厦门大学电子技术实验八集成运算放大器的运用——运算器

厦门大学电子技术实验八集成运算放大器的运用——运算器
厦门大学电子技术实验八集成运算放大器的运用——运算器

实验名称:实验八集成运算放大器的运用一一运算器系别:班号:实验组别:

实验者姓名:

学号:实验日期: 实验报告完成日期:

指导教师意见:

目录

二、实验原理 (3)

三、实验仪器 (6)

四、实验内容及数据 ............................................ 6. ..

1. 反相放大器 (6)

2. 同相放大器 (8)

3. 加法器

1..0..

4. 减法器

1..

2..

5. 积分器

1..3..

五、实验总结

1..4..

OTL功率放大器实验报告(DOC)

课程设计 课程名称模拟电子技术 题目名称功率放大器 专业班级12网络工程本2 学生姓名郭能 学号51202032019 指导教师孙艳孙长伟 二○一三年十二月二十三日 目录 引言 (2)

一、设计任务与要求 (2) 1.1 设计任务 (2) 1.2 设计要求 (2) 二、方案设计 (3) 三、总原理图及元器件清单 (4) 四、电路仿真与调试 (6) 五、性能测试与分析 (7) 六、总结 (8) 七、参考文献 (8)

OTL功率放大器 引言:OTL(Output transformerless )电路是一种没有输出变压器的功率放大电路。过去大功率的功率放大器多采用变压器耦合方式,以解决阻抗变换问题,使电路得到最佳负载值。但是,这种电路有体积大、笨重、频率特性不好等缺点,目前已较少使用。OTL电路不再用输出变压器,而采用输出电容与负载连接的互补对称功率放大电路,使电路轻便、适于电路的集成化,只要输出电容的容量足够大,电路的频率特性也能保证,是目前常见的一种功率放大电路。它的特点是:采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出),有输出电容,单电源供电,电路轻便可靠。两组串联的输出中点”可理解为采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出)。 1:设计任务与要求 1.1设计任务: 1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。 2.培养实践技能,提高分析和解决实际问题的能力。 3.掌握OTL音频功率放大器的设计方法,基本工作原理和性能指标测试方法。 4. 通过一个OTL功率放大器的设计、安装和调试,进一步加深对互补对称功率放大电路的理解,增强实际动手能力。 1.2 设计要求: 1.设计时要综合考虑实用,经济并满足性能指标的要求,合理选用元器件。 2.广泛查阅相关的资料,不懂的地方积极向老师同学请教,讨论。认真独立的完成课题的设计。 3.按时完成课程设计并提交设计报告。 2:方案设计 要求设计一个由二极管,三极管,电容,电阻等元件组合而成的OTL音频功

音频功率放大器设计实验报告

题目:音频功率放大器电路 音频功率放大器设计任务 1、基本要求 (1)频带范围 200Hz —— 10KHz,失真度 < 5%。 (2)电压增益 >= 20dB。 (3)输出功率 >= 1 W (8欧姆负载)。 (4)功率放大电路部分使用分立元件设计。 发挥部分 (1)增加音调控制电路。 (2)增加话筒输入接口,灵敏度 5mV,输入阻抗 >> 20 欧姆。 (3)输出功率 >= 10W (8欧姆负载)。 (4)其他。 目录 1 引言····························································· 2 总体设计方案·····················································2.1 设计思路······················································· 2.2 总体设计框图··················································· 3 设计原理分析·····················································3.1设计总原理图 3.2设计的PCB电路图 ··· 1 引言 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。

音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。本次设计旨在熟悉设计流程,达到基本指标。 2 总体方案 根据实验要求,本次设计主要是也能够是用集成功放TDA2030为主的电路 一、电路工作原理 图1所示电路为音频功率放大器原理图,其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。 RP是音量调节电位器,C1是输入耦合电容,R1是TDA2030同相输入端偏置电阻。 R2、R3决定了该电路交流负反馈的强弱及闭环增益。该电路闭环增益为 (R2+R3)/R2=(0.68+22)/0.68=33.3倍,C2起隔直流作用,以使电路直流为100%负反馈。静态工作点稳定性好。 C4、C5为电源高频旁路电容,防止电路产生自激振荡。R4、R5称为茹贝网路,用以在电路接有感性负载扬声器时,保证高频稳定性。VD1、VD2是保护二极管,防止输出电压峰值损坏集成块TDA2030。 2.电流反馈 电流反馈是指在一个反馈电路中,若反馈量与输出电流成正比则为电流反馈;若反馈量与输出电压成正比则为电压反馈。通常可以采用负载短路法来判断。 从概念上说,若反馈量与输出电压(有时不一定是输出电压,而是取样处的电压)成正比则为电压反馈;若反馈量与输出电流(有时不一定是输出电流,而是取样处的电流)成正比则为电流反馈。在判断电压反馈和电流反馈时,除了上述方法外,也可以采用负载短路法。负载短路法实际上是一种反向推理法,假设将放大电路的负载电阻RL短路(此时,),若

