顺丁橡胶聚合工艺设计

顺丁橡胶聚合工艺设计
顺丁橡胶聚合工艺设计

顺丁橡胶聚合工艺设计

目录

1.概述 (2)

1.1设计原则 (2)

1.1.1设计依据 (2)

1.2设计概况 (2)

1.3工艺路线的确定 (2)

1.3.1聚合方法的确定 (2)

1.3.2单体原料路线的确定 (3)

1.3.3溶剂的选择 (3)

1.3.4引发剂的选择 (3)

1.4催化剂活性中心的形成方式—陈化方式 (3)

1.4.1聚合反应机理及影响反应的因素 (4)

1.4.2聚合反应机理 (4)

1.4.3影响反应的因素 (4)

1.4.4车间组成 (4)

1.4.5 生产制度 (5)

2.产品的物理化学性质及技术指标 (5)

2.1.1顺丁橡胶的结构 (5)

2.1.2顺丁橡胶的性能 (5)

2.1.3顺丁橡胶的用途 (6)

3. 基础数据 (6)

3.1三釜物料衡算 (7)

3.1.1 计算丁二烯进料量 (7)

3.1.2 溶剂进料量 (7)

3.1.3 催化剂用量 (7)

3.1.4 聚丁二烯生成量 (7)

3.1.5 防老剂用量 (8)

3.2 三釜物料衡算表 (8)

3.3首釜物料衡算 (8)

3.3.1 计算丁二烯进料量 (8)

3.3. 2 溶剂进料量 (9)

3.3.3 催化剂用量 (9)

3.3.4 聚丁二烯生成量 (9)

4.设备选择及计算 (10)

4.1 聚合釜的体积 (10)

4.2 确定釜的外型尺寸 (10)

4.3 搅拌形式选择 (11)

4.4 搅拌功率的计算 (12)

5.热量衡算(首釜) (12)

6. 设计综述 (14)

7.参考资料 (14)

8.附图 (15)

8.1 BR的生产工艺流程图 (15)

8.2 反应釜的装配图 (15)

1.概述

1.1设计原则

1.1.1设计依据

本项目通过研读大量的关于顺丁橡胶性质、用途、生产技术及市场情况分析的文献,对生产聚合顺丁橡胶的工艺过程进行设计的。以及依据就专业教师下达的设计任务书来设计。

1.2设计概况

该设计生产规模为年产45000t顺丁橡胶。主要原料:单体——丁二烯;溶剂——溶剂油;引发剂——环烷酸镍、三异丁基铝、三氟化硼乙醚络合物;终止剂——乙醇;防老剂——2.6-二叔丁基对甲苯酚(简称2.6.4)。其生产原理采用溶液聚合的方法,使丁二烯、溶剂、引发剂等在连续釜式反应器中进行配位聚合,制得粘稠胶液,再通过水蒸汽凝聚、洗胶、干燥、压块等过程获得最终产品——顺丁橡胶。

1.3工艺路线的确定

1.3.1聚合方法的确定

顺丁橡胶以丁二烯为单体,采用不同催化剂和聚合方法合成。目前世界上顺丁橡胶生产大部分采用溶液聚合法。

催化剂类型的选择与配制是顺丁橡胶生产的关键,它决定工艺过程、聚合速度、聚合物的微观结构和橡胶的性能等。目前生产采用的催化剂主要有镍系、钛系、钴系、锂系、稀土钕系等。不同催化体系顺丁橡胶的生产工艺各有特点,但大体相似,以连续溶液聚合为主,主要工序有:①催化剂、终止剂和防老剂的配制和

计量;②丁二烯的聚合;③胶液的凝聚;④后处理,橡胶的脱水和干燥;⑤单体、溶剂的回收和精制。催化剂经配制、陈化后,与单体丁二烯、溶剂抽一起进入聚合装置,在此合成顺丁橡胶。胶液在进入凝聚工序前加入终止剂和防老剂。胶液用水蒸汽凝聚后,橡胶成颗粒状与水一起输送到脱水、干燥工序。干燥后的生胶包装后去成品仓库。在凝聚工序用水蒸汽蒸出的溶剂油和丁二烯经回收精制后循环使用。

顺丁橡胶的生产工序包括:催化剂、终止剂和防老剂的配制计量,丁二烯聚合,胶液凝聚和橡胶的脱水干燥。其聚合几乎都采用连续溶液聚合流程,聚合装置大都用3~5釜串联,单釜容积为12~50m3。

根据产物结构要求从自由基聚合、阴离子聚合、阳离子聚合、配位聚合等反应机理中选择出配位聚合,同时考虑配位聚合所用原料、引发剂、传热、物料输送、产物溶解、回收、操作方式等方面综合考虑选择溶液聚合实施方法。该工艺路线包括了如反应活性中心的形成过程;特殊引发剂组分的安全防护;由于溶剂的存在必然要考虑的回收、循环利用;反应的终止方式;产品防老化处理等特点。操作方式为连续操作。在溶液聚合制备顺丁橡胶过程中,从胶浆中脱除溶剂及其回收精制耗费大量能量,这是溶液聚合的最大弱点。为降低生产能耗,国外围绕提高聚合温度和转化率,以及改变溶剂体系开展了广泛的研究,同时得到了良好的设计方案。

1.3.2单体原料路线的确定

通过比较乙炔法、乙醇法、丁烷一步脱氢法、丁烯氧化脱氢法、丁烯催化脱氢法、石油高温裂解回收法等生产方法的优缺点,结合当地情况,因地制宜地选择合适的丁烯氧化脱氢制丁二烯原料路线。

1.3.3溶剂的选择

各种溶剂对反应原料、产物及反应所用各种引发剂的溶解能力不同。从溶解度参数、体系粘度、工程上传热与搅拌、生产能力提高、回收难易、毒性大小、来源、输送等几方面对苯、甲苯、甲苯-庚烷、溶剂油等,进行综合比较,确定选择溶剂油。

1.3.4引发剂的选择

从适合顺丁橡胶生产的引发剂共性入手,如定向能力高、稳定性好、易贮存、高效、用量少、易分离及残存对产物性能无影响等,对常用的四大类型引发剂Li系、Ti系、Co系、Ni系进行比较,选择Ni系引发剂,其组份主引发剂为环烷酸镍,助引发剂为以异丁基铝,第三组分为三氟化硼·乙醚络合物。

1.4催化剂活性中心的形成方式—陈化方式

陈化是指为了提高引发剂活性,充分发挥各组分的作用,在聚合前事先把引

发剂各组分安一定配比,在一定的条件下进行的预混合反应。国内对上述引发体系曾采用过三种陈化方式,即三元陈化、双二元陈化、稀硼单加。通过比较确定最佳方式为稀硼单加。

Cat.陈化和陈化方式:

① Cat.的陈化:多组分的催化剂按一定的顺序进行混合,使Cat.具有活性的过程,②陈化方式:三元陈化→双二元陈化→B单加,目前催化剂的陈化方式是B 单加。③ Cat.陈化的条件:Cat.陈化是放热反应,陈化的条件:

a.低温,-10~10℃;

b.时间短(10~20min在管道中进行,静态混合器);

c.浓度低

1.4.1聚合反应机理及影响反应的因素

1.4.2聚合反应机理

丁二烯聚合反应的机理属于连锁聚合反应,遵循配位阴离子的链引发、链增长、链终止及链转移等基元反应机理。其总反应式为:

n CH2=CH—CH=CH2 [ CH2—CH=CH—CH2]n

1.4.3影响反应的因素

影响聚合反应的因素主要有引发剂的陈化方式,引发剂配制浓度,引发剂用量、配比,通过几方面进行分析,最后得出比较合适配方为:

丁二烯浓度为99.86%

丁浓为20g/100ml

=1130g/l,硼油比=1:500(体积)

[Ni]=2g/l,[Al]=2g/l,ρ

B

Ni/丁=1.0×10-5, B/丁=0.8×10-4, Al/丁=0.4×10-4(mol)

防老剂浓度为186g/l, 防老剂量/橡胶量=1%(W)

单体浓度提高单体浓度聚合反应速度增加,有利于提高产量。从传热、搅拌、物料输送等方面综合考虑单体浓度(丁浓)控制范围为10~15%。温度聚合温度升高,会使反应速度加快,产物分子量下降,但过高的温度会造成大分子产生支化,影响胶的质量。因此,要严格控制。一般首釜不大于95℃,末釜不大于110℃。杂质体系中的杂质主要有乙腈、水分、炔烃和空气中的氧等,这些杂质主要对引发剂的活性、诱导期的长短、体系的稳定性、聚合速度产生影响,因此,要严格控制在一定指标以下。设计原则中还要考虑主要设备的选型。

