现出事半功倍的作用呢?皆如何妙用呢?接下来我们一起探讨探讨。 【板书】一、不饱和度的计算方法 【教师提出问题,学生讨论回答】 1.若有机物的化学式为CxHy,则该类型的不饱和度如何求解呢? 2.若有机物为含氧化合物CxHyOz该类型不饱和度呢? 3.若有机物为含氮化合物,设化学式为C x H y N z,则该类型的不饱和度呢? 4.有机物分子中的卤素原子做取代基,该类型的不饱和度呢? 【教师进行指导归纳】

【板书】1、根据有机物分子式进行计算 1.若有机物的化学式为CxHy,则该类型的 2.若有机物为含氧化合物CxHyOz,由于O元素化合价为二价,所以引入多个氧原子,对于不饱和度无影响,所以该类型的不饱和度依然 为 3.若有机物为含氮化合物,设化学式为C x H y N z,由于N为三价,每引入一个N原子,则相当于多引入一个H,所以该类型的的化学式可以转化为C x H y-z 4.有机物分子中的卤素原子做取代基,该类型就是卤代烃,由于卤代烃中的卤素原子取代了氢原子,所以将卤原子认为氢原子进行计算。【理论进行实践学生练习】 1、计算下列分子的不饱和度Ω C2H6、 C3H6、 C2H2、 C3H4、 C6H6、 C8H8 2、计算下列分子的不饱和度Ω C5H6Cl2 C3H8O3 C3H9N 【知识升华高考考点】 【板书】总结不饱和度(Ω)与分子结构的关系 1.若Ω=0,分子是饱和链状结构(烷烃和烷基的Ω=0 )。 2.若Ω=1,分子中有一个双键或一个环。 3.若Ω=2,说明分子中有两个双键或一个三键;或一个双键和一个环;或两个环;余此类推。

不饱和聚酯树脂常用配方

不饱和聚酯树脂种类、性能及常用配方 耐水性、耐候性好。 聚酯树脂玻璃钢材料用量/(Kg/10m2) 1、189#聚酯树脂100 过氧化环己酮二丁酯糊(50%)1-4 耐酸钴苯乙烯(10%)1-4 5-10(耐水性好33#胶衣增强表面性能) 2、189#聚酯树脂100 I号引发剂与I好促进剂系统 3含胶量:表面毡及短切毡70%——75% 无捻粗纱方格布50%——55%

4、玻璃纤维厚度规格:0.2 0.4 0.6 0.8 5、偶联剂型号:KH-570 6、196#树脂为柔性不饱和聚酯树脂。 7、短切毡(450 g/m2 230 g/m2)表面毡(60g/m2厚30 g/m2)粗纱(570 g/m2)使用时可增 加防腐、抗渗、防水功能。同时提高表面光亮度。 8、3.5mm厚玻璃钢要铺4层0.6mm和2层0.2mm厚玻璃纤维方格布。 9、197#双酚A型聚酯树脂耐酸、耐碱、耐水、耐高温。防腐电解槽工业烟气防腐衬里等。 一般厚度2-3mm..。还可用氯化不饱和聚酯树脂、环氧乙烯基酯树脂等防腐树脂。一般适用温度70℃。玻璃鳞片胶泥的适用可使温度达到200℃ 10、脱模剂可改为模具表面涂黄油后黏贴一层聚酯涤纶薄膜0.04mm厚。可取代脱模蜡、抛 光及涂聚乙烯醇脱模剂两道工序。易清洗、不污染、不迁移、适用于喷漆。 11、胶衣树脂:其厚度一般为0.25-0.4mm左右,相当于450g/m2. 12、被覆树脂:玻璃钢加工完成后最后覆盖上去的一层树脂。 13、耐化学树脂:不饱和聚酯树脂主要有间苯型和双酚A型两种,双酚A型特别在耐碱条 件下适用。乙烯基树脂耐酸。 14、呋喃树脂:耐强酸号称塑料王但不耐硝酸及硫酸耐氯气及饱和盐水长期浸泡。并能在 120-180℃下长期适用。 15填料:可降低玻璃钢成本10%左右。会影响树脂凝胶时间。增强玻璃钢的耐磨抗冲击强度减少收缩。但不是玻璃钢生产的必须材料。 16、腻子常用配方 一般腻子的配比 涂料腻子的配比 (1)、底面调整(砂纸80#-120#、丙酮清洗)(2)、底涂层(喷两遍聚酯涂料)(3)、打腻子(聚酯腻子)(4)、研磨(水砂纸180#)(5)、中间涂层(聚酯系列溶剂涂料或两遍聚氨酯涂料)(6)、研磨(水砂纸300#-600#)(7)、表面涂层(混合漆、固化剂、丙酮调至黏度15-21白)(8)、特殊涂装、(贴压条纹带、固定带后涂清漆)。 18、促进剂环烷酸钴对聚酯固化的影响(I号促进剂-引发剂系统)

