压电加速度传感器的原理

压电加速度传感器的原理
压电加速度传感器的原理

压电加速度传感器的原理

应用压电效应的压电型加速度传感器,要根据用途选择不同的压电效果。

从结构上看,各自特点如下:

(a)压缩型(纵向效果)具有高机械强度,适用于冲击测试等各种测量要求。

(b)剪切型(厚度切变效果)不易受到由于温度变化产生的热电气的影响。

(c)挠曲型(横向效果)具有低频高敏度的特点。

三者结构如下图(a)(b)(c)所示,区别在于压电体受到的应力方向不同,其基本原理则大致相同。

※热电气的说明:压电体的结晶在无电流无应力状态下发生极化,此现象称为自发极化,通常用 Ps 表示。具有 Ps 特性的结晶,其热振动状态会随温度变化,其大小会随热膨胀发生变化。因此 Ps 是温度函数,结晶的温度变化量会成为 Ps 的变化量,并在结晶表面产生相应的电位差(正效应),反之施加电流产生相应的温度变化(逆效应)。此现象我们称之为热电气。

现在仅对加速度传感器运动方向为上下的情况进行说明,如上图(a)(b)中,k 代表压电体的弹性常数,D 代表空气阻抗等各种衰减。如图(a)中在基座上施加位移x0向上的加速度 a0,弹性常数 k 如图(b)所示,被压缩位移 y。

此时,施加到质量块 m 上的力 F 可用以下公式表示。

接下来,我们利用牛顿第二定律[力 F=质量 m×加速度 a],可以推导出以下公式。

因此,比弹性质量系(质量块、压电体、基座)的固有共振频率低时,从上述公式可以得出,加速度传感器的加速度 a0 和压电体受到的惯性力 F=m?a 成比例关系,另外与频率不相关。

而且如果是压缩型的话,惯性力 F 给压电体施加了纵向的应力,此时产生的电荷可以由公式推导得出来。

此时,d33、m 是一定的,因此加速度 a0 与 Q 成一定比例关系。下面根据压电体的静态电容C 将电荷 Q 转换成电压 V。根据Q=CV可将公式表示为:

此时,静态电容 C 为一定的话,a0 与 V 也成一定比例关系。

如上所示,压电型加速度传感器,基座受到的加速度最终会以电压形式输出。电荷及电压输出都与加速度成一定比例关系,因此通过测量电荷和电压即可得出加速度。一般电荷输出称为电荷灵敏度,电压输出称为电压灵敏度。

传感器实验报告

传感器实验报告(二) 自动化1204班蔡华轩 U2 吴昊 U5 实验七: 一、实验目的:了解电容式传感器结构及其特点。 二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结 构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。 三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏 检波、滤波模板、数显单元、直流稳压源。 四、实验步骤: 1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。图 7-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控 箱Vi 孔),Rw 调节到中间位置。 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔 记下位移X 与输出电压值,填入表7-1。

5、根据表7-1 数据计算电容传感器的系统灵敏度S 和非线性误差δf。 图(7-1) 五、思考题: 试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一 下在此设计中应考虑哪些因素 答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等

六:实验数据处理 由excle处理后得图线可知:系统灵敏度S= 非线性误差δf=353=% 实验八直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。 它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。 根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中 运动时,它就可以进行位移测量。图8-1 霍尔效应原理

压电式加速度传感器

HEFEI UNIVERSITY OF TECHNOLOGY 《传感器原理及应用》课程 考核论文 题目压电式加速度传感器班级机设七班 学号 20111488 姓名孙国强 成绩 机械与汽车工程学院机械电子工程系 二零一四年五月