1.4.4车间组成

该车间主要由聚合工段和后处理工段组成。聚合工段主要由罐区、计量、聚合、配制、度等岗位组成。后处理主要由混胶、凝聚、干燥、压块、薄膜、纸袋等岗位组成。设计范围

包括:聚合工段至后处理工段的物料衡算、聚合过程的热量衡算、聚合工段各种设备的选型,物料流程图、带控制点工艺流程图、聚合釜装配图、平面布置图等。

1.4.5 生产制度

考虑装置的大修,采用年开工时间为7900h,全装置主要采用连续操作方式,局部采用间歇操作方式。

2.产品的物理化学性质及技术指标

2.1.1顺丁橡胶的结构

顺丁橡胶的物理化学性质与其结构的直接关系。这种结构又分为分子内结构和分子间结构(聚集态结构)。

H H

C

CH2

顺式1.4结构

还有反式1.4结构和1.2位加成产物。利用环烷酸镍-三异丁基铝-三氟化硼乙醚络合物引发体系使丁二烯聚合后的产物中含96%~98%的顺式1.4结构,含1%~2%反式1.4结构和1%~2%的1.2结构加成物。这种以顺式1.4结构为主的聚合物具有分子链长,自然状态下为无规线团状;分子内存在独立双键使大分子链的柔性大,同时易于硫化处理的特点。由于顺式1.4结构含量大,使得大分子的规整性好,同时又由于分子链无取代基,造成对称性好,但因其重复结构单元之间距离大,而使顺式1.4结构聚丁二烯比反式1.4结构聚丁二烯更难于结晶。即便能结晶,其熔点也低(顺式1.4含量为98.5%的产物,熔点为0℃),因此,在常温下无结晶态,只以无定形形态存在。相反,反式结构产物易结晶。故此,前者是高弹性体,后者无弹性。

2.1.2顺丁橡胶的性能

通过与天然橡胶相比,顺丁橡胶具有弹性高、耐低温性好、耐磨性佳、滞后损失和生热性小、耐挠曲性及动态性能好以及耐老化、而永久性好等特点。被广泛用于轮胎加工行业。但它也有加工性欠佳、强度较差、抗湿滑性不好、有冷流性倾向等不足。

顺丁橡胶的性能一看生胶的性能(可塑性、加工性、外观、颜色等)好坏,影响它因素有聚合方法、引发剂系统、生胶的分子结构、门尼粘度、平均分子量、分子量分布、凝胶含量、灰分、挥发份等。二看硫化后的硫化胶性能(抗张强度、300%定拉伸强力、伸长率、硬度、回弹性、生成热、永久变形、磨耗量等),影响硫化胶的因素有门尼粘度、凝胶含量、加工用的配合剂(种类、用量、配方)加工方

法等。上述这些可以用表格列出数据对常见橡胶胶进行比较显示。

2.1.3顺丁橡胶的用途

工业上最长常用的聚丁二烯橡胶的门尼粘度在40~50的范围内。门尼粘度过高是不现实的,因为门尼太高难以加工,门尼太小也不好,因为太小对充填剂分布、硫化胶强度、弹性、以及生胶的抗冷流性能都有害。

单独使用聚丁二烯胶时,加工性能很差,混炼时有困难。现在尚无不和其他橡胶并用而易于加工的高顺式聚丁烯品种。聚丁二烯橡胶与其他橡胶并用不仅是加工成型的需要,还有利于物理性能的改善。

顺丁橡胶的用途主要用于制造轮胎加工行业,另外,还用于输送带、传动带、模压制品、鞋底、胶鞋及海绵胶等方面。还可用于制造耐磨制品(如胶鞋、胶辊)、耐寒制品和防震制品,可作为塑料的改性剂。顺丁橡胶可与多种橡胶并用。制造乘用汽车轮时,可与丁苯橡胶并用,并用量为35%-50%制造载重汽车轮胎胎面时,常与天然橡胶并用,并用量为25%-50%。用于重型越野汽车轮胎胎面时,天然橡胶75份,顺丁橡胶25份较好。用于胶布时,一般与丁苯橡胶并用,并用量为15%-30%。用于制造轮胎胎侧时可与氯丁橡胶并用,以提高耐低温性能。顺丁橡胶也可与氯磺化聚乙烯并用。

3. 基础数据

生产规模:年产45000吨顺丁胶

生产方式:三釜连续生产

生产时间:年工作小时7900小时

每吨橡胶消耗定额:1.02吨100%丁二烯

聚合反应转化率按88%计算,三釜的转化率分别为65%,75%,88%

聚合釜的反应温度分别为70℃,86℃,88℃

盐水入口温度为-6℃,出口温度为-4℃,丁油进料温度为8℃

聚合反应时间为2小时

聚合釜三釜物料的粘度分别为4000cp,7000cp,10000cp

聚合釜三釜搅拌转速分别为60rpm,40rpm,25rpm

聚合釜假定为绝热设备,聚合釜的总传热系数按50-100kcal/m2·hr·℃选取, 聚合釜长径比按2.2-2.5选取

聚合配方:

丁二烯浓度为99.86%

丁浓为20g/100ml

[Ni]=2g/l,[Al]=2g/l,ρ B =1130g/l,硼油比=1:500(体积)

Ni/丁=1.0×10-5, B/丁=0.8×10-4, Al/丁=0.4×10-4(mol)

防老剂浓度为186g/l, 防老剂量/橡胶量=1%(W)

聚合损失1.5%,首釜:0.6%,二釜:0.5%,三釜:0.4%

挂胶损失1.2%,首釜:0.5%,二釜:0.4%,三釜:0.3%

3.1三釜物料衡算

3.1.1 计算丁二烯进料量

丁二烯产量=产量/年操作小时=45000×103/7900=5696.20( kg/hr)

由消耗定额计算100%丁二烯5696.20 ×1.02 = 5810.13(kg/hr) 按转化率85%计算丁二烯的进料5810.13 /0.88 = 6602.42(kg/hr)

折合成mol数为:6602.42/54 = 122.27(mol/hr)

实际丁二烯量为:6602.42/0.9986 = 6611.68 (kg/hr)

丁二烯的进料体积6611.68/620 = 10.66(m3/hr)

(丁二烯的溶剂比重为620kg/m3)

3.1.2 溶剂进料量

根据丁二烯浓度为20 g/100ml 的要求进行计算,

丁浓=丁二烯进料量/(丁二烯体积+溶剂体积+催化剂体积)

溶剂的体积=(丁二烯进料量/丁浓)-丁二烯体积-催化剂体积

=6611.68/200-10.66-0.72 =21.68(m3/hr)

1 m3/ hr(溶剂重度为660kg/m3)

溶剂进料量=121.68×660=14307.74(kg/hr)

3.1.3 催化剂用量

催化剂溶液进料体积(升)=催化剂进料量×1/[催]

Ni用量: 122.27×103×1.0×10-5×58.7 = 71.77(g/hr)

其溶液体积为: 71.77/2 = 35.89(l/hr)

Al用量: 122.27×103×0.4×10-4×27 = 132.05(g/hr)

其溶液体积为: 132.05/2 = 66.03(l/hr)

B用量: 122.27×103×0.8×10-4×142 = 1388.99(g/hr)

其体积为:1388.99/1130 = 1.23 (l/hr)(稀释比为1:500)

溶剂体积为:1.23×500 = 615.00 (l/hr)

三项催化剂总克数为:

71.77+132.05+1388.99=1592.81(g/hr)

三项催化剂总体积为:

614.635.89+66.03=716.52( l/hr)

溶剂重量:

716.52×0.66=472.90 (kg/hr)

3.1.4 聚丁二烯生成量

100%丁二烯进料:6602.42(kg/hr)

丁二烯损耗(聚合1.5%):6602.42×1.5%=99.04(kg/hr)

反应的丁二烯量:6602.42- 99.04= 6503.38 (kg/hr)

由转化率88%得生成聚丁二烯的量:

6503.38×88% = 5722.97(kg/hr)

因为挂胶损失1.2%

挂胶量=5722.97×1.2%=68.68(kg/hr)

去凝聚聚丁二烯=5722.97-68.68=5654.29(kg/hr)

未反应的丁二烯= 6503.38-5722.97=780.41 (kg/hr)

3.1.5 防老剂用量

防老剂用量=5654.29×1% =56.54(kg/hr)

防老剂体积=56.54×103/186=303.98(l)

防老剂溶液质量=303.98×660×10-3=200.63(kg)

防老剂溶剂质量=200.63-56.54=144.09(kg/hr)

3.2 三釜物料衡算表

3.3首釜物料衡算

3.3.1 计算丁二烯进料量

丁二烯产量=产量/年操作小时=45000×103/7900=5696.20(kg/hr)

由消耗定额计算100%丁二烯5696.20 ×1.02= 5810.13(kg/hr) 按转化率88%计算丁二烯的进料5810.13/0.88 =6602.42( kg/hr)

折合成公斤分子数为:6602.42/54 = 112.2公斤分子(mol/hr)

实际丁二烯量为:6602.42/0.9986= 6611.68(kg/hr)

丁二烯的进料体积6611.68/620 = 10.66 (m3/hr)

(丁二烯的溶剂重度为620kg/m3)