关于不饱和聚酯树脂

关于不饱和聚酯树脂 通过阅读与不饱和聚酯树脂相关方面的书籍,使我对不饱和聚酯树脂有一个更为直观的了解: 不饱和聚酯树脂,一般是由不饱和二元酸二元醇或者饱和二元酸不饱和二元醇缩聚而成的具有酯键和不饱和双键的线型高分子化合物。通常,聚酯化缩聚反应是在190~220℃进行,直至达到预期的酸值(或粘度),在聚酯化缩反应结束后,趁热加入一定量的乙烯基单体,配成粘稠的液体,这样的聚合物溶液称之为不饱和聚酯树脂。 物理性质 不饱和聚酯树脂的相对密度在1.11~1.20左右,固化时体积收缩率较大,固化树脂的一些物理性质如下: ⑴耐热性。绝大多数不饱和聚酯树脂的热变形温度都在50~60℃,一些耐热性好的树脂则可达120℃。红热膨胀系数α1为(130~150)×10-6℃。 ⑵力学性能。不饱和聚酯树脂具有较高的拉伸、弯曲、压缩等强度。 ⑶耐化学腐蚀性能。不饱和聚酯树脂耐水、稀酸、稀碱的性能较好,耐有机溶剂的性能差,同时,树脂的耐化学腐蚀性能随其化学结构和几何开关的不同,可以有很大的差异。 ⑷介电性能。不饱和聚酸树脂的介电性能良好。 化学性质 不饱和聚酯是具有多功能团的线型高分子化合物,在其骨架主链上具有聚酯链键和不饱和双键,而在大分子链两端各带有羧基和羟基。 主链上的双键可以和乙烯基单体发生共聚交联反应,使不饱和聚酯树脂从可溶、可熔状态转变成不溶、不熔状态。

主链上的酯键可以发生水解反应,酸或碱可以加速该反应。若与苯乙烯共聚交联后,则可以大大地降低水解反应的发生。 在酸性介质中,水解是可逆的,不完全的,所以,聚酯能耐酸性介质的侵蚀;在碱性介质中,由于形成了共振稳定的羧酸根阴离子,水解成为不可逆的,所以聚酯耐碱性较差。 聚酯链末端上的羧基可以和碱土金属氧化物或氢氧化物[例如MgO,CaO,Ca(OH)2等]反应,使不饱和聚酯分子链扩展,最终有可能形成络合物。分子链扩展可使起始粘度为0.1~1.0Pa·s粘性液体状树脂,在短时间内粘度剧增至103Pa·s以上,直至成为不能流动的、不粘手的类似凝胶状物。树脂处于这一状态时并未交联,在合适的溶剂中仍可溶解,加热时有良好的流动性。 结构性能 迄今,国内外用作复合材料基体的不饱和聚酯(树脂)基体基本上是邻苯二甲酸型(简称邻苯型)、间苯二甲酸型(简称间苯型)、双酚A型和乙烯基酯型、卤代不饱和聚酯树脂等。 邻苯型不饱和聚酯和间苯型不饱和聚酯 邻苯二甲酸和间苯二甲酸互为异构体,由它们合成的不饱和聚酯分子链分别为邻苯型和间苯型,虽然它们的分子链化学结构相似,但间苯型不饱和聚酯和邻苯型不饱和聚酯相比,具有下述一些特性:①用间苯型二甲酸可以制得较高分子量的间苯二甲酸不饱和聚酯,使固化制品有较好的力学性能、坚韧性、耐热性和耐腐蚀性能;②间苯二甲酸聚酯的纯度高,树脂中不残留有间苯二甲酸和低分子量间苯二甲酸酯杂质;③间苯二甲酸聚酯分子链上的酯键受到间苯二甲酸立体位阻效应的保护,邻苯二甲酸聚酯分子链上的酯键更易受到水和其它各种腐蚀介质的侵袭,用间苯二甲酸聚酯树脂制得的玻璃纤维增强塑料在71℃饱和氯化钠溶液中浸泡一年后仍具有相当高的性能。 双酚A型不饱和聚酯 双酚A型不饱和聚酯与邻苯型不饱和聚酸及间苯型不饱和聚酯大分子链的化学结构相比,分子链中易被水解遭受破坏的酯键间的间距增大,从而降低了酯键密度;双酚A不饱和聚酯与苯乙烯等交联剂共聚固化后的空间效应大,对酯基起屏蔽保护作用,阻碍了酯键的水解;而在分子结构中的新戊基,连接着两个苯环,保持了化学瓜的稳定性,所以这类树脂有较好的耐酸、耐碱及耐水解性能。

根据有机物的化学式计算不饱和度

根据有机物的化学式计算不饱和度 (1)若有机物的化学式为CxHy则Ω=(2x+2-y)/2 (2)若有机物为含氧化合物,因为氧为二价,C=O与C=C“等效”,所以在进行不饱和度的计算时可不考虑氧原子,如CH2=CH2、C2H4O、C2H4O2的Ω为1。氧原子“视而不见” 推导:设化学式为CxHyOz-------------CxHy-z(OH)z ,由于H、OH都是一价在与碳原子连接,故分子式等效为CxHy。 (3)若有机物为含氮化合物,设化学式为CxHyNz-------------CxHy-2z(NH2)z,由于—H、—NH2都是一价在与碳原子连接,故分子式等效为CxHy-z (4)按照该法可以推得其它有机物分子的不饱和度 (5)有机物分子中的卤素原子取代基,可视作氢原子计算Ω。如:C2H3Cl的不饱和度为1,其他基团如-NO2、-NH2、-SO3H等都视为氢原子。 (6)碳的同素异形体,可将它视作Ω=0的烃。 如C60 (7)烷烃和烷基的不饱和度Ω=0 2.非立体平面有机物分子,可以根据结构计算,Ω=双键数+叁键数×2+环数 如苯:Ω=3+0×2+1=4 即苯可看成三个双键和一个环的结构形式。 注意环数等于将环状分子剪成开链分子时,剪开碳碳键的次数。 3.立体封闭有机物分子(多面体或笼状结构)不饱和度的计算,其成环的不饱和度比面数少数1。 如立方烷面数为6,Ω=6-1=5 61 |评论 U=1+n4 +1/2*(n3-n1), n4表示4价原子数,一般是C原子,n3表示3价原子数,一般是N 原子,n1表示一价原子数,一般是H原子,2价的O不需考虑。