压电式加速度传感器 摘要:现代工业和自动化生产过程中,非电物理量的测量和控制技术会涉及大量的动 态测试问题。所谓动态测试是指量的瞬时值以及它随时间而变化的值的确定,即被测量为变量的连续测量过程。振动与冲击测量的核心是传感器,常用压电加速度传感器来获取冲击和振动信号。压电式传感器是基于某些介质材料的压电效应,当材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量。其中,压电式加速度传感器是以压电材料为转换元件,将加速度输入转化成与之成正比的电荷或电压输出的装置,具有结构简单、重量轻、体积小、耐高温、固有频率高、输出线性好、测量的动态范围大、安装简单的特点。 一、传感器物理效应及工作原理 压电效应:某些材料在受力时所产生的电极化现象。正压电效应:某些电介质在受到某一方向的机械力而变形时,在一定表面上产生电荷,若外力变向,电荷极性随之而变;当撤除外力后,又重新回到不带电状态。逆压电效应:当在电介质的极化方向施加电场,电场力使其在一定方向上产生机械变形或机械应力;当撤除外加电场时,变形或应力随之消失,又称电致伸缩效应。 压电材料:石英晶体是目前广泛应用成本较低的人造石英晶体,有很大的机械强度和稳定的机械性能,温度稳定性好,但灵敏度低,介电常数小,因此逐渐被其他压电材料所代替,至今石英仍是最重要的也是用量最大的振荡器、谐振器和窄带滤波器等元件的压电材料。除此之外,压电陶瓷有较高的压电系数和介电常数,灵敏度高,但机械强度不如石英晶体好。 压电式加速度传感器又称为压电加速度计,它是典型的有源传感器,利用某些物质如石英晶体、人造压电陶瓷的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。压电敏感元件是力敏元件,在外力作用下,压电敏感元件的表面上产生电荷,从而实现非电量电测量的目的。 压电加速度传感器的原理框图如图1所示,原理如图2所示。

压力传感器工作原理

压力传感器 压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 1、压阻式压力传感器原理与应用: 压阻式压力传感器是利用单晶硅材料的压阻效应和集成电路技术制成的传感器。压阻式传感器常用于压力、拉力、压力差和可以转变为力的变化的其他物理量(如液位、加速度、重量、应变、流量、真空度)的测量和控制。 压阻效应 当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计,前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化(应变),而且前者的灵敏度比后者大50~100倍。 压阻式压力传感器结构 压阻式压力传感器采用集成工艺将电阻条集成在单晶硅膜片上,制成硅压阻芯片,并将此芯片的周边固定封装于外壳之内,引出电极引线。压阻式压力传感器又称为固态压力传感器,它不同于粘贴式应变计需通过弹性敏感元件间接感受外力,而是直接通过硅膜片感受被测压力的。硅膜片的一面是与被测压力连通的高压腔,另一面是与大气连通的低压腔。硅膜片一般设计成周边固支的圆形,直径与厚度比约为20~60。在圆形硅膜片(N型)定域扩散4条P杂质电阻条,并接成全桥,其中两条位于压应力区,另两条处于拉应力区,相对于膜片中心对称。硅柱形敏感元件也是在硅柱面某一晶面的一定方向上扩散制作电阻条,两条受拉应力的电阻条与另两条受压应力的电阻条构成全桥。

压电式传感器的发展与应用

HEFEI UNIVERSITY 自动检测技术报告 题目压电式传感器的应用与发展 系别 ***级自动化 班级 **班 姓名 ********************** 指导老师***** 完成时间 2011-11-28

前言:压电式传感器是以某些电介质的压电效应为基础,在外力作用下,在电介质的表面上产生电荷,从而实现非电量测量。压电传感元件是力敏感元件,所以它能测量最终能变换为力的那些物理量,例如力、压力、加速度等。压电式传感器具有响应频带宽、灵敏度高、信噪比大、结构简单、工作可靠、重量轻等优点。近年来,由于电子技术的飞速发展,随着与之配套的二次仪表以及低噪声、小电容、高绝缘电阻电缆的出现,使压电传感器的使用更为方便。因此,在工程力学、生物医学、石油勘探、声波测井、电声学等许多技术领域中获得了广泛的应用。本文重点介绍压电式传感器的工作原理,在航空发动机中的应用及发展趋势。 关键字:传感器压电效应测振 正文:压电式传感器的发展及应用压电式传感器是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 压电效应可分为正压电效应和逆压电效应。正压电效应是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变 时,电荷的极性也随之改变;晶体受力所产生的电荷量 与外力的大小成正比。压电式传感器大多是利用正压电 效应制成的。逆压电效应是指对晶体施加交变电场引起 晶体机械变形的现象,又称电致伸缩效应。用逆压电效 应制造的变送器可用于电声和超声工程。压电敏感元件 的受力变形有厚度变形型、长度变形型、体积变形型、 厚度切变型、平面切变型5种基本形式(见图)。压电 晶体是各向异性的,并非所有晶体都能在这5种状态下产生压电效应。例如石英晶体就没有体积变形压电效应,但具有良好的厚度变形和长度变形压电效应。 压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。 压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。 压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。