3.3. 2 溶剂进料量

根据丁二烯浓度为20 g/100ml 的要求进行计算,

丁浓=丁二烯进料量/(丁二烯体积+溶剂体积+催化剂体积)

溶剂的体积=(丁二烯进料量/丁浓)-丁二烯体积-催化剂体积

=6611.68/200-10.66-0.72=21.68(m3/hr)

催化剂体积=催化剂总的体积加和

(溶剂重度为660kg/m3)

溶剂进料量=21.68×660=14307.74(kg/hr)

3.3.3 催化剂用量

催化剂溶液进料体积(升)=催化剂进料量×1/[催]

Ni用量: 122.27×103×1.0×10-5×58.7 = 71.77(g/hr)

其溶液体积为: 71.77/2 = 35.89(l/hr)

Al用量: 122.27×103×0.4×10-4×27 = 132.05(g/hr)

其溶液体积为: 132.05/2 = 66.03(l/hr)

B用量: 122.27×103×0.8×10-4×142 = 1388.99(g/hr)

其体积为:1388.99/1130 = 1.23 (l/hr)(稀释比为1:500)

溶剂体积为:1.23×500 = 615.00 (l/hr)

三项催化剂总克数为:

71.77+132.05+1388.99=1592.81(g/hr)

三项催化剂总体积为:

614.635.89+66.03=716.52( l/hr)

溶剂重量:

716.52×0.66=472.90 (kg/hr)

3.3.4 聚丁二烯生成量

由转化率88%得100%丁二烯进料:6602.42 (kg/h)

首釜丁二烯损耗(聚合0.6%):6602.42×0.6%=39.61(kg/h)

反应的丁二烯量:6602.42-39.61=6562.81(kg/h)

由首釜转化率65%得生成聚丁二烯的量:

6562.81×65%=4265.83 (kg/h)

首釜挂胶损失0.5%

挂胶量=4265.83×0.5%=21.33(kg/h)

未反应的丁二烯= 6562.81-4265.83=2296.98 (kg/h)

去2#釜聚丁二烯量:4265.83-23.33=4244.5(kg/h)

4.设备选择及计算

4.1 聚合釜的体积

=(溶剂+丁二烯+催化剂)进料体积×反应时间

3(假定三个釜的体积相等)

=(21.68+10.66+0.72)×2 = 22.04m3

3

故反应釜总容积选为23m3

4.2 确定釜的外型尺寸

V

利用表2和表3用试差法,选取聚合釜长径比按2.2-2.5选取

可知釜体内径从2200~2300之间,

当选D=2400时,得到的长径比为H/D=4.2/2.4=1.75,

当选D=2200时满足选取范围。

由于小直径使长径比加大,有利于传热,所以,釜的内径选为2200mm。

则查JB1154-73椭圆封头[3]

公差直径Dg=2200 mm;曲面高度h1=550 mm;直边高度h2= 50mm

内表面积F封=5.57 m2最大容积V封=1.58 m3

V釜体=V釜总–2V封

=23 -(2×1.55)=19.9 m3

V釜体=(π/4 )H D2

H= (4V/D2π)=4×19.9/(2.22×3.14)=5.24m

为了便于制造H取为5.30m

核算:长径比为H/D=5.30/2.2=2.4

釜体直径2000--3000mm时,

夹套直径应为D+200mm D夹=2200+200=2400mm

釜体的传热面积A体=πDH= 3.14×2.2×5.3=36.61m2

实际反应釜的总传热面积A实=A体+A封=36.61+5.57×2=47.75 m2

4.3 搅拌形式选择

根据顺丁橡胶生产的粘度较大的特点,可选用锚式、螺杆式、框式或螺带式,按HG5-757-78来选择螺带式,查《化工工艺设计手册》,得:

D/D0=0.95 H/D0=1 C/D0=0.025

L/ D0=0.98 B/ D0=0.095 S=1 Z=2

其中:D--搅拌器直径(m)D0--搅拌罐内径(m)H---液面高度(m)B--搅拌器叶片宽度(m)C----搅拌器叶片离罐底距离(m)

L---搅拌叶片长度(m)S-- 搅拌器叶片螺距(m)

Z--单个搅拌器叶片数(m)

首釜搅拌转速为60rpm μ=4000cp=4kg/m.s

搅拌转速n=60/60=1

ρ=(丁二烯用量+溶剂)/体积

=(6602.42+14924.73)/33.06=651.154 kg/m3

则搅拌的雷诺数:

N Re=D2nρ/μ

=2.22×(60/60) ×651.154/4=788

N Re值大于300时,可认为流体大到湍流状态,788符合要求。

4.4 搅拌功率的计算

查《化工工艺设计手册》,功率计算公式如下:

N P=273(N Re)-1.0

N P =0.273μn2D3

N P =0.273×4×(60/60)2×2.23=11.63KW

N搅=10.49×2=23.26KW

5.热量衡算(首釜)

C p平=(C p 丁二烯×丁二烯质量+正己烷量×C P正己烷)/(丁二烯量+正己烷量)

热损失(不计)

Q1进料带入物料带出热量Q4

热量

Q5

聚合反应热Q2

搅拌热Q3

由于丁二烯、溶剂和胶液在相同的温度下热值十分接近,所以取相同的数值,计算误差在允许范围内。

Q1+Q2+ Q3=Q5+Q4

Q1-进料热Q2-聚合热Q3-搅拌热Q4-物料带出热Q5-冷剂带出热

Q1=w C P平×t=(溶剂+丁二烯)19741.07×0.534×8

=84333.85千卡/小时

Q2=G×聚合热=4265.83×320=1365065.6千卡/小时

Q3=11.63×70%/4.18×60×60=7011.39千卡/小时

Q4= w C P平×t=19741.07×0.615×70=849853.06千卡/小时

Q5= Q1+Q2+Q3-Q4

=84333.85+1365065.6+7011.39-849853.06

=606558千卡/小时

Δt m=(70+6)-(70+4)

ln76/74

=75℃

Q5=K AΔt m

A理= Q5/KΔt m=606558/(75×100)=80.87m2

A理>A实

理论面积大于实际面积,因为理论计算时忽略了热损失,在数据相同的条件下,所用到的数据基本符合工艺条件,因而出现理论大于实际符合设计要求的。

6. 设计综述

通过此次的设计,对顺丁橡胶聚合工艺设计设备选型以及工艺流程的选择,对催化剂的配置,陈化方式及聚合工艺条件的特点来选取所适合的设备和反应条件。对聚合过程中不同反应釜器件的选型以及物料衡算、热量衡算及聚合釜传热面积的计算,同时经过各方面的资料和文献查阅,最终对设备的选型有了一个明确的结果,具备了指导实际生产的应用意义,工艺操作条件的确蒂尼定,是通过反应原理,以及影响因素来分析选取最适合的工艺条件。

7.参考资料

(1).张洋主编.高聚物合成工艺设计基础,化学工业出版社,1981年(2).潘祖仁.高分子化学,化学工业出版社,2002年

(3).国家医药管理局上海医药设计院编.化工工艺设计手册(上)(下),化学工业出版社,1996年

(4).谭蔚主编.化工设备机械基础,天津大学出版社,2000年

(5).董大勤.化工设备机械基础,化学工业出版社,1987年

(6).郁浩然,鲍浪.化工计算,中国石化出版社,1990年

(7).朱有庭,曲文海,广浦义.主编,化工设备设计手册(上卷)(下卷),化学工业出版社,2005年6月第十版

(8). 化学工程手册(1)(2),化学工业出版社,1999年

8.附图

8.1 BR的生产工艺流程图8.2 反应釜的装配图

丁苯橡胶生产工艺

丁苯橡胶的生产工艺 (2011-10-03 23:05:53)转载▼ 标签:丁苯橡胶中顺苯乙烯丁二烯乳液聚合转化率橡胶教育 1.1 丁苯橡胶的分类 丁苯橡胶品种繁多,如按聚合方法、聚合温度、辅助单体含量及充填剂等的不同,丁苯橡胶简分为下列几类。 ①按聚合方法和条件分类 可以分为乳液聚丁苯橡胶和溶液聚丁苯橡胶;乳聚丁苯橡胶开发历史悠久, 生产和加工工艺成熟, 应用广泛, 其生产能力、产量和消耗量在丁苯橡胶中均占首位。溶聚丁苯橡胶是兼具多种综合性能的橡胶品种, 其生产工艺与乳聚丁苯橡胶相比, 具有装置适应能力强、胶种多样化、单体转化率高、排污量小、聚合助剂品种少等优点, 是今后的发展方向。 乳液聚丁苯橡胶又可以分为高温乳液聚合丁苯橡胶和低温乳液聚合丁苯橡胶,后者应用较广,前者趋于淘汰。 在生产工艺上,乳液聚合丁苯橡胶更加成熟,因此本文主要介绍低温乳液聚合生产丁苯橡胶的生产工艺。 ②按填料品种分类 可以分为充炭黑丁苯橡胶、充油丁苯橡胶和充炭黑充油丁苯橡胶等。 ③按苯乙烯含量分类 丁苯橡胶—10、丁苯橡胶—30、丁苯橡胶—50等,其中数字为苯乙烯聚合时的含量(质量),最常用的是丁苯橡胶—30 1.2 丁苯橡胶的结构