不饱和度,又称缺氢指数,是有机物分子不饱和程度的量化标志,通常用希腊字母Ω表示。此概念在推断有机化合物结构时很有用。从有机物结构计算不饱和度的方法:单键对不饱和度不产生影响,因此烷烃的不饱和度是0(所有原子均已饱和)。一个双键(烯烃亚胺、羰基化合物等)贡献一个不饱和度。一个叁键(炔烃、腈等)贡献两个不饱和度。一个环(如环烷烃)贡献一个不饱和度。环烯烃贡献2个不饱和度。 从有机物分子结构计算不饱和度的方法 根据有机物分子结构计算,Ω=双键数+叁键数×2+环数如苯: Ω=3+0×2+1=4 即苯可看成三个双键和一个环的结构形式。补充理解说明:单键对不饱和度不产生影响,因此烷烃的不饱和度是0(所有原子均已饱和)。一个双键(烯烃、亚胺、羰基化合物等)贡献1个不饱和度。一个叁键(炔烃、腈等)贡献2个不饱和度。一个环(如环烷烃)贡献1个不饱和度。环烯烃贡献2个不饱和度。一个苯环贡献4个不饱和度。一个碳氧双键贡献1个不饱和度。一个-NO2贡献1个不饱和度。例子:丙烯的不饱和度为1,乙炔的不饱和度为2,环己酮的不饱和度也为2。 从分子式计算不饱和度的方法 第一种方法为通用公式:Ω=1+1/2∑Ni(Vi-2) 其中,Vi 代表某元素的化合价,Ni 代表该种元素原子的数目,∑ 代表总和。这种方法适用于复杂的化合物。第二种方法为只含碳、氢、氧、氮以及单价卤素的计算公式:Ω=C+1-(H-N)/2 其中,C 代表碳原子的数目,H 代表氢和卤素原子的总数,N 代表氮原子的数目,氧和其他二价原子对不饱和度计算没有贡献,故不需要考虑氧原子数。这种方法只适用于含碳、氢、单价卤素、氮和氧的化合物。第三种方法简化为只含有碳C和氢H或者氧的化合物的计算公式:Ω =(2C+2-H)/2 其中C 和H 分别是碳原子和氢原子的数目。这种方法适用于只含碳和氢或者氧的化合物。补充理解说明:(1)若有机物为含氧化合物,因为氧为二价,C=O与C=C“等效”,所以在进行不饱和度计算时可不考虑氧原子。如CH2=CH2(乙烯)、CH3CHO(乙醛)、CH3COOH(乙酸)的不饱和度Ω为1。(2)有机物分子中的卤素原子取代基,可视作氢原子计算不饱和度Ω。如:C2H3Cl的Ω为1,其他基团如-NH2、-SO3H等都视为氢原子。(3)碳的同素异形体,可将其视作氢原子数为0的烃。如C60(足

不饱和度在高中化学中的妙用

不饱和度在高中化学中 的妙用 https://www.360docs.net/doc/6b2429917.html,work Information Technology Company.2020YEAR

不饱和度在高中化学中的妙用 一、不饱和度的概念 不饱和度 (英文名称:Degree of unsaturation),又称缺氢指数或者环加双键指数(index of hydrogen deficiency (IHD) or rings plus double bonds ),是有机物分子不饱和程度的量化标志,通常用希腊字母Ω表示。 二、不饱和度的计算方法 (1)、从有机物的分子式计算不饱和度的方法 第一种方法 若有机物中只含碳、氢元素, Ω=222H C -+ (其中C 和H 分别代表碳原子和氢原子的数目) 例如:CH 2=CH 2的不饱和度Ω=24 222-+?=1 第二种方法: 若有机物中只含碳、氢、氧、氮和单价卤族元素, Ω=21H N C -++ (其中C 代表碳原子数目,H 代表氢原子和卤素原子的总数,N 代表氮原子的数目) 例如:C 3H 7O 2N 的不饱和度Ω=27113-++=1

补充理解说明: ①有机物分子中含有卤素等一价元素时,可视为氢原子计算不饱和度,例如:C2H3Cl的不饱和度Ω为1。 ②有机物分子中含有氧、硫等二价元素时,因为“C=O”与“C=C”等效,故计算不饱和度时可忽略氧原子,例如:CH2=CH2(乙烯)、CH3CHO(乙醛)、CH3COOH(乙酸)的不饱和度Ω均为1。 ③有机物分子中含有氮、磷等三价元素时,每增加一个三价原子,则等效为减少一个氢原子,例如:CH3NH2(氨基甲烷)的不饱和度Ω为0。 ④碳的同素异形体,可将其视作氢原子数为0的烃,例如C60(足球烯,或者富勒烯,Buckminster fullerene)的不饱和度Ω为61。 ⑤对于烃的含氧衍生物(C n H m O z),由于氢原子的最大值是 2n+2(如饱和一元醇C n H2n+2O),所以其不饱和度为零,依此类推,饱和一元醛(C n H2n O),饱和一元羧酸(C n H2n O2),由于含有一个碳氧双键而比同碳数的饱和一元醇减少了2个氢原子,也可视为其不饱和度Ω=1。这样,对于一个有机物分子——烃或烃的含氢衍生物,只要知道了其不饱和度,就能推断出其可能的结构。即有下列关系: 若Ω=0,说明有机分子呈饱和链状,分子中的碳氢原子以C n H2n+2(此为饱和烃分子式通式)关系存在。 若Ω=1,说明有机分子中含有一个双键或一个环。

