循环水加药处理以及水质稳定性判断方法

循环水加药处理以及水质稳定性判断方法
循环水加药处理以及水质稳定性判断方法

循环水处理

第一节概述

自然界中,大气中总含有一定数量的水蒸汽,所以大气是由干空气和水蒸气组成的混合气体,称为湿空气。循环水的冷却就是以这种湿空气作为冷却介质的。当循环热水在冷却塔中以小水滴或薄壁水膜的形式从上向下降落时,与从冷却塔下面(或侧面)由下向上的湿空气进行接触,从而达到冷却的目的。

循环水冷却系统以敞开式双曲线冷却塔装置。

敞开式循环水冷却系统,是指冷却水由循环水泵送入凝汽器内进行热交换,升温后的冷却水经冷却塔降温后,再由循环水泵送入凝汽器循环利用,这种循环利用的冷却水叫做循环冷却水。这种系统的特点是:由于有CO

2

散失和盐类浓缩现象,在凝汽器铜管内和冷却塔的填料上有结垢现象;由于温度适宜、阳光充足、营养丰富、有微生物的滋长问题;由于冷却水在塔内对空气洗涤,有生成污垢的问题;由于循环水与空气接触,水中溶解氧是饱和的,所以还有换热器材料的腐蚀问题。所谓循环冷却水处理,主要就是研究这种冷却水系统的结垢、微生物生长和腐蚀等方面的原理和防止方法。

第二节循环水处理导则

1、水质稳定性的判断:当以碳酸盐型水为循环冷却水时,由于盐类浓缩,平衡

CO

2散失及水温升高等原因,会使水中CaCO

3

、Ca(PO

4

2

等难溶盐类的含量超过饱

和值,而引起结垢,这时的水成为结垢型水。反之,当低于饱和值时,原先析出的盐类又会溶于水中,水对金属管壁产生腐蚀,这时的水称为侵蚀性水。当水中这些盐类的含量正好处于饱和状态时,既无结垢也无腐蚀现象,称为稳定性水。常用的水质稳定性的判断方法有:

1.1 极限碳酸盐硬度(H,X,T)法:任何一种水,都有一个不结碳酸盐水垢的最高允许值,这个值成为极限碳酸盐硬度(H,X,T),由于影响因素很多,难以从理论上计算,只能由模拟试验求取。

判断方法为:

ФHB,T<H,X,T 不结垢

ФHB,T>H,X,T 结垢

上式说明:为了防止循环水结垢,控制浓缩倍率的大小是有效途径之一,但浓缩

倍率太小,排污水量和补充水量都会过大,不利节水。

1.2 饱和指数法IB(Langelier指数法):饱和指数是根据CaCO

3

的溶积度和各种碳酸化合物之间的平衡关系推导出来的一种指数概念,以判断某种水质在运行条件

下是否会有CaCO

3

水垢析出。

1.3 △A法:定义为冷却水的浓缩倍数K与碱度浓缩倍数的差值,即

△A=K-A

X /A

B

式中K为Cl-的浓度计算的浓缩倍率K;其中的A

X 、A

B

分别为浓缩水和补充水的碱

度,mmol/L,一般认为△A<0.2的冷却水系统,沉积碳酸盐垢的可能性不大。

2、循环水防垢处理:

一般采用的为加酸、加杀菌剂和加阻缓剂联合处理方式。

2.1 加酸处理

a、原理:循环水的加酸处理,通常采用硫酸,硫酸与水中重碳酸盐硬度的反应为

Ca(HCO

3)

2

+H

2

SO

4

= CaSO

4

+2CO

2

+2H

2

O

反应的结果是将水中的碳酸盐硬度转变成为非碳酸盐硬度CaSO4,因为CaSO4溶解度较大(0℃时为1750mg/l),所以能防止碳酸盐水垢,提高浓缩倍率,节约补充水量。另外,反应生成的游离CO2,有利于抑制析出碳酸盐水垢。

b、加酸处理注意事项:虽然加酸处理可以防止碳酸盐水垢并提高浓缩倍率,

但加酸量过大,则可能引起CaSO

4、MgSiO

4

水垢,还可能引起SO

4

2-对混凝土构造

物的侵蚀。因此不能一味单靠加酸控制循环水的水质。

2.2加阻垢剂处理:在循环冷却水中,加少量化学药剂,可起到防垢作用,因此把这种药剂称为阻垢剂(或称缓垢剂)。

2.3加酸与加阻垢剂的联合处理:如上所述,加酸处理虽然可以提高浓缩倍率,但加酸量大,运行费用高,阻垢剂在低剂量情况下,只能使低浓度的碳酸盐硬度处于稳定状态,浓缩倍率低,用水量大。将这两种工艺联合处理,即可提高浓缩倍率,节约用水,又可降低运行费用,而且操作简单。