加速度传感器的选择

加速度传感器选型 压电加速度传感器因其频响宽、动态范围大、可靠性高、使用方便,受到广泛应用。在一般通用振动测量时,用户主要关心的技术指标为:灵敏度、频率范围,内部结构、内置电路型与纯压电型的区别,现场环境与后续仪器配置等。 一、灵敏度的选择 制造商在产品介绍或说明书中一般都给出传感器的灵敏度和参考量程范围,目的是让用户在选择不同灵敏度的加速度传感器时能方便地选出合适的产品,最小加速度测量值也称最小分辨率,考虑到后级放大电路噪声问题,应尽量远离最小可用值,以确保最佳信噪比。最大测量极限要考虑加速度传感器自身的非线性影响和后续仪器的最大输出电压。 估算方法:最大被测加速度×传感器电荷(电压)灵敏度,其数值是否超过配套仪器的最大输入电荷(电压)值。建议如已知被测加速度范围可在传感器指标中的“参考量程范围”中选择(兼顾频响、重量),同时,在频响、质量允许的情况下,尽量选择高灵敏度的传感器,以提高后续仪器输入信号,提高信噪比。在兼顾频响、质量的同时,可参照以下范围选择传感器灵敏度:以电荷输出型压电加速度传感器为例: 1、土木工程和超大型机械结构的振动在0.1g-10g (1g=9.81m/s2)左右,可选电荷灵敏度在300pC/ms-2~ 30pC/ms-2的压电加速度传感器,属于电荷输出型压电加速度传感器 2、特殊的土木结构(如桩基)和机械设备的振动在100ms-2~1000ms-2,可选择20pC/ms-2~2pC/ms-2的加速度传感器。 3、冲击,碰撞测量量程一般10000ms-2~1000000ms-2,可选则传感器灵敏度是0.2pC/ms-2~ 0.002pC/ms-2的加速度传感器。 二、频率选择 制造商给出的加速度传感器的频响曲线是用螺钉刚性连接安装的。 一般将曲线分成二段:谐振频率和使用频率。使用频率是按灵敏度偏差给出的,有±10%、±5%、±3dB。谐振频率一般是避开不用的,但也有特例,如轴承故障检测。选择加速度传感器的频率范围应高于被测试件的振动频率。有倍频分析要求的加速度传感器频率响应应更高。土木工程一般是低频振动,加速度传感器频率响应范围可选择0.2Hz~1kHz,机械设备一般是中频段,可根据设备转速、设备刚度等因素综合估算振动频率,选择0.5Hz~ 5kHz 的加速度传感器。如发电机转速在3000rms 时,除以60s 此时它的主频率为50Hz。碰撞、冲击测量高频居多。 加速度传感器的安装方式不同也会改变使用频响(对振动值影响不大)。 安装面要平整、光洁,安装选择应根据方便、安全的原则。我们给出同一只AD500S 加速度传感器不同安装方式的使用频率:螺钉刚性连接(±10%误差)10kHz;环氧胶或“502”粘接安装6kHz;磁力吸座安装 2kHz;双面胶安装1kHz。由此可见,安装方式的不同对测试频率的响应影响很大,应注意选择。加速度传感器的质量、灵敏度与使用频率成反比,灵敏度高,质量大,使用频率低,这也是选择的技巧。 三、内部结构 内部结构是指敏感材料晶体片感受振动的方式及安装形式。有压缩和剪切两大类,常见的有中心压缩、平面剪切、三角剪切、环型剪切。 中心压缩型频响高于剪切型,剪切型对环境适应性好于中心压缩型。如配用积分型电荷放大器测量速度、位移时,最好选用剪切型产品,这样所获得的信号波动小,稳定性好。 四、内置电路 内置的概念是将放大电路置于加速度传感器内,成为具有电压输出功能的传感元件。它可分双电源(四线)和单电源(二线、带偏置,又称ICP) 两种,下面所指内装电路专指ICP

压力传感器工作原理

压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 1、应变片压力传感器原理与应用: 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 1.1、金属电阻应变片的内部结构:它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 1.2、电阻应变片的工作原理:金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m)