不饱和度

C C 不饱和度 一、不饱和度的概念 不饱和度又称缺氢指数或者环加双键指数,是有机物分子不饱和程度的量化标志,即有机物分子中与碳原子数相等的开链烷烃相比较,每减少2个氢原子,则有机物的不饱和度增加1,用希腊字母Ω表示。 二、不饱和度的计算 1、根据有机物的化学式计算 常用的计算公式: 烃(C n H m):Ω=卤代烃(C n H m X Z):Ω= 含氧衍生物(C n H m O Z):Ω=含氮衍生物(C n H m N Z):Ω= 公式繁多,现简化如下: 将有机物的化学式转化为CxHyOa(NH)b则Ω=x+1-y/2 此公式使用范围极广,可囊括几乎所有有机物,无需分类讨论,硅与碳等效,卤素与氢等效,硫与氧等效。例:C10H4Cl2可转化为,则Ω= C20H31O2N3可转化为,则Ω= 2、非立体平面有机物分子,可以根据结构计算 Ω=双键数+叁键数×2+环数 备注:双键包含碳碳、碳氮、氮氮、碳氧双键;叁键包含碳碳、碳氮叁键;环数等于将环状分子剪成开链分子时,剪开碳碳键的次数,环包含含N、O、S等的杂环。 如苯:Ω=,即苯可看成三个双键和一个环的结构形式。 例: Ω=Ω=Ω= 3、立体封闭有机物分子(多面体或笼状结构)不饱和度的计算,其成环的不饱和度比面数少数1。 例: 立方烷面数为,Ω=降冰片烷面数为,Ω=棱晶烷面数为,Ω= 三、不饱和度(Ω)与分子结构的关系 1、若Ω=0,说明分子是饱和链状结构; 2、若Ω=1,说明分子中有一个双键或一个环; 3、若Ω=2,说明分子中有两个双键或一个三键;或一个双键和一个环;或两个环;余类推; 4、若Ω≥4,说明分子中很可能有苯环。 2 2 2m n- + 2 2 2z m n- - + 2 2 2m n- + 2 2 2z m n+ - +

_不饱和聚酯树脂及其新发展

玻璃钢2008年第2期不饱和聚酯树脂及其新发展 张小苹 (上海玻璃钢研究院,上海 201404) 摘要 不饱和聚酯树脂(UPR)是热固性树脂中用量最大的,也是玻璃钢复合材料制品生产中用得最多的树脂,所以是玻璃钢复合材料行业最为关心的基体树脂。本文对UPR优缺点、配方设计、固化特性等作一介绍,并对UPR的新发展进行展望,以供读者参考。 关键词:不饱和聚酯树脂(UPR)优缺点配方设计固化特性新发展 1前言 不饱和聚酯树脂(UPR)工业于1942年首先在美国实现了工业化生产,用玻璃纤维布增强制得第一批聚酯玻璃钢雷达天线罩,其重量轻、强度高、透波性能好、制造简便,迅速用于战争。此后,英国(1947年)、日本(1953年)、德国、法国、意大利、荷兰等也相继投产。 不饱和聚酯的发现可以追溯到1847年,瑞典科学家伯齐利厄斯(Berzelivs)用酒石酸和甘油反应生产聚酒石酸甘油酯,是一种块状树脂。以后,1894年和1901年又出现了乙二醇和顺丁烯二酸合成的聚酯和用苯二甲酸酐和甘油反应得苯二甲酸甘油酯。1934年以后出现了过氧化苯甲酰固化(引发)剂。1937年布雷德利(Bradley)发现利用游离基引发剂可使线型聚酯变为不溶的固体。随后不久,发现不饱和聚酯和苯乙烯单体可以发生交联反应,其反应速度比没有交联单体时的反应要快30倍左右,这是现代不饱和聚酯(UP)的起点。 我国于1958年开始不饱和聚酯树脂生产。60年代初期常州建材二五三厂(现为常州天马集团公司)引进了英国斯高特——巴德尔(scott—Bader)公司的工艺与设备,对推动我国聚酯工业和玻璃钢工业的发展起了一定的作用。到70年代初期,玻璃钢制品开始由军工到民用,得到较快的推广。经过四十多年的发展,我国的UPR工业的发展速度居世界领先地位。1976年我国UPR总产量不足3000吨,而美国当年产量为43万吨。经过三十年的发展,美、日、欧等发达国家中发展最快的美国UPR产量翻了一番,2004年达到87.5万吨,而我国则于2003年达到73万吨。2006年已达103万吨,居世界首位。目前,我国UPR产量、消费量均居世界首位,生产能力已达200万吨/年,今年产量达120多万吨。 · 23 ·