联合处理工艺是:首先对补充水进行加酸处理,使补充水的碳酸盐硬度降至阻垢剂所能稳定的极限碳酸盐硬度与浓缩倍率的比值,然后再对循环水系统进行阻垢剂稳定处理。这是一种非常经济的处理工艺,也是目前设计中主要采用的工艺之一。

循环水控制指标及解释

循环水水质控制指标及注释 1、PH:7.0-9.2 在25℃时pH=7.0的水为中性,故pH=7.0-9.2的水大体上属于中性或微碱性的范围;冷却水的腐蚀性随pH值的上升而下降;循环水的pH值低于这一范围时,水的腐蚀性将增加,造成设备的腐蚀;循环水的pH值高于这一范围时,则水的结垢倾向增大,容易引起换热器的结垢。 2、悬浮物:≤10mg/L 悬浮物会吸附水中的锌离子,降低锌离子在水中的浓度;一般情况下,循环冷却水的悬浮物浓度或浊度不应大于20mg/L,当使用板式、翅片管式或螺旋板式换热器时,悬浮物浓度或浊度不宜大于10mg/L。 3、含盐量:≤2500mg/L 含盐量也可通过电导率来间接表示,天然淡水的电导率通常在50-500μS/cm;电导率与含盐量大致成正比关系,其比值1μS/cm的电导率相当于0.55-0.90mg/L的含盐量;在含盐量高的水中,Cl-和SO42-的含量往往较高,因而水的腐蚀性较强;含盐量高的水中,如果Ca2+、Mg2+和HCO3-的含量较高,则水的结垢倾向较大;投加缓蚀剂、阻垢剂时,循环冷却水的含盐量一般不宜大于2500mg/L。 4、Ca2+离子:30≤X≤200 mg/L 从腐蚀的角度看,软水虽不易结垢,但其腐蚀性较强,因此循环水中钙离子浓度不宜小于30mg/L;从结垢的角度看,钙离子是循环水中最主要的成垢阳离子,因此循环水中钙离子浓度也不宜过高;在投加阻垢分散剂的情况下,钙离子浓度的高限不宜大于200mg/L。 5、Mg2+离子: 镁离子也是冷却水中一种主要的成垢阳离子,循环水中镁离子浓度不宜大于60mg/L或2.5mmol/L(以Mg2+计);由于镁离子易与循环水中的硅酸根生成类似于蛇纹石组成的不易用酸除去的硅酸镁垢,故要求循环水中镁离子浓度遵从以下关系:[Mg2+](mg/L)*[SiO2](mg/L)<15000,式中[Mg2+]以CaCO3计,[SiO2]以SiO2计。