传感器实验报告

33传感器原理及应用实验报告 实验人:程昌 09327100 合作人:雷泽雨 09327104 理工学院光信息科学与技术 实验时间:2011年5月20日,5月27日 实验地点:1号台 【实验目的】 1.了解传感器的工作原理。 2,掌握声音、电压等传感器的使用方法。 3.用基于传感器的计算机数据采集系统研究电热丝的加热效率。 【实验仪器】 PASCO公司750传感器接口1台,温度传感器1只,电流传感器1只,电压传感器1只,声音传感器1只,功率放大器1台,电阻1只(1k),电容1只(非电解电容,参数不限),二极管1只(非稳压二极管,参数不限),导线若干。 【安全注意事项】 1、插拔传感器的时候需沿轴向平稳插拔,禁止上下或左右摇动插头,否则易损坏750接口。 2、严禁将电流传感器(Current sensor)两端口直接接到750接口或功率放大器的信号输出 端,使用时必须串联300欧姆以上的电阻。由于电流传感器的内阻很小,直接接信号输出端则电流很大,极易损坏。 3、测量二极管特性时必须串联电阻,因为二极管的正向导通电压小于1V,不串联电阻则电 流很大,容易烧毁,也易损坏电流传感器。 【原理概述】 传感器(sensor或transducer)有时亦被称为换能器、变换器、变送器或探测器,是指那些对被测的某一物理量、化学量或生物量的信息具有感受与检出功能,并使之按照一定规律转换成与之对应的有用输出信号的元器件或装置。为了与现代电子技术结合在一起,通常都转换为电信号,特别是电压信号,从而将各种理化量的测量简化为统一的电压测量,易于进一步利用计算机实现各种理化量的自动测量、处理和自动控制。现在,传感技术已成为衡量一个国家科学技术发展水平的重要标志之一,与信息技术、计算机技术并称为支撑整个现代信息产业的三大支柱。有关传感器的研究也得到深入而广泛的关注,在中国期刊全文数据库中可检索到超过2万篇题目中包含“传感器”三字的论文。因此,了解并掌握一些有关传感器的基本结构、工作原理及特性的知识是非常重要的。

传感器原理与应用实验报告

传感器原理与应用 实验报告 分校: 班级: 姓名: 学号:

实验一 电阻应变式传感器实验 实验成绩 批阅教师 一. 实验目的 1.熟悉电阻应变式传感器在位移测量中的应用 2.比较单臂电桥、双臂电桥和双差动全桥式电阻应变式传感器的灵敏度 3.比较半导体应变式传感器和金属电阻应变式传感器的灵敏度 4.通过实验熟悉和了解电阻应变式传感器测量电路的组成及工作原理 二.实验内容 1.单臂电桥、双臂电桥和双差动全桥组成的位移测量电路, 2.半导体应变式传感器位移测量电路。 三.实验步骤 1.调零。开启仪器电源,差动放大器增益置100倍(顺时针方向旋到底),“+、-”输入端用实验线对地短路。输出端接数字电压表,用“调零”电位器调整差动放大器输出电压为零,然后拔掉实验线。调零后电位器位置不要变化。 如需使用毫伏表,则将毫伏表输入端对地短路,调整“调零”电位器,使指针居“零”位。拔掉短路线,指针有偏转是有源指针式电压表输入端悬空时的正常情况。调零后关闭仪器电源。 2.按图(1)将实验部件用实验线连接成测试桥路。桥路中R 1、R 2、R 3、和W D 为电桥中的固定电阻和直流调平衡电位器,R 为应变片(可任选上、下梁中的一片工作片)。直流激励电源为±4V 。 图(1) 测微头装于悬臂梁前端的永久磁钢上,并调节使应变梁处于基本水平状态。 3.接线无误后开启仪器电源,预热数分钟。调整电桥W D 电位器,使测试系统输出为零。 1. 旋动测微头,带动悬臂梁分别作向上和向下的运动,以悬臂梁水平状态下电路输出电压为零起点,向上和向下移动各6mm ,测微头每移动1mm 记录一 +

个差动放大器输出电压值,并列表。2.计算各种情况下测量电路的灵敏度S。S=△U/△x 表1 金属箔式电阻式应变片单臂电桥 表2 金属箔式电阻式应变片双臂电桥 表3 半导体应变片双臂电桥

压电式传感器

摘要 (1) 一、引言 (1) 二、压电式传感器原理 (1) 2.1压电传感器所应用的原理 (1) 2.2压电效应的产生 (2) 2.3石英晶体的压电效应 (3) 三、压电传感器在汽车上的应用 (4) 3.1压电式爆震传感器 (4) 3.1.1共振型压电式爆震传感器 (4) 3.1.2非共振型压电式传感器 (5) 3.2碰撞传感器 (6) 3.3压电式加减速传感器 (6) 四、压电式传感器的发展趋势 (7) 参考文献 (7)