不饱和聚酯树脂

不饱和聚酯树脂 20031015——用于改善复合材料耐水性的硅烷偶联剂。 用于改善复合材料包括不饱和聚合材料耐水性的硅烷偶联剂是由氨基硅烷(R40)3—6SiR2R3bNH(R1NH)aSiR2R3b (0R4)3—6与甲基丙烯酸2-异氰酸乙酯反应而制成的,其中R1=C1—8羟苯基;R2=C3—9羟苯基;R3=C1—6羟苯基;R4=Cl—3羟苯基;a、b=0~2。 (CAl32:23497) 20031016——多层着色的阻燃树脂屋顶材料。 该屋顶材料包含一层背层、一玻璃纤维层、一装饰性纸层和一表面层。表面层的组分为阻燃剂磷酸三酯l0%~30%,固化剂2%~4%,助催化剂3%~8%和不饱和聚酯树脂No.182至100%,最佳配比为,磷酸三酯20%,固化剂3%,助催化剂5%和不饱和聚酯树脂 No.182 至 l00%。背层由阻燃剂Al(0H)320%~50%、氯丁橡胶10%~30%、固化剂2%~4%、助催化剂3%~8%和不饱和聚酯树脂No.191至l00%,最佳配比为Al(OH)340%,氯丁橡胶10%,固化剂3%,助催化剂5%和不饱和聚酯树脂No.191至100%。(CAl 32:208902) 20031017——+含有苯乙烯聚合物的低收缩不饱和聚酯组成物。 不饱和聚酯组成物包含5%~30%(以聚酯为基准)3—维苯乙烯聚合物搀合物和1%~l0%(以聚酪为基准)非交联的聚苯乙烯,其平均分子质量为70000。该组成物在固化过程中显示了较低的收缩性,提供固化物颜色的均匀性。例如,100份的组成物包含100份的980:472:473:157:104的马来酸酐-氢化双酚A-丙二醇-—缩二丙二醇-新戊二醇共聚物和75份苯乙烯与15份3维聚苯乙烯(SGP 70 C);3份非交联的聚苯乙烯(Himer SB150),1份硬化剂(Perbuty lZ),300份A1(OH)3,玻璃纤维和其他添加剂,其在模具中固化得到一半透明的试片,该试片表面光滑、减少颜色的不均匀性。(CAl32:309217) 20031018——具有优良阻燃性的含三价磷无卤树脂。 用于镀铜板的树脂含有五价磷和C=C双键但无磷酸酯键。例如,三羟丙基氧化膦,马来酸酐,琥珀酸酐(T=酸酐),甲基丙烯酸缩水甘油酯和苯乙烯的反应物50 g,含有YDl28环氧树脂的甲基丙烯酸和苯乙烯的乙基酯树脂50g和1.25g Percumy),1H(氢过氧化枯烯)的混合物在模具中固化得到试片,其试片的弯曲模量为3.50GPa,玻璃化转变温度155℃。(CA132:309464) 20031019——用于提高玻璃纤维增强不饱和聚酯耐热性和耐水性的硅烷偶联剂。 由NH2(R1M-1)2R2SiR3b(0R4)3—6与氰乙烯基苄基氯和甲基丙烯酸2-异氰酸乙酯反应制备硅烷偶联剂,其中R1=C1—8含羟基苯基,R2=C3—9含羟基苯基,R3=C1—6含羟基苯基,R4=Cl—3羟基,a=0~2,b=0~2。首先N-β-(胺乙基)-γ-胺丙基三甲氧基硅烷与甲基丙烯酸-2-异氰酸乙酯(Karenzu Mo1)40℃时反应2h,再与乙烯基苄基氯在MeOH下60℃反应6h得到硅烷化合物,将玻璃织布(WEA 7628)在其中浸渍,再浸渍不饱和聚酯树脂(Ripoxy。 R 806B)。堆叠、固化得到—板式制品,其在260℃时20 s不起泡,280℃时不起白斑。(CAl32:23472) 20031020——纤维增强塑料的配件、管件及其制备。 具有优异耐水性能的配件和管件是由缠绕长纤维如粗纱浸于热固性树脂中绕一金属芯,进一步缠绕织物或针织纤维带在长纤维上,然后固化树脂而制备。例如,一种由不饱和聚酯浸渍粗砂和玻璃纤维带制成的管件,其装有20 kg/cm2

不饱和聚酯树脂基础知识

不饱和聚酯树脂基础知识 1.不饱和聚酯树脂的定义 “聚酯”是相对于“酚醛”“环氧”等树脂而区分的含有酯键的一类高分子化合物。这种高分子化合物是由二元酸和二元醇经缩聚反应而生成的,而这种高分子化合物中含有不饱和双键时,就称为不饱和聚酯,这种不饱和聚酯溶解于有聚合能力的单体中(一般为苯乙烯)而成为一种粘稠液体时,称为不饱和聚酯树脂(英文名Unsaturated Polyester Resin 简称UPR)。 因此,不饱和聚酯树脂可以定义为由饱和的或不饱和的二元酸与饱和的或不饱和的二元醇缩聚而成的线型高分子化合物溶解于单体(通常用苯乙烯)中而成的粘稠的液体。2.不饱和聚酯树脂的特性 不饱和聚酯树脂是一种热固性树脂,当其在热或引发剂的作用下,可固化成为一种不溶不融的高分子网状聚合物。但这种聚合物机械强度很低,不能满足大部分使用的要求,当用玻璃纤维增强时可成为一种复合材料,俗称“玻璃钢”,简称FRP。“玻璃钢”的机械强度等各方面性能与树脂浇铸体相比有了很大的提高。 以不饱和树脂为基材的玻璃钢(UPR-FRP)具有以下特性: 轻质高强:FRP的密度为1.4-2.2g/cm3,比钢轻4-5倍,而其强度却不小,其比强度超过型钢、硬铝和杉木。 耐腐蚀性能良好:UPR-FRP是一种良好的耐腐蚀性材料,能耐一般浓度的酸、碱、盐类,大部分有机溶剂、海水、大气、油类,对微生物的抵抗力也很强,正广泛应用于石油、化工、农药、医药、染料、电镀、电解、冶炼、轻工等国民经济诸领域,发挥着其他材料无法替代的作用。 电性能优异:UPR-FRP绝缘性能极好,在高频作用下仍能保持良好的介电性能。它不反射无线电波,不受电磁的作用,微波透过性良好,是制造雷达罩的理想材料。用它制造仪表、电机、电器产品中的绝缘部件能提高电器的使用寿命和可靠性。 独特的热性能:UPR-FRP的导热系数为0.3-0.4Kcal/mh℃,只有金属的1/100-1/1000,是一种优良的绝热材料,用其制成的门窗是第五代新型节能建材。另外,FRP线胀系数也很小,与一般金属材料接近,所以FRP和金属连接不致受热膨胀产生应力,有利于其与金属基材或混凝土结构粘接。