厦门大学电子技术实验十集成运算放大器构成的电压比较器

实 验 报 告 实验名称:实验十集成运算放大器构成的电压比较器系别:班号:实验组别:实验者姓名: 学号: 实验日期: 实验报告完成日期: 指导教师意见:

目录 二、实验原理 (3) 三、实验仪器 (5) 四、实验内容及数据 (5) 1. 单限电压比较器 (5) 2. 施密特电压比较器 (7) 五、实验总结 (9)

一、实验目的 1、掌握电压比较器的模型及工作原理 2、掌握电压比较器的应用 二、实验原理 电压比较器主要用于信号幅度检测——鉴幅器;根据输入信号幅度决定输出信号为高电平或低电平;或波形变换;将缓慢变化的输入信号转换为边沿陡峭的矩形波信号。常用的电压比较器为:单限电压比较器;施密特电压比较器窗口电压比较器;台阶电压比较器。下面以集成运放为例,说明构成各种电压比较器的原理。 1.集成运算放大器构成的单限电压比较器: 集成运算放大器构成的单限电压比较器电路如图1(a)所示。图1(b)为其电压传输曲线。由于理想集成运放在开环应用时,A V→∞、R i→∞、R o→0;则当V iE R时,V O=V OL;由于输出与输入反相,故称之为反相单限电压比较器;通过改变E R值,即可改变转换电平V T(V T≈E R);当E R=0时,电路称为“过零比较器”。同理,将V i与E R对调连接,则电路为同相单限电压比较器。图1(c)为反相单限电压比较器的应用——波形变换应用。

2. 集成运算放大器构成的施密特电压比较器: 集成运算放大器构成的施密特电压比较器电路如图2(a)所示。图2(b)为其电压传输特性曲线。 当V O =V OH 时,++ +++= =+T R OH T V E R R R V R R R V V ;323322 1称为上触发电平; 当V O =V OL 时,--+++= =+T R OL T V E R R R V R R R V V ;3 23322 2称为下触发电平; 回差电平:- + -=?T T T V V V 当V i 从足够低往上升,若V i >V T+时,则V o 由V OH 翻转为V OL ; 当V i 从足够高往下降,若V i

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

音频功率放大器实验报告_音频功率放大器课程设计报告.docx

音频功率放大器实验报告_音频功率放大器课程设计报告 本科实验报告 课程名称:姓名:学院:系:专业:学号:指导教师: 电子电路安装与调试 信息与电子工程学院 电子科学与技术 一、实验目的二、实验任务与要求 三、实验方案设计与实验参数计算(3.1 总体设计、3.2 各功能电路设计与计算、3.3完整的实验电路……)四、主要仪器设备五、实验步骤与过程六、实验调试、实验数据记录七、实验结果和分析处理八、讨论、心得 一、实验目的 1、学习并初步掌握音频功率放大器的设计、调试方法。 2、学习并掌握电路布线、元器件安装和焊接。 3、掌握音频功率放大器各项主要性能及指标的调试方法。 二、实验任务与要求 1、设计 (1)设计一音频功率放大器,使其达到如下主要技术指标:负载阻抗:R L =4Ω额定功率:P o =10W 带宽:BW ≥(50~15000) Hz 音调控制: 低音:100Hz ±12dB 高音:10kHz ±12dB 失真度:γ≤3% 输入灵敏度:U " i (2)设计满足以上设计要求的稳压电源。 2、在Altium Designer中画出原理图, 并进行PCB 板的编辑与设计。 3、根据给定的功率放大器的原理图(三),做如下工作: (1)分析计算晶体管前置放大器的直流工作电压、电流、输入电阻、输出电阻、各级放大器的交流增益。 (2)分析音调控制电路的工作原理,计算4个极端情况下的交流增益。(3)安装实验电路板 (4)调试和测试实验电路的增益、频响特性曲线、输入电阻和输出电阻、以及改变某实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_ 些电路参数后的性能测试(电路图中括号内的数字)。 (5)分析实验数据,并与理论计算值比较,讨论二者之间的误差和产生误差的原因。三、实验原理和实验方案设计 作为音频放大器的音源部分,其输出电平既有高至数百毫伏(如调谐器:50~500mV,线路输出:100~500mV),也有低至1mV (如话筒:1~5mV),相差达几百倍。音频放大器就是要把这些不同大小的音源放大后驱动喇叭,发出同等强度的声音。因此,根据不同音源的需要,可以画出音频放大器的原理框图,如图1所示。 P.2 装订线 图1音频功率放大器框图 1、各部分电路电压增益的确定 根据额定输出功率P o =10W和负载R L =4Ω,可求得输出电压为 : V o ===6.32V 所以整机中频电压增益为:A O um =

