聚变堆用典型金属工程材料辐照损伤机理

聚变堆用典型金属工程材料辐照损伤机理
聚变堆用典型金属工程材料辐照损伤机理

核聚变反应堆的原理很简单

核聚变反应堆的原理很简单,只不过对于人类当前的技术水准,实现起来具有相当大的难度。 物质由分子构成,分子由原子构成,原子中的原子核又由质子和中子构成,原子核外包覆与质子数量相等的电子。质子带正电,中子不带电。电子受原子核中正电的吸引,在"轨道"上围绕原子核旋转。不同元素的电子、质子数量也不同,如氢和氢同位素只有1个质子和1个电子,铀是天然元素中最重的原子,有92个质子和92个电子。 核聚变是指由质量轻的原子(主要是指氢的同位素氘和氚)在超高温条件下,发生原子核互相聚合作用,生成较重的原子核(氦),并释放出巨大的能量。1千克氘全部聚变释放的能量相当11000吨煤炭。其实,利用轻核聚变原理,人类早已实现了氘氚核聚变---氢弹爆炸,但氢弹是不可控制的爆炸性核聚变,瞬间能量释放只能给人类带来灾难。如果能让核聚变反应按照人们的需要,长期持续释放,才能使核聚变发电,实现核聚变能的和平利用。 如果要实现核聚变发电,那么在核聚变反应堆中,第一步需要将作为反应体的氘-氚混合气体加热到等离子态,也就是温度足够高到使得电子能脱离原子核的束缚,让原子核能自由运动,这时才可能使裸露的原子核发生直接接触,这就需要达到大约10万摄氏度的高温。 第二步,由于所有原子核都带正电,按照"同性相斥"原理,两个原子核要聚到一起,必须克服强大的静电斥力。两个原子核之间靠得越近,静电产生的斥力就越大,只有当它们之间互相接近的距离达到大约万亿分之三毫米时,核力(强作用力)才会伸出强有力的手,把它们拉到一起,从而放出巨大的能量。 质量轻的原子核间静电斥力最小,也最容易发生聚变反应,所以核聚变物质一般选择氢的同位素氘和氚。氢是宇宙中最轻的元素,在自然界中存在的同位素有:氕、氘(重氢)、氚(超重氢)。在氢的同位素中,氘和氚之间的聚变最容易,氘和氘之间的聚变就困难些,氕和氕之间的聚变就更困难了。因此人们在考虑聚变时,先考虑氘、氚之间的聚变,后考虑氘、氘之间的聚变。重核元素如铁原子也能发生聚变反应,释放的能量也更多;但是以人类目前的科技水平,尚不足满足其聚变条件。 为了克服带正电子原子核之间的斥力,原子核需要以极快的速度运行,要使原子核达到这种运行状态,就需要继续加温,直至上亿摄氏度,使得布朗运动达到一个疯狂的水平,温度越高,原子核运动越快。以至于它们没有时间相互躲避。然后就简单了,氚的原子核和氘的原子核以极大的速度,赤裸裸地发生碰撞,结合成1个氦原子核,并放出1个中子和17。6兆电子伏特能量。 反应堆经过一段时间运行,内部反应体已经不需要外来能源的加热,核聚变的温度足够使得原子核继续发生聚变。这个过程只要将氦原子核和中子及时排除出反应堆,并及时将新的氚和氘的混合气输入到反应堆内,核聚变就能持续下去;核聚变产生的能量一小部分留在反应体内,维持链式反应,剩余大部分的能量可以通过热交换装置输出到反应堆外,驱动汽轮机发电。这就和传统核电站类似了。 核聚变消耗的燃料是世界上十分常见的元素--氘(也就是重氢)。氘在海水中的含量还是比较高的,只需要通过精馏法取得重水,然后再电解重水就能得到氘。新的问题出现了,仅仅有氘还是不够的,尽管氘-氘反应也是氢核聚变的主要形式,但我们人类现有条件下,

金属工艺学重点知识点

属 工 -艺 学 第 五 版 上 强度:金属材料在里的作用下,抵抗塑性变形和断裂的能力。指标:屈服点(b s)、抗拉强度(b b)塑性:金属材料在力的作用下产生不可逆永久变形的能力。指标:伸长率(S)、断面收缩率( 3 硬度:金属材料表面抵抗局部变形,特别是塑性变形压痕、划痕的能力。 1布氏硬度:HBS (淬火钢球)。HBW (硬质合金球) 指标:-2洛氏硬度:HR (金刚石圆锥体、淬火钢球或硬质和金球) 3韦氏硬度 习题: 1什么是应力,什么是应变? 答:试样单位面积上的拉称为应力,试样单位长度上的伸长量称为应变。 5、下列符号所表示的力学性能指标名称和含义是什么?

答:b b:抗拉强度,材料抵抗断裂的最大应力。 (7 S :屈服强度,塑性材料抵抗塑性变形的最大应力。 6:条件屈服强度,脆性材料抵抗塑性变形的最大应力 7 -1 :疲劳强度,材料抵抗疲劳断裂的最大应力。 S:延伸率,衡量材料的塑性指标。 a k :冲击韧性,材料单位面积上吸收的冲击功。 HRC洛氏硬度,HBS压头为淬火钢球的布氏硬度。HBW压头为硬质合金球的布氏硬度。 过冷度:理论结晶温度与实际结晶温度之差。冷却速度越快,实际结晶温度越低,过冷度越大。纯金属的结晶包括晶核的形成和晶核的长大。 同一成分的金属,晶粒越细气强度、硬度越高,而且塑性和韧性也越好。 原因:晶粒越细,晶界越多,而晶界是一种原子排列向另一种原子排列的过度,晶界上的排列是犬牙交错的,变形是靠位错的变移或位移来实现的,晶界越多,要跃过的障碍越多。 M提高冷却速度,以增加晶核的数目。 J 2在金属浇注之前,向金属液中加入变质剂进行变质处理,以增加外来晶核,还可以采用热处理或塑性加工方法,使固态金属晶粒细化。 3采用机械、超声波振动,电磁搅拌等 合金:两种或两种以上的金属元素,或金属与非金属元素溶合在一起,构成具有金属特性的新物质。组成元素成为组员。 U、固溶体:溶质原子溶入溶剂晶格而保持溶剂晶格类型的金属晶体。 铁碳合金组织可分为:2、金属化合物:各组员按一定整数比结合而成、并具有金属性质的均匀物质 (渗 < 碳体) 3、机械混合物:结晶过程所形成的两相混合组织。