不饱和度的计算

不饱和度的计算 不饱和度又称缺氢指数,是有机物分子不饱和程度的量化标志,用希腊字母Ω表示。医学教育|网收集整理规定烷烃的不饱和度是0(所有的原子均已饱和)。 不饱和度的计算方法: 1.根据有机物的化学式计算 Ω=(C原子数×2+2-氢原子数)÷2 (1)若有机物为含氧化合物,因为氧为二价,C=O与C=C“等效”,所以在进行不饱和度计算时可不考虑氧原子。 如CH2=CH2(乙烯)、CH3CHO(乙醛)、CH3COOH(乙酸)的Ω为1。 (2)有机物分子中的卤素原子取代基,可视作氢原子计算Ω。 如:C2H3Cl的Ω为1,其他基团如-NO2、-NH2、-SO3H等都视为氢原子。 (3)碳的同素异形体,可将其视作氢原子数为0的烃。 如C60(足球烯)。 (4)烷烃和烷基的不饱和度Ω=0。 如CH4(甲烷)。 (5)有机物分子中含有N、P等三价原子时,每增加1个三价原子,则等效为减少1个氢原子。 如CH3NH2(氨基甲烷)的Ω=0。 2.根据有机物分子结构计算 Ω=双键数+叁键数×2+环数 如苯:Ω=3+0×2+1=4即苯可看成三个双键和一个环的结构形式。 3.立体封闭有机物分子(多面体或笼状结构)不饱和度的计算,其成环的不饱和度比面数少数1。 如立方烷面数为6,Ω=6-1=5。 根据有机物分子结构计算,Ω=双键数+叁键数×2+环数 如苯:Ω=3+0×2+1=4 即苯可看成三个双键和一个环的结构形式。 补充理解说明:单键对不饱和度不产生影响,因此烷烃的不饱和度是0(所有原子均已饱和)。一个双键(烯烃、亚胺、羰基化合物等)贡献1个不饱和度。 一个叁键(炔烃、腈等)贡献2个不饱和度。 一个环(如环烷烃)贡献1个不饱和度。环烯烃贡献2个不饱和度。 一个苯环贡献4个不饱和度。一个碳氧双键贡献1个不饱和度。 一个-NO2贡献1个不饱和度。

不饱和聚酯树脂常用配方

不饱和聚酯树脂种类、性能及常用配方 2 1-4 5-10(耐水性好33#胶衣增强表面性能) 2、189#聚酯树脂100I号引发剂与I好促进剂系统

3含胶量:表面毡及短切毡70%——75%无捻粗纱方格布50%——55% 4、玻璃纤维厚度规格:0.20.40.60.8 5、偶联剂型号:KH-570 6、196#树脂为柔性不饱和聚酯树脂。 7、短切毡(450 g/m2230 g/m2)表面毡(60g/m2厚30 g/m2)粗纱(570 g/m2)使 用时可增加防腐、抗渗、防水功能。同时提高表面光亮度。 8、3.5mm厚玻璃钢要铺4层0.6mm和2层0.2mm厚玻璃纤维方格布。 9、197#双酚A型聚酯树脂耐酸、耐碱、耐水、耐高温。防腐电解槽工业烟气防 腐衬里等。一般厚度2-3mm..。还可用氯化不饱和聚酯树脂、环氧乙烯基酯树脂等防腐树脂。一般适用温度70℃。玻璃鳞片胶泥的适用可使温度达到200℃ 10、脱模剂可改为模具表面涂黄油后黏贴一层聚酯涤纶薄膜0.04mm厚。可取代 脱模蜡、抛光及涂聚乙烯醇脱模剂两道工序。易清洗、不污染、不迁移、适用于喷漆。 11、胶衣树脂:其厚度一般为0.25-0.4mm左右,相当于450g/m2. 12、被覆树脂:玻璃钢加工完成后最后覆盖上去的一层树脂。 13、耐化学树脂:不饱和聚酯树脂主要有间苯型和双酚A型两种,双酚A型特 别在耐碱条件下适用。乙烯基树脂耐酸。 14、呋喃树脂:耐强酸号称塑料王但不耐硝酸及硫酸耐氯气及饱和盐水长期浸泡。 并能在120-180℃下长期适用。 15填料:可降低玻璃钢成本10%左右。会影响树脂凝胶时间。增强玻璃钢的耐磨抗冲击强度减少收缩。但不是玻璃钢生产的必须材料。 16、腻子常用配方 (1)、底面调整(砂纸80#-120#、丙酮清洗)(2)、底涂层(喷两遍聚酯涂料)(3)、打腻子(聚酯腻子)(4)、研磨(水砂纸180#)(5)、中间涂层(聚酯系列溶剂涂料或两遍聚氨酯涂料)(6)、研磨(水砂纸300#-600#)(7)、表面涂层(混合漆、固化剂、丙酮调至黏度15-21白)(8)、特殊涂装、(贴压条纹带、固定带后涂清漆)。 18、促进剂环烷酸钴对聚酯固化的影响(I号促进剂-引发剂系统)