音频功率放大电路实验报告分析

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 装 订 线

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端; 5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2为防止输出端的瞬时过电压损坏芯片的保护二极管。R11、C10为输出端校正网络以补偿感性负载,其作用是把扬声器的电感性负载补偿接近纯电阻性,避免自激和过电压。 图中通过R10、R9、C9引入了深度交直流电压串联负反馈。由于接入C9,直流反馈系数F ′=1。对于交流信号而言,

厦门大学电子技术实验报告_实验五

实验五场效应管放大器 一、实验目的 1. 学习场效应管放大电路设计和调试方法; 2. 掌握场效应管基本放大电路的设计及调整、测试方法。 二、实验原理 1. 场效应管的主要特点 场效应管是一种电压控制器件,由于它的输入阻抗极高(一般可达上百兆、甚至几千兆),动态范围大,热稳定性好,抗辐射能力强,制造工艺简单,便于大规模集成。 因此,场效应管的使用越来越广泛。 场效应管按结构可分为MOS型和结型,按沟道分为N沟道和P沟道器件,按零栅压源、漏通断状态分为增强型和耗尽型器件,可根据需要选用。那么,场效应管由于结构上 的特点源漏极可以互换,为了防止栅极感应电压击穿要求一切测试仪器,都要有良好 接地。 2. 结型场效应管的特性 (1) 转移特性(控制特性):反映了管子工作在饱和区时栅极电压VGS对漏极电流ID 的控制作用。当满足|VDS|>|VGS|-|VP|时,ID对于VGS的关系曲线即为转移特性曲线。如图1所示。由图可知。当VGS=0时的漏极电流即为漏极饱和电流IDSS,也称 为零栅漏电流。使ID=0时所对应的栅极电压,称为夹断电压VGS=VGS(TH)。 ⑵转移特性可用如下近似公式表示: I D=I DSS1? V GS V GS TH 2 (当0≥V GS≥V p) 这样,只要I DSS和V GS TH确定,就可以把转移特性上的其他点估算出来。转移特性的斜率为: g m=ΔI D GS 它反映了VGS对ID的控制能力,是表征场效应管放大作用的重要参数,称为跨异。一般为0.1~5mS(mA/V)。它可以由式1求得:

g m=? 2I DSS GS(TH)?1? V GS GS TH ⑶输出特性(漏极特性)反映了漏源电压VDS对漏极电流ID的控制作用。图2为N 沟道场效应管的典型漏极特性曲线。 由图可见,曲线分为三个区域,即Ⅰ区(可变电阻区),Ⅱ区(饱和区),Ⅲ区(截止区)。饱和区的特点是VDS增加时ID不变(恒流),而VGS变化时,ID随之变化(受控),管子相当于一个受控恒流源。在实际曲线中,对于确定的VGS的增加,ID 有很小的增加。ID对VDS的依赖程度,可以用动态电阻rDS表示为: r DS=ΔV DS ΔI D 在一般情况下,rDS在几千欧到几百欧之间。 ⑶图示仪测试场效应管特性曲线的方法: ①连接方法:将场效应管G、D、S分别插入图示仪测试台的B、C、E。 ②输出特性测试:集电极电源为+10v,功耗限制电阻为1kΩ;X轴置集电极电压1V/度,Y轴置集电极电流0.5mA∕度;与双极型晶体管测试不同为阶梯信号,由于场效应管 为电压控制器件,故阶梯信号应选择阶梯电压,即:阶梯信号:重复、极性:一、阶 梯选择0.2V∕度,则可测出场效应管的输出特性,并从特性曲线求出其参数。 ③转移特性测试:在上述测试的基础上,将X轴置基极电压0.2V∕度,则可测出场效应管的转移特性,并从特性曲线求出其参数。 ⑷场效应管主要参数测试电路设计: ①根据转移特性可知,当VGS=0时,ID=IDSS,故其测试电路如图3所示。②根据 转移特性可知,当ID=0时,VGS=VGS(TH),故其测试电路如图4所示。 3. 自给偏置场效应管放大器 自给偏置N沟道场效应管共源基本放大器如图5所示,该电路与普通双极型晶体管放 大器的偏置不同,它利用漏极电流ID在源极电阻RS上的压降IDRs产生栅极偏压,即: VGSQ=-IDRS 由于N沟道场效应管工作在负压,故此称为自给偏置,同时Rs具有稳定工作点的作用。该电路主要参数为:电压放大倍数:AV=V0/Vi=-gmRL;?=RD‖RL‖rDS式中:RL;输入电阻:Ri≈RG输出电阻:RO=RD‖rDS;