反应堆材料辐照损伤概述

反应堆材料辐照损伤概述 【摘要】随着能源问题日益严峻,发展核电成为人类缓解能源紧缺问题的重要手段之一。当今核电站反应堆的技术已经比较成熟,但仍存在很多难以解决的技术问题。反应堆材料的辐照损伤问题直接关系到反应堆的安全性和经济性。本文对反应堆燃料芯块、包壳、压力容器的辐照损伤机理进行了概述,并提出一些减小辐照效应的措施。 【关键字】辐照损伤燃料芯块包壳压力容器材料 一、引言 随着能源问题日益严峻,发展核电成为人类缓解能源紧缺问题的重要手段之一。当今核电站反应堆的技术已经比较成熟,但仍存在很多难以解决的技术问题。其中,反应堆材料的辐照损伤问题尤为重要。材料的辐照损伤问题与反应堆的安全性和经济性有密切的关系。甚至直接关系到未来反应堆能否安全稳定运行。 关于反应堆的材料辐照损伤问题,主要包括三个方面:燃料芯块的辐照损伤,包壳的辐照损伤,压力容器的辐照损伤。深入认识和了解这三方面的问题,并讨论有关缓解措施具有极大地研究价值。 二、水冷堆燃料芯块的辐照损伤 1.燃料芯块的结构与辐照损伤 水冷堆燃料芯块为实心圆柱体,由低富集度UO2粉末经混合、压制、烧结、磨削等工序制成。为了减小轴向膨胀和PCI(芯块-包壳相互作用),芯块两端做成浅碟形并倒角。芯块制造工艺必须稳定,以保证成品芯块的化学成分、密度、尺寸、热稳定性及显微组织等满足要求。 燃料芯块中的铀在辐照过程中会发生肿胀,造成尺寸的不稳定性和导热性能的下降。随着燃耗的增加,铀的力学性能和物理性能将发生变化,铀将变得更硬、更脆,热导率减小,燃料包壳的腐蚀作用也在加剧。对燃料芯块辐照损伤的认识和研究,一方面有助于了解在役燃料元件的运行状态和使用寿命,及时地发现并解决问题;另一方面根据辐照特性,可以采取适当的措施增强燃料元件的性能,进一步提高核电的经济效益。 2.辐照条件下燃料芯块微观结构的演化 燃料芯块在辐照过程中,辐射与物质相互作用的方式可以分为原子过程和电子过程两大类。原子过程主要产生位移效应,位移效应的主要产物是间隙-空位对。而电子过程主要产生电离效应,其主要产物是电子-离子对。 燃料芯块在辐照过程中,将产生能量很高的裂变碎片,造成严重的辐照损伤,并伴有大量的原子重新分布,尤其是裂变产物中的氙和氪,产额高,又不溶于固体,在辐照缺陷的协同作用下形成气泡,造成肿胀。另外,固体裂变产物具有很强侵蚀作用,将使芯块发生应力腐蚀而开裂。 3.燃料芯块辐照损伤机理和宏观性能变化 (1)辐照肿胀 辐照会引起体膨胀,称辐照肿胀。燃料芯块中所使用的重要金属铀,其单晶体会显示出特殊的辐照生长现象。在辐照过程中,铀的晶体线度发生异常变化。引起燃料辐照肿胀的根本原因是裂变产物的积累。发生肿胀一方面是由于铀原子的固体裂变产物以金属、氧化物、盐类等形态与燃料相形成固溶体或作为夹杂物存在于燃料相中,裂变产物的总体积超过了裂变前裂变原子所占的体积(一般在2-3%),另一方面是由于在金属中形成了大量的裂变气泡

金属工艺学重点知识点样本

金 属 工 艺 学 第 五 版 上 册纲要

强度:金属材料在里作用下,抵抗塑性变形和断裂能力。指标:屈服点(σs)、抗拉强度(σb)。 塑性:金属材料在力作用下产生不可逆永久变形能力。指标:伸长率(δ)、断面收缩率(ψ)硬度:金属材料表面抵抗局部变形,特别是塑性变形压痕、划痕能力。 1布氏硬度:HBS(淬火钢球)。HBW(硬质合金球) 指标:2洛氏硬度:HR(金刚石圆锥体、淬火钢球或硬质和金球) 3韦氏硬度 习题: 1什么是应力,什么是应变? 答:试样单位面积上拉称为应力,试样单位长度上伸长量称为应变。 5、下列符号所示力学性能指标名称和含义是什么? 答:σb:抗拉强度,材料抵抗断裂最大应力。 σs:屈服强度,塑性材料抵抗塑性变形最大应力。 σ0.2:条件屈服强度,脆性材料抵抗塑性变形最大应力 σ-1:疲劳强度,材料抵抗疲劳断裂最大应力。 δ:延伸率,衡量材料塑性指标。 αk:冲击韧性,材料单位面积上吸取冲击功。 HRC:洛氏硬度,HBS:压头为淬火钢球布氏硬度。HBW:压头为硬质合金球布氏硬度。 过冷度:理论结晶温度与实际结晶温度之差。冷却速度越快,实际结晶温度越低,过冷度越大。 纯金属结晶涉及晶核形成和晶核长大。 同一成分金属,晶粒越细气强度、硬度越高,并且塑性和韧性也越好。 因素:晶粒越细,晶界越多,而晶界是一种原子排列向另一种原子排列过度,晶界上排列是犬牙交错,变形是靠位错变移或位移来实现,晶界越多,要跃过障碍越多。

1提高冷却速度,以增长晶核数目。 2在金属浇注之前,向金属液中加入变质剂进行变质解决,以增长外来晶核,还可以采用热解决或塑性加工办法,使固态金属晶粒细化。 3采用机械、超声波振动,电磁搅拌等 合金:两种或两种以上金属元素,或金属与非金属元素溶合在一起,构成具备金属特性新物质。构成元素成为成员。 1、固溶体:溶质原子溶入溶剂晶格而保持溶剂晶格类型金属晶体。铁碳合金组织可分为: 2、金属化合物:各成员按一定整数比结合而成、并具备金属性质 均匀物质(渗碳体) 3、机械混合物:结晶过程所形成两相混合组织。