压电式传感器及应用 摘要 近年来,由于电子技术的飞速发展,随着与之配套的二次仪表以及低噪声、小电容、高绝缘电阻电缆的出现,使得压电传感器在工程力学、生物医学、石油勘探、声波测井、电声学等许多技术领域中获得了广泛的应用。本文将以压电式传感器的应用与发展为核心,首先对压电效应的原理进行介绍,紧接着是在行业、具体工程方面尤其是在汽车领域的应用以及应用的方法,最后介绍了压电式式传感器未来的发展趋势。 关键字:压电式传感器;压电效应;应用;发展 一、引言 传感器是指那些对被测对象的某一确定的信息具有感受与检出功能, 并使之按照一定规律转换与之对应有用输出信号的元器件或装置,是新技术革命和信息社会的重要技术基础,是现代科技的开路先锋,美国早在80年代就声称世界已进入传感器时代,日本则把传感器技术列为十大技术之创立。 压电式传感器是基于压电效应的传感器。是一种自发电式和机电转换式传感器它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 二、压电式传感器原理 2.1压电传感器所应用的原理 压电式传感器所采用的是压电效应,即,当沿着一定方向对某些物质加力而使其变形时,

PE和IEPE加速度传感器的比较.doc

P E和I E P E加速度传感器的比较 PE是指电荷输出型压电式加速度传感器,IEPE是指内置处理电路的压电式加速度传感器,本文将要讨论二者各自的特点。 压电效应 压电式加速度传感器的工作原理是以某些物质的压电效应为基础的。当这些物质在某一方向上因受到拉力或压力的作用而产生变形时,其表面上会产生电荷;当去掉外力时,它们又会回到不带电的状态,这种现象就是压电效应。常用的压电材料有石英、钛酸钡、锆钛酸铅等等。实际上,当压电材料受到剪切力、横向拉力或压力时,也会产生压电效应。 PE加速度传感器 PE压电式加速度传感器的工作原理是:将质量块的加速度转换为其对压电材料所施加的力,通过测得该力的大小从而换算出加速度的值。 压电式加速度传感器的结构原理如下图所示。两片压电片组成了其压电元件,表面有镀银层,中间夹有一金属片,并焊有输出引线,另一输引线直接与基座相连。压电片上放有一个比重较大的质量块,并用一硬弹簧或螺栓对其施加预载荷。整个组件封装在一个金属壳体内部,基座一般较为厚重且刚度大。 测量时,传感器与被测物刚性固定在一起,当被测物振动时,传感器与基座也会产生相同的振动。由于质量块的质量相对较小,而弹簧的刚度相对很大,所以可认为质量块的惯性很小。因此质量块感受到与传感器基座相同的振动,并受到与加速度方向相反的惯性力的作用。于是,质量块就有一正比于加速度的交变力作用在压电片上,使其两个表面产生交变电荷。当振动频率远低于传感器的固有频率时,传感器的输出电荷与作用力成正比,亦即与被测物的加速度成正比。 由于PE传感器的输出量为电荷,因此其后端必须与电荷放大器或电压放大器连接,才能将电荷信号转换为电压信号,此电压信号经过后级放大、滤波等调理电路即可送入示波器等设备。由于PE传感器的输出阻抗较高,易受输出的电荷信号易受噪声干扰,因此必须使用特殊的低噪声电缆。 IEPE加速度传感器 由于PE加速度传感器有必须配接外部电荷放大器使用,并且信号在长距离传输过程中容易受干扰等一些缺点,因此出现了IEPE加速度传感器。 IEPE压电式加速度传感器的结构原理如上图所示,它其实就是将PE加速度传感器所需的处理电路集成到传感器内部,这样就可以直接输出一个高电平、低阻抗的电压信号,也有