6低频功率放大器实验报告1

实验报告 姓名: 学号: 日期: 成绩 : 课程名称 模拟电子实验 实验室名称 模电实验室 实验 名称 低频功率放大器 同组 同学 指导 老师 一、实验目的 1、进一步理解OTL 功率放大器的工作原理 2、学会OTL 电路的调试及主要性能指标的测试方法 二、实验原理 图7-1所示为OTL 低频功率放大器。其中由晶体三极管T 1组成推动级(也称前置放大级),T 2、T 3是一对参数对称的NPN 和PNP 型晶体三极管,它们组成互补推挽OTL 功放电路。由于每一个管子都接成射极输出器形式,因此具 图7-1 OTL 功率放大器实验电路 有输出电阻低,负载能力强等优点,适合于作功率输出级。T 1管工作于甲类状态,它的集电极电流I C1由电位器R W1进行调节。I C1 的一部分流经电位器R W2及二极管

D , 给T 2、T 3提供偏压。调节R W2,可以使T 2、T 3得到合适的静态电流而工作于甲、 乙类状态,以克服交越失真。静态时要求输出端中点A 的电位CC A U 21 U =,可以 通过调节R W1来实现,又由于R W1的一端接在A 点,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。 当输入正弦交流信号u i 时,经T 1放大、倒相后同时作用于T 2、T 3的基极,u i 的负半周使T 2管导通(T 3管截止),有电流通过负载R L ,同时向电容C 0充电,在u i 的正半周,T 3导通(T 2截止),则已充好电的电容器C 0起着电源的作用,通过负载R L 放电,这样在R L 上就得到完整的正弦波。 C 2和R 构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。 OTL 电路的主要性能指标 1、最大不失真输出功率P 0m 理想情况下,L 2CC om R U 81P =,在实验中可通过测量R L 两端的电压有效值,来 求得实际的L 2 O om R U P =。 2、 效率η 100%P P ηE om = P E —直流电源供给的平均功率 理想情况下,ηmax = 78.5% 。在实验中,可测量电源供给的平均电流I dC , 从而求得P E =U CC ·I dC ,负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。 3、 频率响应 详见实验二有关部分内容 4、 输入灵敏度 输入灵敏度是指输出最大不失真功率时,输入信号U i 之值。 三、实验设备与器件 1、 +5V 直流电源 5、 直流电压表 2、 函数信号发生器 6、 直流毫安表

厦门大学电子技术实验报告实验三

电子技术实验报告

一、实验原理 1. 数字示波器显示波形原理 示波器是将入的周期性电信号以图像形式展现在显示器上,以便对电信号进行观察和测量的仪器。 示波器显示器是一种电压控制器件,根据电压有无控制屏幕亮灭,并根据电压大小控制光电在屏幕上的位置。 示波器显示屏必须加有幅度随时间线性增长的周期性锯齿波电压,才能让显示屏的光点反复自左端移向右端,屏幕上就出现一条水平光线,成为扫描线或时间基线。为使在显示屏上观察到稳定的波形。必须使锯齿波的周期Tx和被测信号的周期Ty相等或成整数倍关系。即Tx=nTy(n为正整数)。否则,所显示波形将不能同步。 2. 数字存储示波器的原理 数字存储示波器主要由信号调理部分、采集存储部分、触发部分、软件处理部分和其他组成。 3. 双通道数字存储示波器结构框图