(完整版)不饱和度

C C 不饱和度 一、不饱和度的概念 不饱和度又称缺氢指数或者环加双键指数,是有机物分子不饱和程度的量化标志,即有机物分子中与碳原子数相等的开链烷烃相比较,每减少2个氢原子,则有机物的不饱和度增加1,用希腊字母Ω表示。 二、不饱和度的计算 1、根据有机物的化学式计算 常用的计算公式: 烃(C n H m ):Ω= 卤代烃(C n H m X Z ):Ω= 含氧衍生物(C n H m O Z ):Ω= 含氮衍生物(C n H m N Z ):Ω= 公式繁多,现简化如下: 将有机物的化学式转化为CxHyOa(NH)b 则Ω=x+1-y/2 此公式使用范围极广,可囊括几乎所有有机物,无需分类讨论,硅与碳等效,卤素与氢等效,硫与氧等效。 例:C 10H 4Cl 2可转化为C 10H 6 ,则Ω=10+1-6/2=8 C 20H 31O 2N 3可转化为C 20H 28O 2(NH)3 ,则Ω=20+1-28/2=7 2、非立体平面有机物分子,可以根据结构计算 Ω=双键数+叁键数×2+环数 备注:双键包含碳碳、碳氮、氮氮、碳氧双键;叁键包含碳碳、碳氮叁键;环数等于将环状分子剪成开链分子时,剪开碳碳键的次数,环包含含N 、O 、S 等的杂环。 如苯:Ω=6+1-6/2=3+1=4,即苯可看成三个双键和一个环的结构形式。 例: Ω=4+0×2+2=6 Ω=6+1×2+2=10 Ω=8+0×2+3=13 3、立体封闭有机物分子(多面体或笼状结构)不饱和度的计算,其成环的不饱和度比面数少数1。 例: 立方烷面数为6 ,Ω=5 降冰片烷面数为3 ,Ω=2 棱晶烷面数为 5 ,Ω=4 三、不饱和度(Ω)与分子结构的关系 1、若Ω=0,说明分子是饱和链状结构; 2、若Ω=1,说明分子中有一个双键或一个环; 3、若Ω=2,说明分子中有两个双键或一个三键;或一个双键和一个环;或两个环;余类推; 4、若Ω≥4,说明分子中很可能有苯环。 四、不饱和度的应用 1、辅助推导化学式 思路:结构简式——计算不饱和度——计算H 原子数——确定分子式 〖例1〗(2008海南20)1mo1X 能与足量碳酸氢钠溶液反应放出44.8LCO 2(标准状况),则X 的分子式是( D ) A .C 5H 10O 4 B . C 4H 8O 4 C .C 3H 6O 4 D .C 2H 2O 4 解析:能与碳酸氢钠反应的有机物一般为羧基,1molX 放出CO 2为2mol ,说明含2个羧基,其不饱和度至少为2,口算可得A 、B 、C 的不饱和度均为1,D 为2,可快速求解选项为D 。 〖例2〗(2009浙江11)一种从植物中提取的天然化合物a-damascone ,可用于制作 “香水”,其结构如下图,有关该化合物的下列说法不正确... 的是( C ) A .分子式为C 13H 20O B. 该化合物可发生聚合反应 C .1mol 该化合物完全燃烧消耗19molO 2 D .与溴的CCl 4溶液反应生成的产物经水解、稀硝酸化后可用AgNO 3溶液检验 解析:A 项,可快速判断出该分子为C 13HyO ,根据不饱和度公式,该分子含3个双键一个环,Ω=4=13+1-y/2,y =20,正确; B 项,由于分子可存在碳碳双键,故可以发生加聚反应,正确; C 项,根据A 项可转化为C 13H 18(H 2O )13个碳应消耗13个O 2,18个H 消耗4.5个O 2,共为17.5,故错; D 项,碳碳双键可以与Br 2发生加成发生,然后水解酸化,即可得Br -,再用AgNO 3可以检验,正确。 〖例3〗(09天津卷8)请仔细阅读以下转化关系: 2 22m n -+222z m n --+222m n -+222z m n +-+

不饱和聚酯树脂常用配方

不饱和聚酯树脂常用配 方 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

不饱和聚酯树脂种类、性能及常用配方 耐水性、耐候性好。 聚酯树脂玻璃钢材料用量/(Kg/10m2) 环氧玻璃钢材料用量 环氧玻璃钢材料参考配合比

1、189#聚酯树脂100过氧化环己酮二丁酯糊(50%)1-4耐酸钴苯乙烯(10%)1-4 5-10(耐水性好33#胶衣增强表面性能) 2、189#聚酯树脂100I号引发剂与I好促进剂系统 3含胶量:表面毡及短切毡70%——75%无捻粗纱方格布50%——55% 4、玻璃纤维厚度规格:.8 5、偶联剂型号:KH-570 6、196#树脂为柔性不饱和聚酯树脂。 7、短切毡(450 g/m2230 g/m2)表面毡(60g/m2厚30 g/m2)粗纱(570 g/m2) 使用时可增加防腐、抗渗、防水功能。同时提高表面光亮度。 8、3.5mm厚玻璃钢要铺4层0.6mm和2层0.2mm厚玻璃纤维方格布。 9、197#双酚A型聚酯树脂耐酸、耐碱、耐水、耐高温。防腐电解槽工业烟气 防腐衬里等。一般厚度2-3mm..。还可用氯化不饱和聚酯树脂、环氧乙烯基酯树脂等防腐树脂。一般适用温度70℃。玻璃鳞片胶泥的适用可使温度达到200℃ 10、脱模剂可改为模具表面涂黄油后黏贴一层聚酯涤纶薄膜0.04mm厚。可取 代脱模蜡、抛光及涂聚乙烯醇脱模剂两道工序。易清洗、不污染、不迁移、适用于喷漆。 11、胶衣树脂:其厚度一般为-0.4mm左右,相当于450g/m2. 12、被覆树脂:玻璃钢加工完成后最后覆盖上去的一层树脂。 13、耐化学树脂:不饱和聚酯树脂主要有间苯型和双酚A型两种,双酚A型特 别在耐碱条件下适用。乙烯基树脂耐酸。