超声波传感器

超声波传感器的实验报告 一、超声波传感器的定义: 超声波传感器是将超声波信号转换成其他能量信号(通常是电信号)的传感器。超声波是振动频率高于20KHz的机械波。它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。超声波传感器广泛应用在工业、国防、生物医学等方面。 超声波传感器的原理: 二、超声波传感器按其工作原理,可分为 1、压电式 2、磁致伸缩式 3、电磁式 压电式超声波传感器 压电式超声波传感器是利用压电材料的压电效应原理来工作的。常用的敏感元件材料主要有压电晶体和压电陶瓷。 根据正、逆压电效应的不同,压电式超声波传感器分为发生器(发射探头)和接收器(接收探头)两种,根据结构和使用的波型不同可分为直探头、表面波探头、兰姆波探头、可变角探头、双晶探头、聚焦探头、水浸探头、喷水探头和专用探头等。 压电式超声波发生器是利用逆压电效应的原理将高频电振动转换成高频机械振动,从而产生超声波。当外加交变电压的频率等于压电材料的固有频率时会产生共振,此时产生的超声波最强。压电式超声波传感器可以产生几十千赫到几十兆赫的高频超声波,其声强可达几十瓦每平方厘米。 压电式超声波接收器是利用正压电效应原理进行工作的。当超声波作用到压电晶片上引起晶片伸缩,在晶片的两个表面上便产生极性相反的电荷,这些电荷被转换成电压经放大后送到测量电路,最后记录或显示出来。压电式超声波接收器的结构和超声波发生器基本相同,有时就用同一个传感器兼作发生器和接收器两种用途。 典型的压电式超声波传感器结构主要由压电晶片、吸收块(阻尼块)、保护膜等组成。压电晶片多为圆板形,超声波频率与其厚度成反比。压电晶片的两面镀有银层,作为导电的极板,底面接地,上面接至引出线。为了避免传感器与被测件直接接触而磨损压电晶片,在压电晶片下粘合一层保护膜。吸收块的作用是降低压电晶片的机械品质,吸收超声波的能量。

压电式加速度传感器的信号输出形式

电荷输出型 传统的压电加速度计通过内部敏感芯体输出一个与加速度成正比的电荷信号。实际使用中传感器输出的高阻抗电荷信号必须通过二次仪表将其转换成低阻抗电压信号才能读取。由于高阻抗电荷信号非常容易受到干扰,所以传感器到二次仪表之间的信号传输必须使用低噪声屏蔽电缆。由于电子器件的使用温度范围有限,所以高温环境下的测量一般还是使用电荷输出型。北智BW-Sensor采用进口陶瓷的加速度计可在温度-40oC~250oC范围内长期使用。 低阻抗电压输出型(IEPE) IEPE型压电加速度计即通常所称的ICP型压电加速度计。压电传感器换能器输出的电荷通过装在传感器内部的前置放大器转换成低阻抗的电压输出。IEPE型传感器通常为二线输出形式,即采用恒电流电压源供电;直流供电和信号使用同一根线。通常直流电部分在恒电流电源的输出端通过高通滤波器滤去。IEPE型传感器的最大优点是测量信号质量好、噪声小、抗外界干扰能力强和远距离测量,特别是新型的数采系统很多已配备恒流电压源,因此,IEPE传感器能与数采系统直接相连而不需要任何其它二次仪表。在振动测试中IEPE传感器已逐渐取代传统的电荷输出型压电加速度计。 传感器的灵敏度,量程和频率范围的选择 压电型式的加速度计是振动测试的最主要传感器。虽然压电型加速度计的测量范围宽,但因市场上此类加速度计品种繁多,所以给正确的选用带来一定的难度。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/6210613578.html,/

压力传感器的工作原理

压力传感器的工作原理 您需要登录后才可以回帖登录|注册发布 压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 压阻式压力传感器原理与应用: 压阻式压力传感器是利用单晶硅材料的压阻效应和集成电路技术制成的传感器。压阻式传感器常用于压力、拉力、压力差和可以转变为力的变化的其他物理量(如液位、加速度、重量、应变、流量、真空度)的测量和控制。 压阻效应 当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计,前者电阻随压力的变化主要取决于电阻率的变

化,后者电阻的变化则主要取决于几何尺寸的变化(应变),而且前者的灵敏度比后者大50~100倍。 压阻式压力传感器结构 压阻式压力传感器采用集成工艺将电阻条集成在单晶硅膜片上,制成硅压阻芯片,并将此芯片的周边固定封装于外壳之内,引出电极 引线。压阻式压力传感器又称为固态压力传感器,它不同于粘贴式应变计需通过弹性敏感元件间接感受外力,而是直接通过硅膜片感受被测压力的。硅膜片的一面是与被测压力连通的高压腔,另一面是与大气连通的低压腔。硅膜片一般设计成周边固支的圆形,直径与厚度比约为20~60。在圆形硅膜片(N型)定域扩散4条P杂质电阻条,并接 成全桥,其中两条位于压应力区,另两条处于拉应力区,相对于膜片中心对称。硅柱形敏感元件也是在硅柱面某一晶面的一定方向上扩散制作电阻条?,两条受拉应力的电阻条与另两条受压应力的电阻条构 成全桥。 电子血压计中压力传感器的原理应用及常见故障 压力传感器是工业生应用中最为常见的一种传感器,其广泛应 用于各种工业自控环境,在医用中常见于电子血压计,下面,便来为您简单介绍一些压力传感器原理应用及常见故障。 电子血压计压力传感器的工作原理及应用 压力传感器一般有电容式的和压阻式的。电容式的利用两片金 属间的电容变化来对应压力值,压阻式利用电阻值变化来对应压力值。 电子血压计压力传感器的常见问题