4. 示波器的主要技术特性 (1)模拟带宽:由前置放大器的带宽决定; (2)采样速率:由模数转换电路决定; (3)存储深度:由存储器决定; (4)触发部分:由触发电路类型决定。 5. 示波器的使用方法 (1)打开电源开关(Power)30s后,屏幕上有光迹,否则检查有关控制旋钮的位置; (2)将示波器探头接到被测信号,确定触发源选择(Trigger)在所接通道位置;(3)键入相应的通道开关,启动该通道工作; (4)将垂直和水平灵敏度旋钮调到合适的位置,Vp-p/8≤选择Y轴灵敏度;T/10≤选择X轴灵敏度; (5)屏幕上应有被测信号波形; (6)若需要测量信号各点电平,耦合方式应选DC耦合,若只需观测信号幅度,则选AC耦合; (7)调节Y和X位移旋钮将被波形调到便于测量的位置 二、实验步骤与实验数据 1、校验示波器的灵敏度 对于首次接触的示波器,必须对其灵敏度进行校验。方法为:在示波器正常显示状态下,将探头接示波器本身提供的校准方波信号源(demo2端子),采用自动或手动方法观察校准信号,如果测量得到的波形幅度频率与校准信号(f=1kHZ,VPP=2.5V)相同,说明示波器准确,若不同,应记下其误差。 经测量,f=1.0012kHz,V-P-P=2.56V 2、调整测量含有直流电平的信号 若要求信号发生器输出的方波信号(f=1KHz、占空比50%、Vp-p=4V、HV=3V、LV=-1V),则调整测量方法为 (1)令信号发生器输出方波,调整信号频率为1 kHz (2)调整信号幅度为4V,偏移量为1V;或者通过设置高、低电平的方法设置HV=3V、LV=-1V。 (3)连接示波器和信号发生器,令两仪器“COM端”相接,并将示波器探头接信号发生器信号输出端。 (4)示波器设置直流耦合,手动或者自动观测信号发生器的输出信号。分别改变波形输出类型,此时示波器上分别显示下图所示波形。

厦门大学电子技术实验报告_实验十三

实验十三 OTL功率放大器安装和调试 一、实验目的 1. 掌握OTL功率放大器的工作原理及其设计要点; 2. 掌握OTL功率放大器的安装、调整与性能的测试。 二、实验原理 采用PNP和NPN互补晶体管组成的无输出变压器互补推挽功率放大电路,具有频率响应好,非线性失真小,效率高等优点,获得了广泛的应用。 本实验采用的OTL功率放大电路如图1所示,它包括前置放大级B G1,推动级B G2和互补推挽输出级B G3、B G4。 前置放大级为甲类RC耦合电压放大器,在发射极加有电压串联负反馈,以改善音质,提高稳定性。R1为输出音量调节电位器。由于前置级工作在小信号电压放大状态,静态工作电流I C1可取小一些以减少噪音,一般取: I C1≈0.3~0.1mA 1V<V CEQ1≤1/3E C 推动级要提供足够大的激励功率互补推挽功率输出级,所以推动级的静态工作电流应足够大,一般取I C2≥(3~5)I B3MAX 式中I B3MAX为输出功率最大是输出级的基极激励电流。为了提高输出级正向输出幅度,把B G2的集电极负载电阻R8接到放大器的输出端经R L接电源正端,以获得自举的效果。为了克服输出级的交叉失真,在B G3,B G4两管的基极之间接有二极管D和电阻R9组成的偏置电路,其中二极管D同时起偏置的温度补偿作用,电容C5为相位校正电容,以防止产生高频寄生振荡。功率放大器的输出功率为P O=E2C K/8R L(式中:K为电源电压利用系数)。 当K≈1时,输出功率最大,为P OMAX≈E2C/8R L 考虑到晶体管的饱和压降因素,一般取:K≈0.65~0.7. 对该电路的电压增益,考虑到它加有电压串联负反馈,并满足A VO F >>1,所以中频段电压增益为:A V≈1/F=(R12+R6)/R6

模拟电子技术课程设计(Multisim仿真)