典型丁苯橡胶的结构特征如表一: 表一典型丁苯橡胶的结构特征 ①大分子宏观结构包括 单体比例、平均相对分子质量及分布、分子结构的线性或非线性,凝胶含量等。 ②微观结构主要包括 丁二烯链段中顺式—1,4、反式—1,4和1,2—结构(乙烯基)的比例,苯乙烯、丁二烯单元的分布等。 ③无定形聚合物 因掺杂有苯乙烯链节,所以丁苯橡胶的主体结构不规整,不易结晶。 ④丁二烯的微观结构的变化对丁苯橡胶性能的影响不大 在丁苯橡胶硫化时,丁二烯链节中顺式—1,4和反式—1,4两种结构会发生异构而相互转化,最后可达到一个平衡态。又在低温丁苯和高温丁苯中1.2—丁二烯链节的含量相差不太大.所以丁二烯微观结构的变化对丁苯橡胶性能的影响不大。 ⑤苯乙烯含量与玻璃化转变温度 丁苯橡胶的玻璃化温度取决于苯乙烯均聚物的含量。乙烯基的含量越低,玻璃化温度越低。可以按需要的比例从100%的丁二烯(顺式、反式的玻璃化温度都是-100℃)调够到100%的聚苯乙烯(玻璃化温度为90℃)。玻璃化温度对硫化橡胶的性质起重要作用,大部分乳液聚合丁苯橡胶含苯乙烯为23.5%,这种含量的丁苯橡胶具有较好的综合物理机械性能。 ⑥低温丁苯橡胶性能优于高温丁苯橡胶 高温(50℃)聚合时.支化较严重.凝胶物含量较高;在同等分子量下.分子量

年产1.1万吨顺丁橡胶生产工艺设计说明书讲述

北京化工大学化学工程学院 设计说明书 题目: 学生: 班级:化工 学号: 指导教师: 2015 年1月

目录 1.工艺设计基础 1.1 设计任务 1.2 原辅材料性质及技术规格 1.3 产品的性质及技术规格 1.4 危险性物料的主要物性 1.5 原辅材料的消耗定额 2.工艺说明 2.1生产方法、工艺技术路线及工艺特点 2.1.1 生产方法 2.1.2 工艺技术路线的确定 2.2生产流程简述 3.工艺计算与主要设备选型 3.1 物料衡算 3.1.1 计算的基准数据 3.1.2 计算基准 3.1.3 各单元物料衡算 3.2热量衡算 3.2.1 计算的基准数据 3.2.2 物料衡算 3.3 聚合釜的计算及选型 4 工艺控制条件及自控设计 5.附图:带控制点的工艺流程图(PID)

1.工艺设计基础 1.1 设计任务 1.1.1设计项目 年产1.1万吨顺丁橡胶生产工艺设计 1.1.2产品规格 纯度为99%的顺丁橡胶 1.1.3生产能力 年产1.1万吨顺丁橡胶; 考虑到设备检修,年开工时间为8000小时; 采用五班三倒制,每班工作8小时。 1.1.4主要设计任务 顺丁橡胶生产工艺由聚合工段和后处理工段两大部分组成,本设计的主要任务为:(1)聚合釜、终止釜和凝聚釜的物料衡算; (2)聚合釜的热量衡算; (3)聚合釜的计算和选型; (4)设计出聚合工段带工艺控制点的工艺流程图。 由于本设计为假定设计,所以设计任务中其他项目如:厂区或厂址、主要技术经济指标、原料的供应、技术规格以及燃料种类、水电汽的主要来源,与其他工业企业的关系,建厂期限、设计单位、设计进度及设计阶段的规定等均从略。 1.1.5产品及主要用途 顺丁橡胶,全名为顺式—1,4—聚丁二烯橡胶,呈白色或微黄色,简称BR,是由丁二烯聚合制得的结构规整的合成橡胶。与天然橡胶和丁苯橡胶相比,硫化后的顺丁橡胶的耐寒性、耐磨性和弹性特别优异,动负荷下发热少,耐老化性尚好,易与天然橡胶、氯丁橡

聚合物合成工艺学思考题及其答案资料

第一章 1.简述高分子化合物的生产过程。 答:(1)原料准备与精制过程; 包括单体、溶剂、去离子水等原料的贮存、洗涤、精制、干燥、调整浓度等过程和设备。(2)催化剂(引发剂)配制过程; 包括聚合用催化剂、引发剂和助剂的制造、溶解、贮存。调整浓度等过程与设备。(3)聚合反应过程;包括聚合和以聚合釜为中心的有关热交换设备及反应物料输送过程与设备.(4)分离过程;包括未反应单体的回收、脱出溶剂、催化剂,脱出低聚物等过程与设备。(5)聚合物后处理过程;包括聚合物的输送、干燥、造粒、均匀化、贮存、包装等过程与设备。(6)回收过程;主要是未反应单体和溶剂的回收与精制过程及设备。 2 简述连续生产和间歇生产工艺的特点 答:间歇生产是聚合物在聚合反应器中分批生产的,经历了进料、反应、出料、清理的操作。优点是反应条件易控制,升温、恒温可精确控制,物料在聚合反应器中停留的时间相同,便于改变工艺条件,所以灵活性大,适于小批量生产,容易改变品种和牌号。缺点是反应器不能充分利用,不适于大规模生产。 连续生产是单体和引发剂或催化剂等连续进入聚合反应器,反应得到的聚合物则连续不断的流出聚合反应器的生产。优点是聚合反应条件稳定,容易实现操作过程的全部自动化、机械化,所得产品质量规格稳定,设备密闭,减少污染。适合大规模生产,因此劳动生产率高,成本较低。缺点是不宜经常改变产品牌号,不便于小批量生产某牌号产品。 3.合成橡胶和合成树脂生产中主要差别是哪两个过程,试比较它们在这两个生产工程上的主要差别是什么? 答:合成树脂与合成橡胶在生产上的主要差别为分离工程和后处理工程。 分离工程的主要差别:合成树脂的分离通常是加入第二种非溶剂中,沉淀析出;合成橡胶是高粘度溶液,不能加非溶剂分离,一般为将高粘度橡胶溶液喷入沸腾的热水中,以胶粒的形式析出。 后处理工程的主要差别:合成树脂的干燥,主要是气流干燥机沸腾干燥;而合成橡胶易粘结成团,不能用气流干燥或沸腾干燥的方法进行干燥,而采用箱式干燥机或挤压膨胀干燥剂进行干燥。 4. 简述高分子合成工业的三废来源、处理方法以及如何对废旧材料进行回收利用。 答: 高分子合成工业中:废气主要来自气态和易挥发单体和有机溶剂或单体合成过程中使用的气体;污染水质的废水主要来源于聚合物分离和洗涤操作排放的废水和清洗设备产生的废水;废渣主要来源于生产设备中的结垢聚合物和某些副产物.。 对于废气处理,应在生产过程中严格避免设备或操作不善而造成的泄露,并且加强监测仪表的精密度,以便极早察觉逸出废气并采取相应措施,使废气减少到容许浓度之下。对于三废的处理,首先在井陉工厂设计时应当考虑将其消除在生产过程中,不得已时则考虑它的利用,尽可能减少三废的排放量,例如工业上采用先进的不适用溶剂的聚合方法,或采用密闭循环系统。必须进行排放时,应当了解三废中所含各种物质的种类和数量,有针对性地回收利用和处理,最后再排放到综合废水处理场所。 废弃物的回收利用有以下三种途径: 1,、作为材料再生循环利用; 2、作为化学品循环利用; 3、作为能源回收利用

丁苯橡胶聚合工艺设计书说明书

丁苯橡胶聚合工艺设计书说明书 第1篇设计说明书 第1章绪论 1.1 设计依据、指导思想 1.1.1 设计依据 主要设计依据是吉林化工学院下发的“年产6.5万吨丁苯橡胶装置聚合工段的工艺设计”本科生毕业设计任务书。 1.1.2 指导思想 本设计的指导思想是: (1)利用传统乳液聚合生产技术,确保产品质量高,生产过程安全; (2)生产过程尽量采用自动控制,机械化操作; (3)对于易燃易爆场所,设计采用可靠的控制,报警消防设施; (4)设计采用技术成熟完善的传统乳液聚合方法,达到环保的要求,对生产过程中的化学污水的排放要经过处理,以保证环保要求; (5)厂房、车间、设备布置要严格按土建标准,以保证生产和正常进行及操作人员的安全。 1.2 设计地区的自然条件 本设计的丁苯橡胶车间拟建在吉林市江北吉化有机合成厂院内。 设计地区自然条件如下: 土壤最大冻土深度:1.8米土壤设计冻土深度:1.7米 全年主导风向:西南风夏季主导风向:东南风 年平均风速:3.4米/秒地震裂度:7度 年平均降雨量:668.4毫米日最大降雨量:119.3毫米