压电传感器的应用

压电传感器的应用 摘要:传感器是获取自然和生产领域中信息的主要途径与手段。在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。传感器的种类非常广泛,其中压电传感器是基于材料的压电效应而制成的器件,其有较长的发展历史。压电材料的种类由最初的压电晶体发展到压电陶瓷、进而发展到压电聚合物及其复合材料。随着物理学、材料科学与各个学科的交叉发展,压电材料被用以研制成了多种用途的传感器,被广泛应用于工程技术各领域,在测量技术中被用来测量力和加速度。 Abstract:Sensor is the main ways and means to obtain information in the field of natural and production . In modern industrial production, especially automated production process, useing a variety of sensors to monitor and control the production process of various parameters,which enable the device to work in a normal state or the best condition, and to achieve the best quality products. Types of sensors is very broad, of which the piezoelectric sensor is based on the piezoelectric effect devices made of material which has a long history of development. Types of piezoelectric material from the initial development of the piezoelectric ceramic piezoelectric crystal, and thus the development of piezoelectric polymers and their composites. With the development of cross-physics, materials science and various disciplines, piezoelectric materials are used for research into a variety of uses sensors are widely used in various

(完整版)四种压力传感器的基本工作原理及特点

四种压力传感器的基本工作原理及特点 一:电阻应变式传感器 1 1电阻应变式传感器定义 被测的动态压力作用在弹性敏感元件上,使它产生变形,在其变形的部位粘贴有电阻应变片,电阻应变片感受动态压力的变化,按这种原理设计的传感器称为电阻应变式压力传感器。 1.2 电阻应变式传感器的工作原理 电阻应变式传感器所粘贴的金属电阻应变片主要有丝式应变片与箔式应变片。 箔式应变片是以厚度为0.002——0.008mm 的金属箔片作为敏感栅材料,,箔栅宽度为0.003——0.008mm 。丝式应变片是由一根具有高电阻系数的电阻丝(直径0.015--0.05mm),平行地排成栅形(一般2——40条),电阻值60——200 ?,通常为120 ?,牢贴在薄纸片上,电阻纸两端焊有引出线,表面覆一层薄纸,即制成了纸基的电阻丝式应变片。测量时,用特制的胶水将金属电阻应变片粘贴于待测的弹性敏感元件表面上,弹性敏感元件随着动态压力而产生变形时,电阻片也跟随变形。如下图所示。B 为栅宽,L 为基长。 材料的电阻变化率由下式决定: d d d R A R A ρρ=+ (1) 式中; R —材料电阻

由材料力学知识得; [(12)(12)]dR R C K μμεε=++-= (2) K —金属电阻应变片的敏感度系数 式中K 对于确定购金属材料在一定的范围内为一常数,将微分dR 、dL 改写成增量ΔR 、ΔL,可得 R L K K R L ε??== (3) 由式(2)可知,当弹性敏感元件受到动态压力作用后随之产生相应的变形ε,而形应变值可由丝式应变片或箔式应变片测出,从而得到了ΔR 的变化,也就得到了动态压力的变化,基于这种应变效应的原理实现了动态压力的测量。 1.3电阻应变式传感器的分类及特点 测低压用的膜片式压力传感器 常用的电阻应变式压力传感器包括 测中压用的膜片——应变筒式压力传感器 测高压用的应变筒式压力传感器 1.3.1膜片——应变筒式压力传感器的特点 该传感器的特点是具有较高的强度和抗冲击稳定性,具有优良的静态特性、动态特性和较高的自震频率,可达30khz 以上,测量的上限压力可达到9.6mp a 。适于测量高频脉动压力,又加上强制水冷却。也适于高温下的动态压力测量,如火箭发动机的压力测量,内燃机、压气机等的压力测量。 1.3.2 膜片式应变压力传咸器的特点 A 这种膜片式应变压力传感器不宜测量较大的压力,当变形大时,非线性较大。但小压力测量中由于变形很小,非线性误差可小于0.5%,同时又有较高的灵敏度,因此在冲击波的测量中,国内外都用过这种膜片式压力传感器。 B 这种传感器与膜片—应变筒式压力传感器相比,自振频率较低,因此在低ρ—材料电阻率