《电子技术Ⅱ课程设计》 报告 姓名 xxx 学号 院系自动控制与机械工程学院 班级 指导教师 2014 年 6 月18日

目录 1、目的和意义 (3) 2、任务和要求 (3) 3、基础性电路的Multisim仿真 (4) 3.1 半导体器件的Multisim仿真 (4) 3.11仿真 (4) 3.12结果分析 (4) 3.2单管共射放大电路的Multisim仿真 (5) 3.21理论计算 (7) 3.21仿真 (7) 3.23结果分析 (8) 3.3差分放大电路的Multisim仿真 (8) 3.31理论计算 (9) 3.32仿真 (9) 3.33结果分析 (9) 3.4两级反馈放大电路的Multisim仿真 (9) 3.41理论分析 (11) 3.42仿真 (12) 3.5集成运算放大电路的Multisim仿真(积分电路) (12) 3.51理论分析 (13) 3.52仿真 (14) 3.6波形发生电路的Multisim仿真(三角波与方波发生器) (14) 3.61理论分析 (14) 3.62仿真 (14) 4.无源滤波器的设计 (14) 5.总结 (18) 6.参考文献 (19)

一、目的和意义 该课程设计是在完成《电子技术2》的理论教学之后安排的一个实践教学环节.课程设计的目的是让学生掌握电子电路计算机辅助分析与设计的基本知识和基本方法,培养学生的综合知识应用能力和实践能力,为今后从事本专业相关工程技术工作打下基础。这一环节有利于培养学生分析问题,解决问题的能力,提高学生全局考虑问题、应用课程知识的能力,对培养和造就应用型工程技术人才将能起到较大的促进作用。 二、任务和要求 本次课程设计的任务是在教师的指导下,学习Multisim仿真软件的使用方法,分析和设计完成电路的设计和仿真。完成该次课程设计后,学生应该达到以下要求: 1、巩固和加深对《电子技术2》课程知识的理解; 2、会根据课题需要选学参考书籍、查阅手册和文献资料; 3、掌握仿真软件Multisim的使用方法; 4、掌握简单模拟电路的设计、仿真方法; 5、按课程设计任务书的要求撰写课程设计报告,课程设计报告能正确反映设计和仿真结果。

高频功率放大器实验

实验报告 课程名称:高频电子线路实验指导老师:韩杰、龚淑君成绩:__________________ 实验名称:高频功率放大器实验类型:验证型实验同组学生姓名:_ 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1、了解高频功率放大器的主要技术指标——输出功率、中心频率、末级集电极效率、稳定增益或输入功率、线性动态范围等基本概念,掌握实现这些指标的功率放大器基本设计方法,包括输入、输出阻抗匹配电路设计,回路及滤波器参数设计,功率管的安全保护,偏置方式及放大器防自激考虑等。 2、掌握高频功率放大器选频回路、滤波器的调谐,工作状态(通角)的调整,输入、输出阻抗匹配调整,功率、效率、增益及线性动态范围等主要技术指标的测试方法和技能。二、实验原理 高频功率放大器实验电路原理图如下图图1所示。电路中电阻、电容元件基本上都采用贴片封装形式。放大电路分为三级,均为共射工作,中心频率约为10MHz。 图1 高频功率放大器 第一极(前置级)管子T1采用9018或9013,工作于甲类,集电极回路调谐于中心频率。第二级(驱动级)管子T2采用3DG130C,其工作状态为丙类工作,通角可调。通角在45°~60°时效率最高。调整R W1时,用示波器在测试点P2可看到集电极电流脉冲波形宽度的变化,并可估测通角的大小。第二级集电极回路也调谐于中心频率。第三级(输出级)管子T3也