平均气压:745.66mmH 最高气温:36.6℃ 最低气温:-38℃平均相对温度:71% 最大降雪量:420毫米水温:15℃ 第2章工艺论证 2.1 工艺原理 丁苯橡胶是1,3-丁二烯和苯乙烯的共聚物,是一种最通用的橡胶品种,它是按自由基反应机理于乳液中合成的。其反应方程式为: 2.2 生产方法论证 丁苯橡胶的生产包括溶聚和乳聚两种工艺。溶聚丁苯橡胶具有低的滚动阻力,又具有很高的抗湿滑性与耐磨性,其滚动阻力比乳聚丁苯橡胶减少20%一30%,抗湿滑性优于顺丁橡胶,耐磨性能也很好,是全天候轮胎的最合适胶料。近几年国际上溶聚丁苯橡胶的消费是一直处于上升趋势。西欧和日本溶聚丁苯橡胶所占总丁苯橡胶消费量的比例为31%左右,一些公司正计划扩大溶聚丁苯橡胶生产能力或新建装置。 1992年以来,溶聚丁苯橡胶的产量呈递增趋势。据有关资料报道,1992年至2000年西欧、美国、日本三地区SSBR平均年增长率为5.9%,而SBR平均年增长率约为1.2%0 1995年,拜耳公司决定停止其在ESBR方面的投资,Hill,的ESBR停产。拜耳认为轮胎制备技术会有一个根本转变,欧洲的消费者将逐步接受“绿色轮胎”;另外,还应该看到以下因素[13]: (1)在现有的溶液聚合装置上花较少的费用就能有效地扩大SR的能力。 (2)溶聚工艺优于乳液聚合和气相聚合工艺,SSBR和BR更能接受长期挑战。 (3)目前越来越趋向于采用优等填料,SSBR可在此方面降低轮胎的滚动阻力做出贡献。

顺丁橡胶生产工艺

第三节顺丁橡胶生产工艺 顺丁橡胶(BR):以13-丁二烯为单体,经配位聚合而得到的高顺式聚丁二烯高分子弹性体。 一、主要原料 1.单体 单体1,3-丁二烯 2.引发剂 Li系→组成简单,活性高、用量少,易控制,加工性能差。 Ti系→产物为线型结构,Rp快,相对分子质量分布窄,加工性能不好。 Co系→→支化度高 较好,顺式含量高,相对分子质量分布较宽,易于加工。 Ni系→→可提高单体浓度和聚合温度,国内多采用。 Ni系引发剂组成:主引发剂→环烷酸镍Ni(OOCR)2 助引发剂→三异丁基铝Al(i-C4H9)3,外观浅黄透明,无悬浮物 第三组分→三氟化硼乙醚络合物BF3OC2H5 3.溶剂 溶剂:苯、甲苯、甲苯-庚烷、溶剂油(简称C6油或抽余油)等 ↓ 要求是馏程60~90℃,碘值<0.2g/100g,水值<20mg/kg。 影响:造成聚合体系的粘度不同,影响传热、搅拌、回收、生产能力等。 4.其他 终止剂:乙醇(纯度95%,含水5%,恒沸点78.2℃,相对密度0.81) 防老剂:2,6-二叔丁基-4-甲基苯酚(简称264) 熔点69~71℃,游离甲酚<0.04%,灰分<0.03%,油溶性合格。二、原理与工艺 1.聚合原理与方法 配位聚合 采用连续式溶液聚合法。 2.顺丁橡胶生产工艺 (1)生产工艺配方与聚合条件

①工艺配方; 丁油浓度12~15g/ml 镍/丁≤2.0×10-5 铝/丁≤1.0×10-4 硼/丁≤2.0×10-4 铝/硼>0.25 醇/铝6 铝/镍3~8 防老剂/丁0.79%~1.0% 聚合温度:首釜<95℃,末釜<100℃ 聚合压力:<0.45Mpa 转化率:>85% 收率:>95% 每吨胶消耗丁二烯: 1.045t ②聚合条件的确定 1/单体浓度 门尼粘度是生产控制的主要指标,一般控制在(45~50)±5左右。 2/引发剂的陈化方式→引发剂的活性有很大影响 陈化方式: 三元陈化→(Ni、B、Al分别配制成溶液,再按一定次序加入) 双二元陈化→(将Al分成一半,分别与Ni、Al组分混合陈化) 稀硼单加→(将Ni、Al混合陈化,B配制成溶液后直接加入聚合釜)→应用最多一种方式 3/溶剂的选择 甲苯的溶解能力最好,但搅拌不利。 生产中选择:溶剂油为溶剂 优点:成本低,来源丰富,毒性小,易分离回收。 缺点;溶解性能不好,易产生挂胶。 4/聚合温度控制 现象:丁二烯聚合反应的反应热为1381.38kJ/kg,如不及时排除将会影响产物

聚合物合成工艺学思考题及其答案word精品

1. 简述高分子化合物的生产过程。 答:(1)原料准备与精制过程;包括单体、溶剂、去离子水等原 料的贮存、洗涤、精制、干 燥、调整浓度等过程和设备。 (2)催化剂(引发剂)配制过程;包括聚合用催化剂、引发剂和 助剂的制造、溶解、贮存。调整浓度等过程与设备。 釜为中心的有关热交换设备及反应物料输送过程与设备 收、脱出溶剂、催化剂,脱出低聚物等过程 与设备。 输送、干燥、造粒、均匀化、贮存、包装等过程与设 备。 和溶剂的回收与精制过程及设备。 2简述连续生产和间歇生产工艺的特点 优点是反应条件易控制, 升温、恒温可精确控制,物料在聚合反应器中停留的时间相同,便 于改变工艺条件,所以灵活性大,适于小批量生产,容易改变品种和牌号。 缺点是反应器不 能充分利用,不适于大规模生产。 连续生产是单体和引发剂或催化剂等连续进入聚合反应器,反应得到的聚合物则连续 不断的流出聚合反应器的生产。优点是聚合反应条件稳定,容易实现操作过程的全部自动化、 机械化,所得产品质量规格稳定,设备密闭,减少污染。适合大规模生产,因此劳动生产率 高,成本较低。缺点是不宜经常改变产品牌号,不便于小批量生产某牌号产品。 3. 合成橡胶和合成树脂生产中主要差别是哪两个过程,试比较它们在这两个生产工程上的 主要差别是什么? 答:合成树脂与合成橡胶在生产上的主要差别为分离工程和后处理工程。 分离工程的主要差别:合成树脂的分离通常是加入第二种非溶剂中,沉淀析出;合成橡 胶是高粘度溶液,不能加非溶剂分离, 一般为将高粘度橡胶溶液喷入沸腾的热水中, 以胶粒 的形式析出。 后处理工程的主要差别:合成树脂的干燥,主要是气流干燥机沸腾干燥;而合成橡胶易 粘结成团,不能用气流干燥或沸腾干燥的方法进行干燥, 而采用箱式干燥机或挤压膨胀干燥 剂进行干燥。 4. 简述高分子合成工业的三废来源、处理方法以及如何对废旧材料进行回收利用。 答:高分子合成工业中:废气主要来自气态和易挥发单体和有机溶剂或单体合成过程中使 用的气体;污染水质的废水主要来源于聚合物分离和洗涤操作排放的废水和清洗设备产生的 废水;废渣主要来源于生产设备中的结垢聚合物和某些副产物 .。 对于废气处理,应在生产过程中严格避免设备或操作不善而造成的泄露, 并且加强监测 仪表的精密度,以便极早察觉逸出废气并采取相应措施, 使废气减少到容许浓度之下。 对于 三废的处理,首先在井陉工厂设计时应当考虑将其消除在生产过程中, 不得已时则考虑它的 利用,尽可能减少三废的排放量,例如工业上采用先进的不适用溶剂的聚合方法, 或采用密 闭循环系统。必须进行排放时,应当了解三废中所含各种物质的种类和数量, 有针对性地回 收利用和处理,最后再排放到综合废水处理场所。 废弃物的回收利用有以下三种途径: 1、 、作为材料再生循环利用; 2、 作为化学品循环利用; 3、 作为能源回收利用 第一章 答:间歇生产是聚合物在聚合反应器中分批生产的, 经历了进料、反应、出料、清理的操作。 (3)聚合反应过程;包括聚合和以聚合 ?(4)分离过程;包括未反应单体的回 (5)聚合物后处理过程;包括聚合物的 (6)回收过程;主要是未反应单体