金属工艺学基本知识概念

金属材料的基本知识习题 1. 当材料单位面积上所受的应力在什么条件下,只产生微量的塑性变形。在什么条件下,材料将产生明显的塑性变形。 2 在什么条件下,材料将断裂。 3 布氏硬度和洛氏硬度硬度各有什么优缺点? 4下列零件用哪种硬度法测量 1. 硬质合金刀头 2 锻件 5 水、油混装在一个瓶子里,是几个相? 将奶粉加开水冲一杯牛奶又是几个相? 6 写出GPS AEC CFD 的组织 7 碳对钢的力学性能有什么影响 8 比较同一钢件正火和退火后的强度和硬度 9 正火的目的 钢的种类正火主要目的 消除过热组织、细化晶粒、改善切削性 低碳 低合金钢 中碳钢消除组织缺陷、保持硬度、为调质做准备 过共析钢消除网状二次渗碳体、为球化退火和淬火做准备 高合金钢淬火作用(空淬) 10出下列工件的淬火及回火温度,并说明回火后的大致硬度 1.45钢小轴(要求综合力学性能好) 2.65钢弹簧 3. T12钢锉刀 11 1. 分析在缓慢冷却条件下,45钢的结晶过程和室温组织 2. 分析在缓慢冷却条件下,T10钢的结晶过程和室温组织 12 说明下列符号的含义: Q235;20; T12; T12A; 40Mn2 ?测定材料的疲劳强度应有一定的应力循环次数,其中钢材以为基数 而有色金属和某些超高强度钢以为基数。 ?金属材料受外力作用时会产生变形,当外力去掉后金属能恢复其原来形 状的性能,被称为。这种随外力消失而消失的变形,叫做。 ?金属材料在外力作用下,产生永久变形而不致引起破坏的性能的,被称 为。在外力消失后留下来的这部分不可恢复的变形,叫做。 ?金属材料的塑性通常用和来表示。 ?常用的硬度指标主要有、等。 1. 选择下列材料的硬度测试方法:

我国核聚变堆材料研究获重要进展

我国核聚变堆材料研究获重要进展 研制出基于功能梯度材料的六种第一壁候选材料,其中五种国际上未见报道 本报记者温新红 记者日前从北京科技大学获悉,与本世纪最受关注的科学项目——国际热核聚变实验反应堆(ITER)计划相关的热核聚变堆实验装置中面向高温等离子体的第一壁材料研究取得重要进展,该校材料学院教授、中科院院士葛昌纯领导课题组经10年努力研制出6个体系的基于功能梯度材料(Functionally Graded Materials, 简称 FGM)的第一壁候选材料,目前此项研究在国际上处于领先水平。 聚焦受控热核聚变第一壁材料 2006年11月21日,科技部部长徐冠华代表中国政府签署了ITER计划的联合实验协定及相关文件。一直主张中国加入ITER的葛昌纯认为,中国此次加入ITER,分担了一部分研究项目,但接下来的工作还有很多,国内相关领域的科学家应该提早研究,争取尽早建立起示范聚变堆和商用聚变堆。 葛昌纯是研究先进材料的专家,他说,从工程角度看,相关的核聚变材料已成为制约核聚变能走向实用的关键之一,非常重要的一类是面向等离子体应用的材料,尤其是处于高热负荷下的偏滤器部件。 据介绍,单一材料或涂层材料已不能满足前沿科研领域发展的需求,例如用于航天飞行器上、需要承受1000摄氏度以上高温度落差的材料。但通常的涂层材料,如金属表面的陶瓷涂层,由于陶瓷和金属的膨胀系数相差很大,反复多次就会开裂。 同样,核聚变装置也需要耐高温、耐腐蚀、耐冲刷的新材料。葛昌纯说,核聚变装置的真空室相当于一个装入高温等离子体的炉子,最受考验的是直接面向高温等离子体的内壁,即第一壁材料。氘氚聚变反应产生大量的高能中子和?琢粒子、电磁辐射,它们和等离子体离子、快原子和其他从等离子体逃逸出的粒子(氘、氚和杂质)以及高达1MW/m2的热负荷、脉冲运行状态和高交变热应力一起,强烈地作用于第一壁。人类到目前为止还没有遇到过工作环境这么复杂的材料。另一种材料是在等离子体出口处的偏滤器材料,这里的热流密度更高,达到6~10MW/m2,在不正常条件下甚至高达 20~100MW/m2。因此这两种材料是核聚变装置中服役条件最严酷的材料。 葛昌纯根据自己多年材料研究的经验,认为这是一个非常重要的研究方向。1996年,他向有关部门提交了耐高温等离子体冲刷的功能梯度材料的科研顶层设计项目建议书。在建议书中葛昌纯设想这种材料可以运用在三个方面,一是为受控核聚变提供耐高温等离子体冲刷的材料,二是可以用于激光核聚变的材料,三是可以在航空航天上用的材料。这项建议得到了国家有关部门的重视和核工业西南核物理研究院的合作,“863”新材料专家委员会听取了葛昌纯的论证报告,通过答辩后,于1997年7月批准了这个项目。 五种功能梯度第一壁材料国际上尚未见有报道 葛昌纯领导课题组经过十年努力,特别是近五年来通过指导周张健副教授负责的国家自然科学基金项目、沈卫平副教授负责的“863”计划项目,以及研究组与中科院等离子体物理研究所和核工业西南物理研究院的协作项目,较深入地研究了弹塑性有限元分析和优化设计、超高压力通电烧结、熔渗——焊接

聚变堆材料(部分示意,仅供参考)