采用3DG130C,工作于丙类,通角调在60°~70°左右。输出端接有T形带通滤波器和π型阻抗变换器,具有较好的基波选择性、高次谐波抑制和阻抗匹配性能。改变短路器开关K1~K4可观看滤波器的失谐状态,为保证T3管子安全,调整时应适当降低电源电压或减小激励幅度。改变K5、K6可影响T3与51Ω负载的匹配状态。匹配时,51Ω负载上得到最大不失真功率为200mW左右,二次谐波抑制优于20dB,三级总增益不小于20dB,末级集电极到负载上的净效率可达30%左右,考虑滤波匹配网络的插入损耗,集电极效率可达40%以上。开关K8只有在接通后才能使功放达到预定效率,但实验时,为了使R16对末级管子T3起到限流保护作用,K8不要接通,而R16上的电压降也不必扣除,这只使功放总效率略有降低。电源开关K7用于防止稳压电源开机或关机时电压上冲导致末级功放管损坏。 三、主要仪器设备 10MHz高频功率放大器实验板、BT3C(或NW1252)扫频仪、高频信号发生器(QF1056B 或EE1461)、示波器、超高频毫伏表(DA22)、直流稳压电源(电压5~15V连续可调,电流1A)、500型万用表(或数字万用表 四、实验内容和步骤 主要测试指标:功率、效率、线性动态范围 实验准备与仪器设置 1、实验板: ●开关K7用于防止稳压电源开机或关机时电压上冲导致末级功放管损坏,所以稳压电源开 机或关机前,开关K7必须置于关闭(向下); ●短路开关置于K1、K3、K6、K9、K10,否则滤波器失谐,影响T3与51Ω负载的匹配状 态,从而影响实验结果。 2、电源: ●为保证T3管子安全,电源电压最高不超过+15V,实验时设置为+14.5V~+15V。 实验内容与步骤 4)用信号源及示波器测功放输出功率及功率增益 (1)适当改变信号幅度(200~300mV左右),使51Ω负载上得到额定功率200mW。(2)在测试点P2观察电流脉冲,宽度应为周期的1/3左右。 (3)从输入输出信号幅度求得功放的(转换)功率增益。 (4)比较滤波器输入输出幅度,估计滤波器插入衰减。 5)用双踪示波器观察电流电压波形 (1)比较功放末级发射极电流脉冲波形和负载上基波电压波形的相位。 (2)比较功放第二级发射极电流脉冲波形与集电极电压基波波形的相位,并分别画出波形。6)高频功放效率(主要是末级)的调试与测量 (1)用示波器观看第二级发射极电阻电流脉冲宽度。 (2)用示波器在第三级功放发射极电阻上观看其电流脉冲波形。 8)功放线性观察 (1) 调幅波通过功率放大器 将中心频率为10MHz、调制度为60%的调幅信号电压加到功放输入端,适当调整输入信号幅度(200mV),使51Ω负载上输出调幅波峰值功率不超过功放额定功率200mW,用双踪

音频功率放大电路实验报告

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 专业: 姓名: 学号: 日期: 地点: 桌号 装 订 线 点名册上的序号 前置 放大级 音调控制 放大级 功率 放大级

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端;5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2

实验二 丙类功率放大器汇总

实验二非线性丙类功率放大器实验 一、实验目的 1、了解丙类功率放大器的基本工作原理,掌握丙类放大器的调谐特性以及负载改变时 的动态特性。 2、了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状 态的影响。 二、实验内容 1、观察高频功率放大器丙类工作状态的现象,并分析其特点 2、测试丙类功放的调谐特性 3、测试丙类功放的负载特性 4、观察激励信号变化、负载变化对工作状态的影响 三、实验仪器 1、信号源模块1块 2、频率计模块1块 3、8 号板1块 4、双踪示波器1台 5、频率特性测试仪(可选)1台 6、万用表1块 四、实验基本原理 放大器按照电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型。功率放大器电流导通角θ越小,放大器的效率η越高。 1、丙类功率放大器 1)基本关系式 丙类功率放大器的基极偏置电压V BE是利用发射极电流的直流分量I EO(≈I CO)在射极电 v为正弦波时,集阻上产生的压降来提供的,故称为自给偏压电路。当放大器的输入信号' i

电极的输出电流i C 为余弦脉冲波。利用谐振回路LC 的选频作用可输出基波谐振电压v c1,电流i c1。图2-1画出了丙类功率放大器的基极与集电极间的电流、电压波形关系。分析可得下列基本关系式: 011R I V m c m c = 式中,m c V 1为集电极输出的谐振电压及基波电压的振幅;m c I 1为集电极基波电流振幅; 0R 为集电极回路的谐振阻抗。 2102111212121R V R I I V P m c m c m c m c C = == 式中,P C 为集电极输出功率 CO CC D I V P = 式中,P D 为电源V CC 供给的直流功率;I CO 为集电极电流脉冲i C 的直流分量。 放大器的效率η为 CO m c CC m c I I V V 1121??= η

非线性丙类功率放大器--实验报告

南昌大学实验报告 学生姓名:付文平学号: 6102215151 专业班级:通信154班实验类型:■验证□综合□设计□创新实验日期: 2017.10.31 实验成绩:实验名称:非线性丙类功率放大器实验报告 一、实验目的 1、了解丙类功率放大器的基本工作原理,掌握丙类功率放大器的调谐特性以及负载变化时的动态特性。 2、了解激励信号变化对功率放大器工作状态的影响。 3、比较甲类功率放大器与丙类功率放大器的功率、效率与特点。 二、实验内容 1、观察高频功率放大器丙类工作状态的现象,并分析其特点。 2、测试丙类功放的调谐特性。 3、测试丙类功放的负载特性。 4、观察激励信号变化、负载变化对工作状态的影响。 三、实验仪器 1、信号源模块 1块 2、频率计模块 1块 3、8 号板 1块 4、双踪示波器 1台 四、实验原理 非线性丙类功率放大器的电流导通角θ<90〇效率可达到80%,通常作为发射机末级功放以获得较大的输出功率和较高的效率。特点:非线性丙类功率放大