丁苯橡胶的生产工艺与技术路线的选择

丁苯橡胶的生产工艺和技术路线的选择丁苯橡胶是丁二烯和苯乙烯两种单体经共聚合反应而生成的弹性体共聚物。按聚合工艺方法可分为乳聚丁苯橡胶(ESBR)和溶聚丁苯橡胶(SSBR)两大类。从聚合机理来看,ESBR是自由基聚合,而SSBR是采用阴离子活性聚合。ESBR的发展已过鼎盛时期,而SSBR的发展目前正处于稳步上升阶段。 2.1 丁苯橡胶的分类及品种 2.1.1 乳聚丁苯橡胶的生产工艺 乳聚丁苯橡胶(ESBR)的生产历史悠久,乳聚丁苯橡胶是通过自由基聚合得到的,在20世纪50年代以前,均是高温丁苯橡胶,1937年由德国Farben公司首先实现工业化,它是当前合成橡胶中生产能力最大的品种。50年代初才出现了性能优异的低温丁苯橡胶。目前所使用的乳聚丁苯橡胶基本上为低温乳聚丁苯橡胶。羧基丁苯橡胶是在丁苯橡胶聚合过程中加入少量(1~3%)的丙烯酸类单体共聚而制成。其力学性能和耐老化性能等较丁苯橡胶好。但这种橡胶吸水后容易早期硫化,工艺上不易掌握。高苯乙烯丁苯橡胶是将苯乙烯含量为85~87%的高苯乙烯树脂胶乳和丁苯橡胶(常用SBR1500)胶乳以一定比例混合后经共凝得到的产品。…… 1、工艺流程简述 原料丁二烯和苯乙烯按一定比例用量配成碳氢相液,在多台串联聚合釜中于5~8℃,在有氧化还原催化体系的水乳液介质存在下,进行自由基共聚合反应。介质中除水、乳化剂外,有引发剂、活化剂、分子量调节、电解质等助剂。当聚合反应6~10小时,聚合转化率达60~62%时,可加入终止剂使聚合反应终止。所得胶乳经闪蒸脱气工序回收未反应的丁二烯和苯乙烯单体后,再加入防老剂和高分子凝聚剂,…… 低温乳液聚合生产丁苯橡胶工艺流程如图2.1所示。

顺丁橡胶工艺流程

一、产品及原材料简介 1.1产品简介 产品为丁二烯橡胶(BR)9000,规格BR9O00. 丁二烯橡胶(BR)9000全名顺式-1,4-聚丁二烯橡胶(Cis 1,4Polybutadiene Rubber). 丁二烯橡胶(BR)9000为白色或浅黄色弹性体,性能和天然橡胶相近,是一种优良的通用橡胶,其结构式为: 顺式-1,4结构在聚合链中含量在90%以上的聚丁二烯才具有良好的弹性. 丁二烯橡胶(BR)9000与天然橡胶和丁苯橡胶相比,具有弹性高,耐磨性好,耐寒性好,生热低,耐屈挠性和动态性能好等特性,它与油类、补强剂、填充剂、天然橡胶以及丁苯橡胶等均有良好的相容性.丁二烯橡胶(BR)9000的主要缺点是抗湿滑性,撕裂强度和拉伸强度较低,冷流性大,加工性能较差。 表1-1 丁二烯橡胶(BR)9000产品质量指标(GB/T8659-2001)

1.2 原材料规格及性能 1.2.1 原料 1.2.1.1 丁二烯 纯度≥ 99.2% 水值≤ 25mg/kg 乙腈≤ 3mg/kg TBC ≤ 20mg/kg 二聚物≤ 300mg/kg 总炔烃≤ 20mg/kg(其中乙烯基乙炔< =5mg/kg) 含氧化合物≤ 10mg/kg 1.2.1.1 粗溶剂油 沸程: 60~90℃ 碘指: <0.1G/100g 水值:无游离水 硫化物:无 水溶物酸碱性:中性 1.2.1.3 环烷酸镍 含镍量:≥ 6%(m/m) 含水量: < 0.5%(m/m) 机械杂质: < 0.2%(m/m) 苯不溶物:微量 不皂化物:无 外观:绿色透明粘稠物 1.2.1.4 三氟化硼乙醚络合物

BF含量: 46.8~47.8%(m/m)3 比重: 1.120~1.127 沸点: 124.5~126℃ 油溶性:在250倍油中全溶,三小时后无沉淀含水量: <=0.5%(m/m) 外观;无色透明,无沉淀物 1.2.1.5 三异丁基铝 溶度: 2.0 ± 0.2g/l 悬浮铝;无 外观;无色透明液体 活性铝含量: >= 80%(m/m) 二异丁基氢化铝:≤15%(m/m) 1.2.1.6 2,6-二叔丁基-4-甲基苯酚(防老剂)溶点; 68.5~70.0℃ 游离甲酚:≤0.03% 灰分:≤0.03% 外观:白色或浅黄色晶体 1.2.1.7 5A分子筛 吸水量: ≥200mg/ml 堆积密度: >0.6~0.7t/m3 1.2.1.8 活性氧化铝 粒径: 4~6mm 吸水率:≥100% 强度:≥13kg/个球 堆积密度: 0.63~0.78t/m3 外观:白色或微红色粒状固体 1.2.1.9 液碱 氢氧化钠含量:≥30% 水不溶物含量: <0.1% 1.2.1.10 聚乙烯薄膜 规格:宽700cm ,厚0.04~0.06mm 熔点: <100℃ 1.2.1.11 牛皮纸袋质量标准: 规格: 900×370×160mm

丁苯橡胶的生产工艺与技术路线的选择

丁苯橡胶的生产工艺与技术路线的选择 丁苯橡胶是丁二烯和苯乙烯两种单体经共聚合反应而生成的弹性体共聚物。按聚合工艺方法可分为乳聚丁苯橡胶(ESBR)和溶聚丁苯橡胶(SSBR)两大类。从聚合机理来看,ESBR是自由基聚合,而SSBR是采用阴离子活性聚合。ESBR的发展已过鼎盛时期,而SSBR的发展目前正处于稳步上升阶段。 2.1 丁苯橡胶的分类及品种 2.1.1 乳聚丁苯橡胶的生产工艺 乳聚丁苯橡胶(ESBR)的生产历史悠久,乳聚丁苯橡胶是通过自由基聚合得到的,在20世纪50年代以前,均是高温丁苯橡胶,1937年由德国Farben公司首先实现工业化,它是当前合成橡胶中生产能力最大的品种。50年代初才出现了性能优异的低温丁苯橡胶。目前所使用的乳聚丁苯橡胶基本上为低温乳聚丁苯橡胶。羧基丁苯橡胶是在丁苯橡胶聚合过程中加入少量(1~3%)的丙烯酸类单体共聚而制成。其力学性能和耐老化性能等较丁苯橡胶好。但这种橡胶吸水后容易早期硫化,工艺上不易掌握。高苯乙烯丁苯橡胶是将苯乙烯含量为85~87%的高苯乙烯树脂胶乳与丁苯橡胶(常用SBR1500)胶乳以一定比例混合后经共凝得到的产品。…… 1、工艺流程简述 原料丁二烯和苯乙烯按一定比例用量配成碳氢相液,在多台串联聚合釜中于5~8℃,在有氧化还原催化体系的水乳液介质存在下,进行自由基共聚合反应。介质中除水、乳化剂外,有引发剂、活化剂、分子量调节、电解质等助剂。当聚合反应6~10小时,聚合转化率达60~62%时,可加入终止剂使聚合反应终止。所得胶乳经闪蒸脱气工序回收未反应的丁二烯和苯乙烯单体后,再加入防老剂和高分子凝聚剂,……

低温乳液聚合生产丁苯橡胶工艺流程如图2.1所示。 图2.1乳液聚合生产丁苯橡胶工艺流程图 …… 如生产充油胶,则需在胶乳中加入定量的高芳烃油或环烷烃油,充分混合后,送去凝聚,后续工序同上。 表2.1 典型低温乳液聚合生产丁苯橡胶配方表 2、聚合配方及聚合工艺条件 …… 3、主要生产设备 乳聚丁苯橡胶生产过程中主要设备是聚合釜闪蒸槽、脱气塔和后处理工序通用的“两机”(挤压脱水机和膨胀干燥机组)。 目前国内采用的聚合釜体积有12、20、30、45m3等多种,每条聚合生产线在4.0~4.5万吨/年,需配备聚合釜16~20台。釜径为2500~3100mm、径/高为1/1.0~1.8、换热总面积为113~160 m3(单位体积换热为3.56~3.78m2/m3),搅拌浆型为框式或布鲁马金式,釜电机功率为30~45千瓦,搅拌转数为73~100转/分。闪蒸槽为卧式,材质碳钢,最好用玻璃衬里。脱气塔为筛

丁苯橡胶毕业论文---年产7.5万吨丁苯橡胶装置聚合工段工艺设计

年产7.5万吨丁苯橡胶装置聚合工段工艺设计Annual production capacity of 75,000 tons polymerization styrene-butadiene rubber plant process design section