1、核聚变反应堆所用的材料主要包括: A 热核材料; B 第一壁材料; C 高热流部件材料; D 氚增殖材料 2、核聚变堆设计和工况条件 A 第一壁环境条件,第一壁是聚变堆中离等离子体最近的部件,应具有抗中子辐照损伤能力,对氢脆和氦脆(指材料中掺入氢气、氦气,材料会变脆,相应性能降低)不敏感,与冷却介质和包层材料相容性好。 B 真空壁材料的设计限值,包括使用温度、热导率、热膨胀系数、强度、弹性模量等上限要求。 C 比起裂变反应堆,聚变反应堆具有特有的材料工艺问题:超导磁体及低温技术,强磁场下导电液体的泵送技术,14MeV中子的辐照损伤、氦离子轰击和溅射起泡现象等。 3、第一壁材料 (1)奥氏体(可以说是铁的同位素钢中性能最好的一种,应用范围最广,但也不绝对)不锈钢。 优点:该材料具有良好的加工、焊接性能,与氦冷却剂和陶瓷增殖材料相容性好; 缺点:但屈服强度较低,抗辐照肿胀性较差。 (2)铁素体和马氏体不锈钢 优点:与奥氏体不锈钢相比,抗辐照肿胀性好,具有更高的热应力因子和更好的液态金属腐蚀行为,与候选冷却剂及氚增殖剂的化学相容性好; 缺点:但对热机械处理十分敏感,退火(钢材料性能改善的手段之一,退火温度由相图决定。简单地讲,就是将钢的温度加热到某一温度,使晶格发生变化,以达到某种性能,再在这一新材料的基础上用某种手段降温至室温,降温速度不同,材料变形不同)温度和时间的变化对其性能影响较大,且焊接工艺要求较为苛刻。 (3)钒合金 优点:具有优良的高温力学性能、抗腐蚀肿胀性能和低中子活化特性,与高纯氦相容性好,一般需要在合金表面覆镀一层绝缘性膜; 缺点:不过存在氢脆现象,且钒合金的工业生产经验和性能数据较为贫乏,目前通常在惰性保护气体或真空环境中进行该合金的焊接工作。 (4)SiC/SiC复合材料 优点:具有优良的高温性能。在氦冷却介质系统中可工作到800摄氏度,可大大提高能源系统的热效率。它比金属类材料在安全、维护和放射性处理方面具有更大的优势。 缺点:影响SiC/SiC复合材料性能的关键环节是在结合基体材料之前沉积在纤维预型上的纤维和基体间的界面层,一般用碳。复合材料的首选工艺是化学气相渗入法(渗N2、C)(CVI)。 中子辐照对其热导率的影响与辐照温度密切相关,即辐照温度越低,则热导率下降越多。 4、高热流部件材料:指孔栏和偏滤器中承受高热负荷的部件。 (1)铜合金 优点:可消散等离子体破裂时产生的局部过热作用。铜合金具有良好的导热效率(仅次于银);缺点:但是易受因素影响而变弱: A 辐照缺陷组分在低温辐照达到饱和值,相当与热导率降低 B 沉淀或氧化物粒子由于高能离位级联冲击而溶解

国际热核聚变材料辐射装置调研 - IFMIF

信息资源类型:调研报告 国际热核聚变材料辐射装置- IFMIF 李天鹞 中国科学院核能安全技术研究

1.介绍 The International Fusion Materials Irradiation Facility(国际热核聚变材料辐射装置),IFMIF,是一个用于测试聚变用材料的装置,其目的是测试核聚变反应堆所用材料的可行性。 IFMIF的建设准备工作按预期已经在2006年开始,尽管发挥其实际的测试功能至少被排在2017年之后。其中有两个平行的氘核加速器,产生的氘核粒子束撞击锂元素标靶,反应后产生大量高能中子来照射样本材料和被测试成分。该装置可以通过在适当的周期内(几年)产生大量且能量适中的中子来模拟未来商业聚变反应堆中材料受照射情况,从而可以测试在极端情况下材料的长期行为。 聚变发展至今,安全、经济可行性与尊重环境将是热核聚变能源进行大规模普及必不可少的条件,而其中材料的抗辐照性和低活化性问题则是一个关键。IFMIF这一装置将着力于发展相关聚变材料,当它们曝露在高能粒子环境当中时,能否有足够的抗辐照能力。材料的测试需要强大的高能粒子源流(中子)。但是,目前尚没有达到高于数兆电子伏特的强大中子源流。IFMIF将提供这样的高能中子流,以便能够在其整个使用寿命周期上测试用于热核聚变反应堆材料样品。 该项目由欧盟、日本、俄罗斯及美国等共同参与的能源领域的最大国际合作项目之一,同时也是聚变领域最重要的两个国际合作项目之一(另外一个是ITER)。 2.结构 图1——总体3维视图 如图1所示,IMFIF由几个部分组成:加速器、靶、测试室和电力系统等。其中加速器、锂循环系统和处理系统都位于地面之下,主要的电力系统和热室等设施在地面上。

金属工艺学知识总结

第八章铸造 1、铸造特点(优缺点)? 答:优点:(1)适用范围广。①可通过铸造成形的材料选材广泛;②铸造能够制造各种尺寸和形状复杂的铸件 (2)铸造是生产复合铸件最经济的成形方法。 (3)成本低廉。铸造设备投资少,所用原材料来源广泛而且价格较低。缺点:(1)铸造组织疏松,晶粒粗大,内部易产生缩孔、缩松、气孔等缺陷,因此,铸件的力学性能,特别是冲击韧度低于同种材料的锻件。 (2)铸造工序多,难以精准控制,铸件质量不够稳定,废品率较高,劳动条件较差,劳动强度较大。 2、铸造充型能力影响因素? 答:影响铸造充型能力的主要因素有金属或合金液的流动性、浇注条件、铸型填充条件和铸造结构等。 (1)金属或合金液的流动性。流动性差的金属,铸件易出现冷隔、浇不足、气孔、夹渣等缺陷。影响金属流动性的因素有:①合金的种 类;②合金的化学成分和结晶特征。③杂质和含气量(2)浇注条件。①浇注温度:一般为保证充型能力的前提下浇注温度尽量低。②铸型温度;③充型压力 (3)铸型填充条件 (4)逐铸件结构 3、金属的收缩及影响因素和对铸件质量的影响? 答:金属收缩包括:液态收缩、凝固收缩、固态收缩三个阶段。 液态收缩和凝固收缩是铸件产生缩孔和缩松的基本原因;固态收缩是铸件产生应力、变形和裂纹等缺陷的基本原因。 影响收缩的因素:①化学成分。铸钢收缩最大,灰口铸铁收缩最小。因为灰口铸铁中大部分的碳是以石墨状态存在,石墨比体积大,在结晶过程中,石墨析出所产生的体积膨胀抵消了合金的部分收缩。②浇注温度。③铸件结构和铸型条件。 收缩对铸件的影响:收缩可以使铸件中缩孔、缩松、热裂、应力和变形等许多缺陷。 防止缩孔和缩松的工艺措施:采取顺序凝固的原则:采用各种工艺措施,使铸件上从远离冒口的部分到冒口之间建立一个铸件递增的温度梯度,从而实现由远离冒口的部分向冒口的方向顺序的凝固。 防止或减少铸造应力的主要途径是使铸件冷却均匀,减少各部分温度差,改善铸型及型芯退让性,减少铸件收缩时的阻力:采用同时凝固的工艺 4、砂型铸造工艺过程。 答:主要包括以下几个工序:模样和芯盒准备;型砂和芯砂配置;造型、造