压电式传感器实验报告

压电式传感器测振动实验 一、实验目的:了解压电传感器的测量振动的原理和方法。 二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。(观察实验用压电加 速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感 器实验模板。双踪示波器。 四、实验步骤: 1、压电传感器装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感器实验模板电路输出端V o1,接R6。将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。

3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器 波形。 4、改变低频振荡器的频率,观察输出波形变化。

光纤式传感器测量振动实验 一、实训目的:了解光纤传感器动态位移性能。 二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。 三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。 四、实训内容与操作步骤 1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。 2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。 3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi相接,低通输出Vo接到示波器。 4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。

压电式传感器实验报告

压电式传感器测振动实验 一、实验目的:了解压电传感器的测量振动的原理与方法。 二、基本原理:压电式传感器由惯性质量块与受压的压电片等组成。(观察实验用压电加速 度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。 三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感 器实验模板。双踪示波器。 四、实验步骤: 1、压电传感器装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感器实验模板电路输出端V o1,接R6。将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。

3、合上主控箱电源开关,调节低频振荡器的频率与幅度旋钮使振动台振动,观察示波器波 形。 4、改变低频振荡器的频率,观察输出波形变化。

光纤式传感器测量振动实验 一、实训目的: 了解光纤传感器动态位移性能。 二、实训仪器: 光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件) 。 三、相关原理:利用光纤位移传感器的位移特性与其较高的频率响应,用合适的测量电路即可测量振动。 四、实训内容与操作步骤 1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。 2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。 3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi相接,低通输出Vo接到示波器。 4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。

压力传感器的工作原理及特点

压力传感器是一种把非电量转变成电信号的器件,而检测仪表在模拟电子技术条件下,一般是包括传感器、检测点取样设备及放大器(进行抗干扰处理及信号传输),当然还有电源及现场显示部分(可选择),电信号一般为连续量、离散量两种,实际上还可分成模拟量、开关量、脉冲量等,模拟信号传输采用统一信号(4-20mADC等)。 数字化过程中,检测仪表变化比较大,经过几个阶段,近来多采用ASIC专用集成电路,而且把传感器和微处理器及网络接口封装在一个器件中,完成信息获取、处理、传输、存贮等功能。在自动化仪表中经常把检测仪表称为变送器,如温度变送器、压力变送器等。 压力传感器工作原理 1 、应变片压力传感器原理 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D 转换和CPU )显示或执行机构。 电阻应变片的工作原理 金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω。cm2/m ) S ——导体的截面积(cm2 ) L ——导体的长度(m ) 2 、陶瓷压力传感器原理 抗腐蚀的陶瓷压力传感器没有液体的传递,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥(闭桥),由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号,标准的信号根据压力量程的不同标定为2.0 / 3.0 / 3.3 mV/V等,可以和应变式传感器相兼容。 3 、扩散硅压力传感器原理 工作原理被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。

【实验报告】压电式传感器测振动实验报告

压电式传感器测振动实验报告 篇一:压电式传感器实验报告 一、实验目的:了解压电传感器的测量振动的原理和方法。 二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。 三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板。双踪示波器。 四、实验步骤: 1、压电传感器装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感器实验模板电路输出端 Vo1,接R6。将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。 3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。 4、改变低频振荡器的频率,观察输出波形变化。 光纤式传感器测量振动实验

一、实训目的:了解光纤传感器动态位移性能。 二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。 三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。 四、实训内容与操作步骤 1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。 2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。 3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi 相接,低通输出Vo接到示波器。 4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。 5、将频率档选在6~10Hz左右,逐步增大输出幅度,注意不能使振动台面碰到传感器。保持振动幅度不变,改变振动频率,观察示波器波形及锋-峰值。保持频率振动不变,改变振动幅度,观察示波器波形及锋-峰值。 篇二:实验六压电式传感器测振动实验 一、实验目的:了解压电传感器的测量振动的原理和方法。

相关文档
最新文档