摘要 本设计为年产7.5万吨乳聚丁苯橡胶装置聚合工段工艺设计,在文献调研和现场调研的基础上,进行了丁苯橡胶生产方法及工艺的论证,确定了以丁二烯、苯乙烯为单体,采用氧化还原体系为引发剂,歧化松香酸甲皂为乳化剂,配合其他助剂进行低温乳液共聚合的生产工艺。在掌握各种物料的基本性质、聚合机理、聚合方法、工艺流程以及国内外的发展现状的基础上,进行聚合工段的物料衡算、热量衡算、设备选型计算,并对丁苯橡胶车间进行了技术经济分析。在此基础上绘制出丁苯橡胶工艺流程图、设备布置图、管道布置图,编制了设计说明书. 关键词:丁苯橡胶;乳液聚合;生产工艺

Abstract The design for the 65,000 tons annual production capacity ofpolystyrene-butadiene rubber emulsion polymerization plant process design section, in the literature research and field research on the basis of a styrene-butadiene rubber production methods and technology demonstration to determine a butadiene, styrene for the monomer, the redox initiator system, a disproportionation rosin acid soap as emulsifier, in conjunction with other additives for low-temperature emulsion copolymerization of the production process. In the grasp of the basic properties of various materials, polymerization mechanism, polymerization methods, the development process and the status quo at home and abroad based on the section of polymeric material balance, heat balance, calculation of equipment selection, and styrene-butadiene rubber plant techno-economic analysis carried out. On this basis SBR process to map out plans, equipment layout, piping layout, the preparation of the design specification and calculation of the book. Key Words:Emulsion; styrene-butadiene rubber ;production technology

年产10万吨丁苯橡胶聚合工段工艺的设计说明

河南城建学院毕业设计 年产10万吨丁苯橡胶装置聚合工段工艺设计Annual production capacity of 75,000 tons polymerization styrene-butadiene rubber plant process design section

摘要 本设计为年产7.5万吨乳聚丁苯橡胶装置聚合工段工艺设计,在文献调研和现场调研的基础上,进行了丁苯橡胶生产方法及工艺的论证,确定了以丁二烯、苯乙烯为单体,采用氧化还原体系为引发剂,歧化松香酸甲皂为乳化剂,配合其他助剂进行低温乳液共聚合的生产工艺。在掌握各种物料的基本性质、聚合机理、聚合方法、工艺流程以及国内外的发展现状的基础上,进行聚合工段的物料衡算、热量衡算、设备选型计算,并对丁苯橡胶车间进行了技术经济分析。在此基础上绘制出丁苯橡胶工艺流程图、设备布置图、管道布置图,编制了设计说明书. 关键词:丁苯橡胶;乳液聚合;生产工艺

Abstract The design for the 65,000 tons annual production capacity ofpolystyrene-butadiene rubber emulsion polymerization plant process design section, in the literature research and field research on the basis of a styrene-butadiene rubber production methods and technology demonstration to determine a butadiene, styrene for the monomer, the redox initiator system, a disproportionation rosin acid soap as emulsifier, in conjunction with other additives for low-temperature emulsion copolymerization of the production process. In the grasp of the basic properties of various materials, polymerization mechanism, polymerization methods, the development process and the status quo at home and abroad based on the section of polymeric material balance, heat balance, calculation of equipment selection, and styrene-butadiene rubber plant techno-economic analysis carried out. On this basis SBR process to map out plans, equipment layout, piping layout, the preparation of the design specification and calculation of the book. Key Words:Emulsion; styrene-butadiene rubber ;production technology

丁苯橡胶共混改性(DOC)

---------------材料科学与工程专业成型加工工艺课程设计题目:丁苯橡胶的增强改性 姓名:季赛 学号: 150412108 班级: 2012级材料(1)班 指导老师:张建耀职称:高级工程师\教授 起止日期: 2015.11.23——2015.12.6

目录 1.设计背景 (4) 1.1改性加工目的 (4) 1.2乳聚丁苯橡胶 (6) 1.3溶聚丁苯橡胶 (6) 1.4粉末丁苯橡胶 (8) 2.丁苯橡胶增强改性加工工艺原理 (8) 2.1炭黑增强丁苯橡胶应用 (8) 2.2炭黑的补强机理 (8) 3.丁苯橡胶改性原料、助剂及设备介绍 (9) 3.1原料及助剂 (9) 1)原料 (9) 2)炭黑 (10) 3)硬脂酸 (10) 4)氧化锌 (11) 6)防老剂 (11) 7)石蜡油 (11) 8)防焦剂 (12) 9)促进剂 (12) 10)硫化剂 (13) 3.2主要设备与仪器 (13) 3.2.1混炼机 (13) 3.2.2拉伸试验机 (14) 4.加工工艺及加工流程图 (14) 4.1 配方设计 (14) 4.2加工方法 (15) 1)炼前处理 (15) 2)炭黑-橡胶混炼 (15) 3)后加工工艺 (16)

4)强度测量 (16) 4.2产品性能测试项目、性能及测试标准 (16) 1)性能指标 (16) 2)性能参数标准 (18) 4.3加工流程图 (18) 5. 设计总结 (18)

1.设计背景 丁苯橡胶(SBR) ,又称聚苯乙烯丁二烯共聚物。其物理机构性能,加工性能及制品的使用性能接近于天然橡胶,有些性能如耐磨、耐热、耐老化及硫化速度较天然橡胶更为优良,可与天然橡胶及多种合成橡胶并用,广泛用于轮胎、胶带、胶管、电线电缆、医疗器具及各种橡胶制品的生产等领域,是最大的通用合成橡胶品种,也是最早实现工业化生产的橡胶品种之一。 中文名: 丁苯橡胶外文名: Polymerized Styrene Butadiene Rubber 密度: 1.04 g/mL 性状: 白色疏松柱状固体 1.1改性加工目的 炭黑增强丁苯橡胶是以橡胶为基体,以炭黑颗粒为增强相的复合材料。炭黑在橡胶体系中起补强和填充作用,以改善橡胶制品性能。纯丁苯橡胶拉伸强度只有3.5MPa,没有应用价值,加入炭黑补强后,其拉伸强度提高到25MPa左右。 按聚合工艺,丁苯橡胶分为乳聚丁苯橡胶(ESBR)和溶聚丁苯橡胶(SSBR)。与溶聚丁苯橡胶工艺相比,乳聚丁苯橡胶工艺在节约成本方面更占优势,全球丁苯橡胶装置约有75%的产能是以乳聚丁苯橡胶工艺为基础的。乳聚丁苯橡胶具有良好的综合性能,工艺成熟,应用广泛,产能、产量和消费量在丁苯橡胶中均占首位。充油丁苯橡胶具有加工性能好、生热低、低温屈挠性好等优点,用于胎面橡胶时具有优异的牵引性能和耐磨性,充油后橡胶可塑性增强,易于混炼,同时可降低成本,提高产量。目前,世界上充油丁苯橡胶约占丁苯橡胶总产量的 50-60%。 乳聚丁苯橡胶,由丁二烯、苯乙烯为主要单体,配以其他辅助化工原料,在一定工艺条件下,经乳液法聚合首先生成丁苯胶浆,脱除胶浆中未转化的单体后,再经凝聚、干燥等工序而生产出产品胶。 溶聚丁苯橡胶,由丁二烯、苯乙烯为主要单体,在烃类溶剂中,采用有机锂化合物作为引发剂,引发阴离子聚合制得的聚合物胶液,加入抗氧剂等助剂后,经凝聚、干燥等工序而生产出产品胶。

丁苯橡胶生产工艺

丁苯橡胶的生产工艺(2011-10-03 23:05:53)转载▼ 标签:丁苯橡胶中顺苯乙烯丁二烯乳液聚合转化率橡胶教育 1.1 丁苯橡胶的分类 丁苯橡胶品种繁多,如按聚合方法、聚合温度、辅助单体含量及充填剂等的不同,丁苯橡胶简分为下列几类。 ①按聚合方法和条件分类 可以分为乳液聚丁苯橡胶和溶液聚丁苯橡胶;乳聚丁苯橡胶开发历史悠久, 生产和加工工艺成熟, 应用广泛, 其生产能力、产量和消耗量在丁苯橡胶中均占首位。溶聚丁苯橡胶是兼具多种综合性能的橡胶品种, 其生产工艺与乳聚丁苯橡胶相比, 具有装置适应能力强、胶种多样化、单体转化率高、排污量小、聚合助剂品种少等优点, 是今后的发展方向。 乳液聚丁苯橡胶又可以分为高温乳液聚合丁苯橡胶和低温乳液聚合丁苯橡胶,后者应用较广,前者趋于淘汰。 在生产工艺上,乳液聚合丁苯橡胶更加成熟,因此本文主要介绍低温乳液聚合生产丁苯橡胶的生产工艺。 ②按填料品种分类 可以分为充炭黑丁苯橡胶、充油丁苯橡胶和充炭黑充油丁苯橡胶等。 ③按苯乙烯含量分类