金属工艺学知识点总结(2)

第一篇金属材料的基本知识 第一章金属材料的主要性能 金属材料的力学性能又称机械性能,是金属材料在力的作用所表现出来的性能。 零件的受力情况有静载荷,动载荷和交变载荷之分。用于衡量在静载荷作用下的力学性能指 标有强度,塑性和硬度等;在动载荷和作用下的力学性能指标有冲击韧度等;在交变载荷作用下的力学性能指标有疲劳强度等。 金属材料的强度和塑性是通过拉伸试验测定的。 P6低碳钢的拉伸曲线图 1,强度 强度是金属材料在力的作用下,抵抗塑性变形和断裂的能力。 强度有多种指标,工程上以屈服点和强度最为常用。 屈服点:δs是拉伸产生屈服时的应力。 产生屈服时的应力=屈服时所承受的最大载荷/原始截面积 对于没有明显屈服现象的金属材料,工程上规定以席位产生0.2%变形时的应力,作为该材 料的屈服点。 抗拉强度:δb是指金属材料在拉断前所能承受的最大应力。 拉断前所能承受的最大应力=拉断前所承受的最大载荷/原始截面积 2,塑性 塑性是金属材料在力的作用下,产生不可逆永久变形的能力。 常用的塑性指标是伸长率和断面收缩率。 伸长率:δ试样拉断后,其标距的伸长与原始标距的百分比称为伸长率。 伸长率=(原始标距长度-拉断后的标距长度)÷拉断后的标距长度×100% 伸长率的数值与试样尺寸有关,因而试验时应对所选定的试样尺寸作出规定,以便进行比较。同一种材料的δ5 比δ10要大一些。 断面收缩率:试样拉断后,缩颈处截面积的最大缩减量与原始横截面积的百分比称为断面收 缩率,以ψ表示。 收缩率=(原始横截面积-断口处横截面积)÷原始横截面积×100% 伸长率和断面收缩率的数值愈大,表示材料的塑性愈好。 3,硬度 金属材料表面抵抗局部变形(特别是塑性变形、压痕、划痕)的能力称为硬度。 金属材料的硬度是在硬度计上测出的。常用的有布氏硬度法和洛氏硬度法。 1,布氏硬度(HB) 是以直径为D的淬火钢球HBS或硬质合金球HBW为压头,在载荷的静压力下,将压头压 入被测材料的表面,停留若干秒后卸去载荷,然后采用带刻度的专用放大镜测出压痕直径d,并依据d的数值从专门的表格中查出相应的HB值。 布氏硬度法测试值较稳定,准确度较洛氏法高。是测量费时,且压痕较大,不适于成品检验。2,洛氏硬度(HR) 是将压头(金刚石圆锥体、淬火钢球或合金球)施以100N的初始压力,使压头与试样始终 保持紧密接触。然后,向压头施加主载荷,保持数秒后卸除主载荷,以残余压痕尝试计算其 硬度值。实际测量时,由刻度盘上的指针直接指示出HR值。 洛氏硬度法测试简便、迅速,因压痕小、不损伤零件,可用于成品检验。其缺点是测得的硬 度值重复性较差,需在不同部位测量数次。 3,韧性

金属工艺学重点知识点

金属工艺学第五版上册纲要b)。σ强度:金属材料在里的作用下,抵抗塑性变形和断裂的能力。指标:屈服点(s)、抗拉强度(σψ)塑性:金属材料在力的作用下产生不可逆永久变形的能力。指标:伸长率(δ)、断面收缩率(硬度:金属材料表面抵抗局部变形,特别是塑性变形压痕、划痕的能力。1布氏硬度:HBS (淬火钢球)。HBW(硬质合金球) 指标:2洛氏硬度:HR(金刚石圆锥体、淬火钢球或硬质和金球) 3韦氏硬度 习题: 1什么是应力,什么是应变? 答:试样单位面积上的拉称为应力,试样单位长度上的伸长量称为应变。 5、下列符号所表示的力学性能指标名称和含义是什么? :抗拉强度,材料抵抗断裂的最大应力。bσ答: s:屈服强度,塑性材料抵抗塑性变形的最大应力。σ 0.2:条件屈服强度,脆性材料抵抗塑性变形的最大应力σ -1:疲劳强度,材料抵抗疲劳断裂的最大应力。σδ:延伸率,衡量材料的塑性指标。 k:冲击韧性,材料单位面积上吸收的冲击功。α HBW:压头为硬质合金球的布氏硬度。:洛氏硬度,HBS:压头为淬火钢球的布氏硬度。HRC过冷度:理论结晶温度与实际结晶温度之差。冷却速度越快,实际结晶温度越低,过冷度越大。纯金属的结晶包括晶核的形成和晶核的长大。同一成分的金属,晶粒越细气强度、硬度越高,而且塑性和韧性也越好。原因:晶粒越细,晶界越多,而晶界是一种原子排列向另一种原子排列的过度,晶界上的排列是犬牙交错的,变形是靠位错的变移或位移来实现的,晶界越多,要跃过的障碍越多。1提高冷却速度,以增加晶核的数目。 2在金属浇注之前,向金属液中加入变质剂进行变质处理,以增加外来晶核,还可以采用热处理或塑性加工方法,使固态金属晶粒细化。 3采用机械、超声波振动,电磁搅拌等 合金:两种或两种以上的金属元素,或金属与非金属元素溶合在一起,构成具有金属特性的新物质。组成元素成为组员。