有关有机物不饱和度计算的总结

一.不饱和度的概念 不饱和度又称缺氢指数,即有机物分子中与碳原子数相等的开链烷烃相比较,每减少2个氢原子,则有机物的不饱和度增加1,用Ω表示。 二.不饱和度的一般计算方法 1.根据有机物的化学式计算 (1)若有机物的化学式为CxHy则 (2)若有机物为含氧化合物,因为氧为二价,C=O与C=C“等效”,所以在进行不饱和度的计算时可不考虑氧原子,如CH2=CH2、C2H4O、C2H4O2的Ω为1。氧原子”视而不见” 推导:设化学式为CxHyOz-------------CxHy-z(OH)z ,由于H、OH都是一价在与碳原子连接,故分子式等效为CxHy。 (3)若有机物为含氮化合物,设化学式为CxHyNz-------------CxHy-2z(NH2)z,由于—H、—NH2都是一价在与碳原子连接,故分子式等效为CxHy-z (4)按照该法可以推得其它有机物分子的不饱和度 (5)有机物分子中的卤素原子取代基,可视作氢原子计算Ω。如:C2H3Cl的不饱和度为1,其他基团如-NO2、-NH2、-SO3H等都视为氢原子。 (6)碳的同素异形体,可将它视作Ω=0的烃。 如C60 (7)烷烃和烷基的不饱和度Ω=0 2.非立体平面有机物分子,可以根据结构计算,Ω=双键数+叁键数×2+环数 如苯:Ω=3+0×2+1=4 即苯可看成三个双键和一个环的结构形式。 注意环数等于将环状分子剪成开链分子时,剪开碳碳键的次数。 3.立体封闭有机物分子(多面体或笼状结构)不饱和度的计算,其成环的不饱和度比面数少数1。 如立方烷面数为6,Ω=6-1=5 三、不饱和度的应用 1、求较复杂有机物的化学式 例:是一种驱蛔虫药--山道年的结构简式,试确定其分子式为 ____________。 解析:从结构图中可见,分子中有14个碳原子,3个氧原子,又 有3个环和4个双键。Ω=7 氢原子数为2n+2-2Ω=2×14+2-2×7=16 ∴化学式为C14H16O3 2、知道了一种烃的不饱和度,就可以推测它可能的结构。例如:如果某烃的不饱和度为5,那么我们就可知道其分子中可能有一个苯环和一个碳碳双键。 3、如某有机物的分子式是C3H9N,求它的同分异构体? 首先分析它的饱和性,Ω= 0,则按饱和的方式去书写出

不饱和聚酯树脂MSDS

不饱和聚酯树脂化学品安全技术说明书 组分:聚合物的溶液(混合物) 对人类健康的危害:可燃,会刺激皮肤、眼和呼吸道 作用方式及症状 -吸入:咳嗽、头痛、头昏、困倦、意识模糊、恶心和呕吐 -误服:喉咙剧痛、胃痛、头疼、头昏、呕吐、麻木 -接触皮肤病:皮肤干裂、变红 -接触眼睛:疼痛、变红 急救措施 -吸入:立即移至有新鲜空气处,休息;半立直姿势,解开衣扣以利于呼吸如果呼吸困难应立即进行人工呼吸。中毒严重者应立即送医院救治。-误服:注意:千万不可催吐以免因呼吸不当对人身造成危害。可用清水漱口或去医院治疗。 -接触皮肤:立即用大量肥皂水冲洗,脱掉所有被污染的衣物,情况来严重的送医院治疗。 -接触眼睛:立即用大量清水冲洗,把眼睑向上翻,尽量与眼球分工以确保残余有害物质被冲洗干净,然后心须送医院治疗 灭火介质 -适用的灭火器种类:干粉、二氧化碳、泡沫、水(仅限于大面积失火) -有害热分解产物:燃烧会产生有毒气体 -灭为者的保护:穿防护服并使用自备呼吸装置 个人防护措施:佩带合适的个人防护器械,避免吸入有害气体。 保护环境措施和清洗方法:防止污染物进下水道、表面水、地下水和土壤。尽可能将有害物质收集到一个干净的容器内等待处理,用惰性吸附剂覆盖在残余的有害物质上。根据地方的有关法规处理。 操作:远离热源、远离点火源。严禁吸烟。避免吸入有害气体。避免接触到眼睛和皮肤,采取措施,防止静电。

储存:应储存在温度较低、通风良好的地方,避免接触过氧化物,采取措施防止静电,当含有苯乙烯的不饱和聚酯树脂暴露到光线下时,其储存期将显著缩短,存放在100%不透光的容器内,置于阴暗处。 工作环境中有害物质含量的极限值 有害组分名称 TLV/PEL 1)苯乙烯 TGG 8uun107mg/m3(荷兰,2000) 个人防护设施 -呼吸系统工程:工作环境中有害物质含量决不能超过极限值,可以使用局部的通风系统或在通风橱内操作。为了更好的保护脸部建议使用防毒面罩。皮肤和身体:化学防护服;耐化学防护鞋。 手部:耐化学防护手套(丁基合成橡胶,聚会乙烯醇) -眼睛:有防护边的安全眼镜。 物理状态有外观:液体 颜色:淡黄 气体:典型 沸点:已知最低值145℃(293℉)(苯乙烯) 熔点:-30℃(-22.9℉)开始向固态转变(基于苯乙烯的物性数据) 体积密度:1.1g/cm3 蒸汽密度:已知最高值3.6(空气-1)(苯乙烯) 蒸汽压:已知最高值0.6KPa(4.5mmHg,20℃) (苯乙烯) 溶解性:不溶于冷水 辛醇/水溶解系:不适用 PH值:不适用 闪点:封闭的杯子:33℃(91.4℉) 自燃点:已知最低温度490℃(914℉)(苯乙烯) 空气中爆炸极限:已知最大范围为:1.1%-8%(苯乙烯) 粘度(23℃):》300mPa.s 应避免的外界环境:过热,阳光直射。

相关文档
最新文档