丁苯橡胶—10、丁苯橡胶—30、丁苯橡胶—50等,其中数字为苯乙烯聚合时的含量(质量),最常用的是丁苯橡胶—30 1.2 丁苯橡胶的结构 典型丁苯橡胶的结构特征如表一: 表一典型丁苯橡胶的结构特征 ①大分子宏观结构包括 单体比例、平均相对分子质量及分布、分子结构的线性或非线性,凝胶含量等。 ②微观结构主要包括 丁二烯链段中顺式—1,4、反式—1,4和1,2—结构(乙烯基)的比例,苯乙烯、丁二烯单元的分布等。 ③无定形聚合物 因掺杂有苯乙烯链节,所以丁苯橡胶的主体结构不规整,不易结晶。 ④丁二烯的微观结构的变化对丁苯橡胶性能的影响不大 在丁苯橡胶硫化时,丁二烯链节中顺式—1,4和反式—1,4两种结构会发生异构而相互转化,最后可达到一个平衡态。又在低温丁苯和高温丁苯中1.2—丁二烯链节的含量相差不太大.所以丁二烯微观结构的变化对丁苯橡胶性能的影响不大。 ⑤苯乙烯含量与玻璃化转变温度

橡胶生产技术工艺

橡胶生产技术工艺 1 综述 橡胶制品的主要原料是生胶、各种配合剂、以及作为骨架材料的纤维和金属材料,橡胶制品的基本生产工艺过程包括塑炼、混炼、压延、压出、成型、硫化 6 个基本工序。橡胶的加工工艺过程主要是解决塑性和弹性矛盾的过程,通过 各种加工手段,使得弹性的橡胶变成具有塑性的塑炼胶,在加入各种配合剂制 成半成品,然后通过硫化是具有塑性的半成品又变成弹性高、物理机械性能好 的橡胶制品。 2 橡胶加工工艺 2.1 塑炼工艺 生胶塑炼是通过机械应力、热、氧或加入某些化学试剂等方法,使生胶由强韧的弹性状态转变为柔软、便于加工的塑性状态的过程。生胶塑炼的目的是降低它的弹性,增加可塑性,并获得适当的流动性,以满足混炼、亚衍、压出、成型、硫化以及胶浆制造、海绵胶制造等各种加工工艺过程的要求。掌握好适当的塑炼可塑度,对橡胶制品的加工和成品质量是至关重要的。在满足加工工艺要求的前提下应尽可能降低可塑度。随着恒粘度橡胶、低粘度橡胶的出现,有的橡胶已经不需要塑炼而直接进行混炼。在橡胶工业中,最常用的塑炼方法有机械塑炼法和化学塑炼法。机械塑炼法所用的主要设备是开放式炼胶机、密闭式炼胶机和螺杆塑炼机。化学塑炼法是在机械塑炼过程中加入化学药品来提高塑炼效果的方法。开炼机塑炼时温度一般在80℃以下,属于低温机械混炼方法。密炼机和螺杆混炼机的排胶温度在120℃以上,甚至高达160-180℃,属于高温机械混炼。生胶在混炼之前需要预先经过烘胶、切胶、选胶和破胶等处理才能塑炼。几种胶的塑炼特性:天然橡胶用开炼机塑炼时,辊筒温度为30-40℃,时间约为15-20min;采用密炼机塑炼当温度达到120℃以上时,时间约为3- 5min。丁苯橡胶的门尼粘度多在35-60 之间,因此,丁苯橡胶也可不用塑炼,但是经过塑炼后可以提高配合机的分散性顺丁橡胶具有冷流性,缺乏塑炼效果。顺丁胶的门尼粘度较低,可不用塑炼。氯丁橡胶得塑性大,塑炼前可薄通3-5次,薄通温度在30-40℃。乙丙橡胶的分子主链是饱和结构,塑炼难以引起分子的裂解,因此要选择门尼粘度低的品种而不用塑炼。丁腈橡胶可塑度小,韧性大,塑炼时生热大。开炼时要采用低温40℃以下、小辊距、低容量以及分段塑炼,这样可以收到较好的效果。 2.2 混炼工艺

年产4万吨丁苯橡胶的工艺设计论文

工学学士学位毕业设计 课题名称:年产4万吨丁苯橡胶生产工 艺设计 2012年 06月 01日

摘要 本设计是以丁二烯和苯乙烯为原料,年产4万吨丁苯橡胶的工艺设计。通过比较目前丁苯橡胶的聚合生产方法,最后确定以低温乳液聚合法作为聚合的工艺生产方法。在设计过程中,根据设计任务书的要求,进行了较为详细的物料恒算和能量恒算,对设备进行了工艺计算和选型,同时对聚丁苯橡胶生产过程中的安全注意事项及“三废”治理作了相关说明。综合上述工艺计算和设计结果,绘制出了工艺流程图、主要设备图以及厂区布置图。 关键词:丁苯橡胶乳液聚合工艺设计丁二烯苯乙烯

A bstract The design is based on butadiene and styrene as raw materials, with an annual output of 40000tons of SBR process design. By comparing with the present SBR polymerization production method, we make a decision to treat emulsion polymerization at low temperature as polymerization production method at last. In the design process, in accordance with the requirements of the mission design, a more detailed material balance and energy balance, equipment for the calculation and selection process, at the same time on styrene butadiene rubber production in the process of attention to safety issues and the "three wastes" management should be made a note. Drawing the process flow diagram, the main equipment and plant layout according to the process design and calculation results,. Key words: SBR , Emulsion polymerization, Process design, butadiene, styrene monomer

顺丁橡胶合成工艺

顺丁橡胶的合成工艺一、总论 1.顺丁橡胶 1.1.概述 顺丁橡胶是顺式-1,4-聚丁二烯橡胶的简称,其分子式为(C 4H 6 )n。顺丁橡胶 是由丁二烯聚合而成的结构规整的合成橡胶,其顺式结构含量在95%以上。根据催化剂的不同,可分成镍系、钴系、钛系和稀土系(钕系)顺丁橡胶。顺丁橡胶是仅次于丁苯橡胶的第二大合成橡胶。与天然橡胶和丁苯橡胶相比,硫化后其耐寒性、耐磨性和弹性特别优异,动负荷下发热少,耐老化性尚好,易与天然橡、氯丁橡胶或丁腈橡胶并用。顺丁橡胶特别适用于制造汽车轮胎和耐寒制品,还可以制造缓冲材料及各种胶鞋、胶布、胶带和海绵胶等。 1.2.顺丁橡胶的发展史 1910-1911年,前苏联用碱金属引发丁二烯聚合得到橡胶状物质。20世纪30年代初,德国和前苏联开始生产以金属钠为催化剂的丁二烯橡胶,称为丁钠橡胶,其结构规整性差,物性和加工性能不好,还不能算做顺丁橡胶。20世纪50年代,Ziegler-Natta配位定向聚合理论的实践,促进了顺丁橡胶合成技术的迅速发展。1956年,美国以AlR3-TiBr4催化体系合成顺丁橡胶。随后钴系、镍系及稀土系(钕系)催化剂相续发展,顺丁橡胶生产能力已仅次于丁苯橡胶,位居合成橡胶各胶种第二。2013年世界合成橡胶生产者协会统计丁二烯橡胶(主要为顺丁橡胶)产能为471.8万吨/年。 我国在上世纪70年代采用自主开发的技术实现了顺丁橡胶工业化生产,采用的是镍系催化剂,其生产技术一直处于世界先进水平行列。中国石化、中国石油和一些民企均拥有镍系顺丁橡胶生产装置,2011年总产能达66万吨/年,产品销往世界各国。未来几年,我国镍系顺丁橡胶产能将进一步扩大,预计我国镍系顺丁橡胶产能将超过100万吨/年。 稀土顺丁橡胶因其优异的性能被视为镍系顺丁橡胶的升级品种,逐渐被工业界所重视。稀土顺丁橡胶与镍系顺丁橡胶相比具有较高的弹性、较好的拉伸性能、较低的生热和滚动阻力以及优异的耐磨耗和抗疲劳等物理机械性能,符合高性能轮胎在高速、节能、安全、环保等方面发展的需要,常用于高性能绿色轮胎。中国早在上世纪60年代就开始了稀土催化丁二烯聚合的研究,由于当时经济发展落后,未能实现工业化生产。1998年在国家863计划的支持下,中国石油锦州石化公司在镍系万吨级顺丁橡胶生产装置上成功地生产出了稀土顺丁橡胶。2011年,中国石油独山子石化公司稀土顺丁橡胶生产装置投产,中国稀土顺丁橡胶生产装置实现了零突破。2012年,中国石化北京燕山分公司3万吨/年稀土顺丁橡胶生产装置也投产。未来几年,我国将新增20多万吨/年稀土顺丁橡胶的产能,届时中国稀土顺丁橡胶总产能达30万吨/年以上,成为稀土顺丁橡胶第一大生产大国。 2.溶液聚合 2.1.概述 将聚合单体溶解于溶剂中,然后在催化剂的催化下进行的聚合反应。在溶液聚合中溶剂起到传热介质的作用。 溶液聚合分为均相和非均相聚合两种情况。 2.2.聚合方式

相关文档
最新文档