金属工艺学小论文

金属工艺学小论文 题目:电火花加工原理及发展趋势

电火花加工原理及发展趋势 摘要:结合电火花加工技术现状,概述了其方法原理;结合国内外的最新发展,综述了电火花技术的发展趋势及未来状况。 关键词:电火花加工发展趋势 一、电火花加工的原理 电火花加工是利用脉冲放电对导电材料的腐蚀作用去除材料,已获得一定形状和尺寸的一种加工方法。 图-1 电火花加工原理图 脉冲电源发出一连串的脉冲电压,施加在浸于工作液(一般为煤油)中的工具电极和工件电极上。当两极间的距离很小(0.01~0.5mm)时,由于电极间的微观表面凸凹不平,两极间离得最近的突出点或尖端处的电场强度一般为最大。其间的工作液被电离为电子和正离子,使介质被击穿而形成放电通道,在电

场力作用下,通道内的电子高速奔向阳极,正离子奔向阴极,而产生火花放电。由于受到放电时磁场力和周围工作液的压缩,使得放电通道的横截面积很小,通道内电流密度很大,可达274/10~10cm A 。电子和正离子在电场力作用下高速运动,互相碰撞,并分别轰击阳极和阴极。这种动能转化为热能,产生巨大的热量,使整个通道形成一个瞬时热源,致使通道中心温度高达10 000°C 左右,使电极表面局部金属迅速融化甚至汽化。由于一个脉冲放电时间极短(约8610~10--s ),熔化和汽化的速度极高,具有爆炸性质,爆炸力把熔化和汽化了的金属微粒迅速的抛离电极表面。每个脉冲放电后,就在工件表面形成一个极小的圆坑。放电过程不断重复进行,随着工具电极由直流伺服电动机(或液压进给系统,或进步电动机)进给调节系统带动不断进給,工件材料不断被蚀除,这样工具电极的轮廓形状就可精确地复制在工件上,以达到加工的目的。 电火花加工过程中,不仅工件电极被蚀除,工具电极也同样被蚀除,但两级的蚀除两不同。应将工件接在蚀除量大的一极。当脉冲电源为高频(即用脉冲宽度小的短脉冲做精加工)时,工件接正极,当脉冲电源为低频(即用脉冲宽度大的短脉冲做粗加工)时,工件接负极。当用钢做工具电极时,工件一般接负极。 二、电火花加工特点 1.脉冲放电的能量密度高,便于加工用普通的机械加工方法难于加工或无法加工的特殊材料和复杂形状的工件。不受材料硬度影响,不受热处理状况影响; 2.脉冲放电持续时间极短,放电时产生的热量传导扩散范围小,材料受热影响范围小; 3.加工时,工具电极与工件材料不接触,两者之间宏观作用力极小。工具电极材料不需比工件材料硬,因此,工具电极制造容易; 4.可以改革工件结构,简化加工工艺,提高工件使用寿命,降低工人劳动强度。 三、电火花加工工艺的发展趋势 目前电火花加工技术的研究与发展趋势主要表现在以下几个方面: (1)加工微细化 随着工程技术领域对微型机械的迫切需求,微细加工已不再是微电子机械技术的代名词。微细电火花加工技术的应用领域已经从简单的轴孔加工逐步拓展到微三维结构型腔的制作中。微细电火花加工技术有望成为三维实

金属工艺学1课程标准

沙市职业大学 《金属工艺学1》课程标准 一、课程名称:金属工艺学 二、课程代码:010112 三、适用专业:机电一体化 四、课程性质:职业基础课 五、计划学时:总学时:30 六、教学条件:课件、录像、模型、多媒体教室,校办工厂;以及校外实训基地等。 七、课程定位: 本专业培养具备机械制造与电气控制技术的基本知识与专业技能,能在工业生产第一线从事数控设备等机电设备维护维修、进行机械加工工艺设计、机电产品营销及技术服务等工作,德、智、体、美等方面全面发展的高等技术应用性专门人才。 主要面向的岗位(岗位群)是:数控机床等机电设备安装维修岗位、机电产品安装、调试及维护、维修及服务、车间技术员(工艺员)、生产调度员、生产现场管理员(班组长)、产品质检员等。 本专业主干课程有:高等数学、机械制图、工程力学、金属工艺学、互换性与测量技术、机械设计基础、电工电子技术、液压与气动技术、机械制造工艺、机床电气控制与PLC、、数控机床与编程、机床夹具设计等。 金属工艺学是机械设计与制造专业的一门实践性较强的、综合性的专业基础课。既强调基本理论和概念,更注重生产操作技能的培养。它是学生获得从事机械加工、产品开发等工作所必须的业务技能,具备制定机械产品制造工艺、合理选择零件的材料、毛坯和热处理方法等能力的重要课程。对于从事机械产品设计与制造、质量检测、设备管理与维修等一线高素质技能型人才的培养,起到了奠定制造知识基础和基木技能训练的作用,增强了人才培养的适用性。 本课程在课程体系中占有主导地位,起到承上启下的作用,能够引领专业培养的导向,是机械制造类专业实现顶岗能力培养和一生多证的典型课程,是专业入门和专业概括的领路课程。 本课程前导课程:机械制图、金工实习。后续课程:数控机床加工技术及实训、机械设计基础、机械制造工艺与夹具、机械CAD/CAM、顶岗实习与毕业设计。 八、课程设计思路: (1)以职业岗位群市场需求为导向,准确定位课程教学方向 通过对厂矿和周边地区相关企业调研,机械市场大量需求一线职业技能岗位工种群(车、铣、钳工等),我们对机械制造应用技术的职业岗位群进行分析,研究、整合出机械制造行业所需的典型工作任务,确立“以职业岗位知识、能力和素质结构要求为先导,以突出职业综合素质培养为核心,以专业人才培养目标为教学立足点,优化教学内容,改革教学方法,学做练合一,提高教学质量”为课程教学定位。据此,确立了“合理选用机械工程材料、正确确定热处理工艺方法;合理选用毛坯和机械零件加工方法”课程教学的4大模块内容,建立了相对应的实践教学项目。 (2)以项目任务为核心目标,创新模块课程的内容 在课程改革中应充分体现学做结合、工学交替、任务驱动、环境真实的改革要求。为此,我们聘请企业专家为课程兼职教师或顾问,根据生产实际和岗位(群)要求,制订课程教学目标,遴选教学内容,设计实践教学环节,确定评价考核标准。同时抓住课程的重点知识和核心能力,设计和确定工学交替项目,通过真实的职业活动使学生理解知识、掌握技能,培养职业道德和职业素养。课程组依托校外实训基地,结合校内实训车间的典型产品为任务驱动,实施项目驱动教学法,使学生身临其境,掌握材料选用的原则和技术要领;围绕零件的机械加工,实施工学交替教学法,让学生全程参与典型零件的加工过程。通过工学交替使学生学会加工方法如何选择、工艺规程如何编制等,切实提高学生的技术应用能力和相关技能。 (3)搭建开放性课程运行平台、形成灵活多样的教学沟通与考核方式 形成学做统一的教材体系,从课程内容、习题、实训项目任务等方面,利用网络资源,形成最直接快捷的指导与沟通学生的方式;形成网络完备的教学资源,完成课程需要的动画、模拟实训、生产加工实况录像、电子挂图表格等,为学生自主进行学习提供必要的条件。为确保师生的有效沟通,一是通过课堂教学、实践教学的随时交流和课后的辅导答疑;二是利用课程网络教学资源,开通网上答疑专栏或QQ群交流,实现互动反馈式的双向沟通。课程的考核方式要根据具体情况采用理论考试与实践考核相结合;阶段性考核与总目标考核相结合的多样性课程考核模式,使课程考核真正成为激励学生学习、提高课程学习效果的重要手段 (4)、职业资格证书与教学工作结合 学习完《金属工艺学》这门课程后,可考取钳工、电焊工、机加工等较多职业资格技能证书。在授课过程中也兼顾了职业资格考核方面的要求,利于学生轻松通过考试。 九、课程目标 知识目标 1、了解典型机械零件的种类、用途和工作状态、性能要求; 2、了解材料的力学性能及其指标; 3、掌握材料的强度、硬度、塑性、韧性等的检测原理和方法;了解材料的成分、组织与性能间的关系;具有材料的分类、编 号及选用知识; 4、了解各种零件毛坯生产方法的特点、适用范围,掌握零件毛还选择的原则;