器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小),基极偏置为负值,电流导通角θ<90〇,为了不失真地放大信号,它的负载必须是LC谐振回路。 丙类功率放大器 丙类功率放大器的基极偏置电压V BE 是利用发射极电流的直流分量I EO (≈I CO ) 在射极电阻上产生的压降来提供的,故称为自给偏压电路。当放大器的输入信号为正弦波时,集电极的输出电流i C 为余弦脉冲波。利用谐振回路LC的选频作用 可输出基波谐振电压v c1,电流i c1 。下图画出了丙类功率放大器的基极与集电极间 的电流、电压波形关系。分析可得下列基本关系式: 式中,V c1m 为集电极输出的谐振电压及基波电压的振幅;I c1m 为集电极基波电流振 幅;R 为集电极回路的谐振阻抗 2 1 2 1 1 12 1 2 1 2 1 R V R I I V P m c m c m c m c C = = = 式中,P C 为集电极输出功率. 式中,P D 为电源V CC 供给的直流功率;I CO 为集电极电流脉冲i C 的直流分量。放大器的效率 1 1 R I V m c m c = CO m c CC m c I I V V 1 1 2 1 ? ? = η

厦门大学电子技术实验——实验八

电子技术实验 实验报告 实验名称:实验八集成运算放大器的运用——运算器系别:班号: 实验者姓名:学号: 实验日期:年月日 实验报告完成日期:年月日 指导教师意见:

一、 实验目的 1. 熟悉集成运算放大器的性能和使用方法 2. 掌握集成运放构成基本的模拟信号运算电路 二、 实验原理 集成运算放大器是一种高增益、高输入阻抗、低输出阻抗的直流放大器。若外加反馈网络,便可实现各种不同的电路功能。例如,施加线性负反馈网络,可以实现放大功能,以及加、减、微分、积分等模拟运算功能;施加非线性负反馈网络,可以实现乘、除、对数等模拟运算功能以及其他非线性变换功能。本实验采用TL082型集成运算放大器,其管脚如图1所示。注意:在使用过程中,正、负电源不能接反,输出端不能碰电源,接错将会烧坏集成运算放大器。 1. 反相放大器: 在理想的条件下,反相放大器的闭环电压增益为: 1 R R V V A F i O VF -== 由上式可知:闭环电压增益的大小完全取决于电阻的比值R F /R 1。电阻值的误差, 将是测量误差的主要来源。 当取R F = R 1,则放大器的输出电压等于输入电压的负值,即: i i F O V V R R V -=- =1 。此时反相放大器起反向跟随器的作用。 2. 同相放大器: 在理想条件下,铜线放大器的闭环电压增益为: 1 1R R V V A F i O VF +== 4. 反相加法器:

在理想条件下,输出电压为:??? ? ??+-=2211i F i F O V R R V R R V ,当R 1=R 2时,上式简化为:)(211 i i F O V V R R V +- =。 5. 减法器: 在理想条件下,若R 1=R 2,R F =R 3时,输出电压为:)(121 i i F O V V R R V -= 若R F =R 1,,则V O =V I2-V I1,故此电路又称模拟减法器。 6. 积分器: 输入(待积分)信号加到反相输入端,在理想情况下,如果电容两端的初始电压为零,则输出电压为:?-=2 )(1) (V 1T O t i t O dt C R V 当V i(t)是幅值为E i 的阶跃电压时,t E C R V i t O 1)(1 - = 此时,输出电压V O(t)随时间线性下降。 当V i(t)时峰值振幅为V iP 的矩形波时,V O(t)的波形为三角波。如图8(b)所示,根据上式,输出电压的峰峰值为:2 1T C R V V ip P OP ? ?- =- 在实际实验电路中,通常在积分电容C 的两端并接反馈电阻RF ,其作用是引入直流负反馈,目的是减小运放输出直流漂移。但是RF 的存在对积分器的线性关系有影响,因此,RF 不宜取太小,一般取100K Ω为宜。 三、 实验仪器 1. 示波器一台 2. 函数发生器一台

相关文档
最新文档