GaAs材料及器件的辐照损伤研究进展

Applied Physics 应用物理, 2018, 8(2), 141-150 Published Online February 2018 in Hans. https://www.360docs.net/doc/6213994667.html,/journal/app https://https://www.360docs.net/doc/6213994667.html,/10.12677/app.2018.82017 Research Progress of Irradiation Damage for GaAs Materials and Devices Bingkun Chen, Huimin Jia*, Xue Chen, Dengkui Wang, Xuan Fang, Jilong Tang, Dan Fang, Xinwei Wang, Xiaohua Wang, Zhipeng Wei State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, Changchun Jilin Received: Feb. 8th, 2018; accepted: Feb. 21st, 2018; published: Feb. 28th, 2018 Abstract As a kind of III-V semiconductor materials, GaAs, with direct band gap and high carrier mobility, has a good anti-radiation ability, and makes an important candidate for the preparation of space devices. However, when the semiconductor devices were working in space, they will be affected by the radiation of the complex space particles, resulting in the degradation of the device perfor-mance, the decrease of the reliability and the limitation of the lifetime. Therefore, it is of great sig-nificance to analyze the irradiation effect damage of the GaAs material. This paper reviews the re-search progress on the damage effect of different particle materials on GaAs materials and devices, and expounds the influence of different particle irradiation sources on the structure and lumines-cent properties of GaAs. This paper has practical significance for the further application of GaAs materials in space environment. Keywords GaAs, Irradiation Damage, Electron Irradiation, Proton Irradiation, Ion Irradiation GaAs材料及器件的辐照损伤研究进展 陈炳坤,贾慧民*,陈雪,王登魁,方铉,唐吉龙,房丹,王新伟,王晓华, 魏志鹏 长春理工大学高功率半导体激光国家重点实验室,吉林长春 收稿日期:2018年2月8日;录用日期:2018年2月21日;发布日期:2018年2月28日 *通讯作者。

《工程材料与金属工艺学》复习题

《工程材料与金属工艺学》复习题(鹿山模具与数控11级) 一、填空题 1.强度是指金属材料在外力作用下抵抗的能力。 2.是指金属材料在外力作用下产生永久变形而不发生破坏的能力。 3.冲击韧性是指金属材料抵抗的能力。 4.是指金属材料抵抗更硬物体压入其内的能力。 5.疲劳强度是指金属材料在作用下而不致断裂的最大应力。 6. 切削运动可分为和进给运动。 7.切削三要素是指切削速度、和切削深度。 8.车刀的主要角度包括:、、主偏角、副偏角和。 9.切削液应起到冷却、、清洗和的作用。 10. 常用的切削液有切削油、、水溶液。 11.刀具的磨损可分为、正常磨损、急剧磨损三个阶段。阶段的磨损速度最慢。 12. 车削主要用于加工和端面。 13. 刨削加工是在上进行切削加工的方法。 14. 铣削加工是在上进行切削加工的方法。 15. 同素异构转变是指同一元素在不同温度下具有晶格类型的现象。 16. 是指碳溶解在体心立方的α-F e中所形成的固溶体。 17. 是指碳溶解在面心立方的γ-F e中所形成的固溶体。 18. 珠光体是指与所组成的机械混合物。 19. 莱氏体是指与所组成的机械混合物。 20. 退火是将金属材料经加热、保温后,经冷却,以获得近平衡组织的热处理方法。 21. 正火是将金属材料经加热、保温后,置于中冷却,以获得非平衡组织的热处理方法。 22. 是将金属材料经、保温后,经快速冷却,以获得高硬度组织的热处理方法。 23. 是将淬火后的金属材料经加热、后,置于空气或水中冷却,以获得回火组织的热处理方法。 24. 是将液态合金浇注到与零件的形状、尺寸相适应的中,待其冷却凝固,以获得毛坯或零件的生产方法。 25. 铸造性能是指合金所表现出的工艺性能。 26. 铸造工艺图是指在零件图上用各种工艺符号表示出方案的图形。 27. 铸件的分型面是指之间的接触表面。 28. 压力加工是利用金属的,在外力作用下使其改变、尺寸和改善性能,获得毛坯、零件或原材料的加工方法。 29. 自由锻是将金属坯料放在间,施以锤击力或压力而使其变形的加工方法。 30. 模锻是将金属坯料放在具有一定形状的内,施以锤击力或压力而使其变形的加工方法。 31. 板料冲压是利用冲模,在压力作用下将金属板料进行或而获得冲压件的方法。 32. 加工硬化是指金属经塑性变形后,与升高,而与下降的现象。 33. 再结晶是将经的金属加热到其熔点的0.35~0.4倍时,会生长出新的晶粒,从而消除了的现象。 34. 焊接是利用加热或者同时加热加压的方法,使的金属通过原子间的扩散与结合而连接在一起的方法。 35. 熔化焊是通过加热,使、熔化,熔化的金属凝固后,使工件连接在一起的方法。

核聚变反应堆实现的可能途径

核聚变反应堆实现的可能途径 物质由分子构成,分子由原子构成,原子中的原子核又由质子和中子构成,原子核外包覆与质子数量相等的电子。质子带正电,中子不带电。电子受原子核中正电的吸引,在"轨道"上围绕原子核旋转。不同元素的电子、质子数量也不同,如氢和氢同位素只有1个质子和1个电子,铀是天然元素中最重的原子,有92个质子和92个电子。 核聚变是指由质量轻的原子(主要是指氢的同位素氘和氚)在超高温条件下,发生原子核互相聚合作用,生成较重的原子核(氦),并释放出巨大的能量。其实,利用轻核聚变原理,人类早已实现了氘氚核聚变---氢弹爆炸,但氢弹是不可控制的爆炸性核聚变,瞬间能量释放只能给人类带来灾难。如果能让核聚变反应按照人们的需要,长期持续释放,才能使核聚变发电,实现核聚变能的和平利用。 如果要实现核聚变发电,那么在核聚变反应堆中,第一步需要将作为反应体的氘-氚混合气体加热到等离子态,也就是温度足够高到使得电子能脱离原子核的束缚,让原子核能自由运动,这时才可能使裸露的原子核发生直接接触,这就需要达到大约10万摄氏度的高温。 第二步,由于所有原子核都带正电,按照"同性相斥"原理,两个原子核要聚到一起,必须克服强大的静电斥力。两个原子核之间靠得越近,静电产生的斥力就越大,只有当它们之间互相接近的距离达到大约万亿分之三毫米时,核力才会把它们拉到一起,从而放出巨大的能量。 若要实现核聚变,需要创造一些特殊的条件来克服这种排斥力。高温——高温可为氢原子提供足够的能量,以克服质子之间的电荷排斥。核聚变需要的温度约为1亿开(约是太阳核心温度的六倍)。在这样的高温下,氢的状态为等离子体,而不是气体。我们要制造出这样的高温,就必须利用微波、激光和离子粒子的能量。高压——压力可将氢原子挤在一起。氢原子之间的距离必须在1x10-15米以内,才能进行聚合。 我的设想是通过激光达到核聚变所需要的温度,用一个巨大的激光,一个结

(完整版)邓文英版_金属工艺学上下册重点知识点汇总

绪论 1.金属工艺学是一门传授有关制造金属零件工艺方法的综合性技术基础课,主要讲述各种工艺方法本身的规律性及其在机械制造中的应用和相互联系,金属零件的加工工艺过程和结构工艺性,常用金属材料的性能及对加工工艺的影响,工艺方法的综合比较等。 第一篇 2.合金是以一种金属为基础,加入其他金属或非金属,经过熔炼或烧结制成的具有金属特性的材料。 3.金属材料的力学性能又称机械性能,是金属材料在力的作用下所表现出来的性能。零件的受力情况有静载荷、动载荷和交变载荷之分。用于衡量在静载荷作用下的力学性能指标有强度、塑性和硬度等;在动载荷作用下的力学性能指标有冲击韧度等;在交变载荷作用下的力学性能指标有疲劳强度等。 4.强度是金属材料在力的作用下,抵抗塑性变形和断裂的能力。强度有多种指标,工程上以屈服点和抗拉强度最为常用。 5.塑性是金属材料在力的作用下,产生不可逆永久变形的能力。常用的塑性指标是伸长率和断面收缩率。 6.金属材料表面抵抗局部变形,特别是塑性变形、压痕、划痕的能力称为硬度。常用的有布氏硬度法和洛氏硬度法。 7.理论结晶温度与实际结晶温度之差,称为过冷度。过冷度的大小与冷却速度密切相关。冷却速度越快,实际结晶温度就越低,过冷度就越大;反之,冷却速度越慢,过冷度越小。 8.液态金属的结晶过程是遵循“晶核不断形成和长大”这个结晶基本规律进行的。 9.细化铸态金属晶粒的主要途径是:1)提高冷却速度,以增加晶核的数目2)在金属浇注之前,向金属液内加入变质剂(孕育剂)进行变质处理,以增加外来晶核。 10. 同素异晶转变: 1394℃912℃ δ-Fe ----→γ-Fe ←----→α-Fe (bcc)(面心) (体心) 11.凡化学成分、晶格构造和物理性能相同的均匀组成部分称为相。 12.铁碳合金的组织可分为固溶体、金属化合物和机械混合物三种类型。 13.溶质原子形成固溶体时,溶剂晶格将产生不同的不同程度的畸变,这种畸变使塑性变形阻力增加,表现为固溶体的强度、硬度有所增加,这种现象称为固溶强化。 14.碳溶解于α-Fe中形成的固溶体称为铁素体,呈体心立方晶格,通常以符号F表示。 15.碳融入γ-Fe中形成的固溶体称为奥氏体,呈面心立方晶格,以符号A表示。 16.钢的热处理是将钢在固态下,通过加热、保温盒冷却,以获得预期组织和性能的工艺。 17.普通热处理包括退火、正火、淬火、回火等。 18.淬火并高温回火的复合热处理工艺称为调质处理。 19.磷和硫是钢中的有害杂质。磷可使钢的塑性、韧性下降,特别是在低温时脆性急剧增加,这种现象称为冷脆性。硫在钢的晶界处可形成低熔点的共晶体,致使含硫较高的钢在高温下进行热加工时容易产生裂纹,这种现象称为热脆性。 20.硅和锰可提高钢的强度和硬度,锰还能与硫形成MnS,从而抵消硫的部分有害作用。显然,它们都是钢中的有益元素。 21.下列牌号钢各属于:15:低碳钢40:中碳钢Q195:碳素结构钢CrWMn:合金工具钢40Cr:合金结构钢60Si2Mn:合金结构钢 第二篇 22.将液态金属浇筑到铸型中,待其冷却度凝固,以获得一定形状、尺寸和性能的毛坯或零

相关文档
最新文档