循环水知识

循环水知识概要 冷却水在不断循环使用过程中,由于水的温度升高,流速变化,蒸发浓缩,冷却塔和冷水池在室外受阳光照射、风吹雨淋、灰尘杂物的飘落,以及设备结构和材料等因素的综合作用,会产生比直流系统更严重的污垢附着、设备腐蚀、微生物滋生等危害,影响系统长周期安全稳定运行。循环水工艺管理就是要通过各种手段,控制减轻甚至避免上述危害。 循环水系统在运行中,水质会发生以下的变化: 一、溶解固体的浓缩 1.盐类的浓缩(浓缩倍数的概念) 冷却水在循环过程中,存在着四种损失:蒸发(P1)、风吹(P2)、排污(P3)、渗漏(P4),故需不断补充新鲜水,补充水中含有各种盐类。在水量的四种损失中,风吹、排污及渗漏会带走盐类,而蒸发过程水以水蒸气的形式散失,不会带走盐类,故盐份在循环之后会累积起来。循环水系统为控制腐蚀、结垢等问题,需将水中盐类如碳酸钙、氯化物等控制在合适范围之内,此时水中溶解盐类达到一个动态平衡,带入系统和带出系统的盐分相等,以氯离子浓度为例,设循环水的氯离子浓度为C循、补充水中氯离子浓度为C补,则: C补*(P1+P2+P3+P4)=C循*(P2+P3+P4) 令C 循/ C 补 =K,即为浓缩倍数,即循环水中的含盐量与新鲜水中含盐量的比值 则K=(P1+P2+P3+P4)/(P2+P3+P4),即浓缩倍数=补充水量/(风吹+排污+渗漏)举例计算: 一循环水装置循环水量为5000m3/h,设其风吹损失为0.3%(与冷却塔的选型有关,风筒式机力通风冷却塔取0.3%-0.5%,带收水器的为0.1%-0.2%),渗漏不计, 蒸发量=(Cp*Q*△t)/H L Cp------水的定压比热容,0.01 J/Kg·℃ Q-------循环水量,m3/h △t------水的温差,10℃ H L------水的蒸发潜热,5.8 J/g 故P1=(0.01*5000*10)/5.8=86.2 m3/h K=(86.2+5000*0.3%+P3)/(5000*0.3%+P3) 从上式可看出,一个循环水装置可通过控制排污量来控制浓缩倍数,如果不排污,则K最大,K=(86.2+15)/15=6.75,所以浓缩倍数并不会无限升高,在不排污的情况下风吹损失量决定了浓缩倍数的大小。 还可以根据新鲜水中的含盐量来确定浓缩倍数,从而计算出系统排污量 如浓缩倍数K=5,则5=(101.2+P3)/15+P3, P3=6.55 m3/h 如浓缩倍数K=2, 则2=(101.2+P3)/15+P3, P3=71.2 m3/h 继续增大排污量,浓缩倍数也越来越低,当增加到循环水量的10%时,K接近于1。 浓缩倍数是反映水的重复利用率的大小,是衡量循环水系统运行情况的一项重要指标.提高浓缩倍数不但可节约用水,而且也可减少随排污而流失的药剂量,但浓缩倍数太高,所节约的水量变化不大,而析出结垢和腐蚀的可能性增大,也不利于微生物的控制,必须综合考虑. 2.杂质、灰尘等的积聚,形成污垢沉积在换热器表面,影响传热效果。

循环水自动加药装置工作方式、技术特点

循环水加药装置技术特点及型号 潍坊山水环保机械制造有限公司 循环水加药装置能自动按水处理技术要求自动准确、定量投加水处理药剂,如:循环水处理的阻垢剂、缓蚀剂、消毒杀菌剂,水净化处理的混凝剂、助凝剂,污水处理中的营养剂、絮凝剂,污泥处理中的脱水剂等等。全自动加药装置适用于各种规模的水处理装置,如水量从每小时数百吨至数万吨的循环水系统。 循环水加药装置是用来处理循环水处理系统的。它过滤面积大、体积小,无阻力容易反冲洗。可广泛用于中央空调、采暖及水冷却系统作为过滤、加药、清除循环系统中管道及设备的水垢、调节循环水质、锈垢及泥垢,是一种实用性强的多用途设备。 循环水处理的主要项目:缓蚀抗氧化增加系统相关设备及管道的寿命;阻垢、防垢、除垢;调节水质,使循环水处于良性的循环状态。 循环水处理的必要性循环水系统大约为几种,中央空调、热水采暖及循环冷却水系统,天然水中易形成水垢的有害钙、镁及二氧化硅等物质,由于先天及后天的控制处理不当这些离子在循环水系统中遇热后从水中分解,形成固体附着在管道及受热面上,它不但阻塞了管道,导致水循环不畅,还大大影响了受热面的热传递的下降,使循环水系统遭到障碍,重者造成系统管道阻塞,轻者工作效率下降,所以循环水的调整、治理、处理是很重要的环节。 循环水加药装置工作方式: 开始加药时需启动加药器内自备的药液提升泵,用软管将药液从药液桶内抽入储药箱,提升泵具有自吸能力,工作前不需向泵体灌注液体。储药箱注满药液后即可调定加药量,药量调节后即可投药运行。 循环水加药装置产品特点: 循环水自动加药装置有别于一般的定时加药,定时排污装置,可随着气候变化,补充水质的变化以及冷却塔运行的时间等诸多因素的变化,自动判断排污时机及排污量,排污一结束就自动启动加药计量泵,并留有足够的空间供水处理工程师调整计量泵的每次持续运行的时间。智能化自动在线排污在线加药装置除了排污阀外,冷却水浓缩状况感知探头,水流状况感知开关(防止冷却水系统关闭时该装置输出错误信号)、缓蚀阻垢剂加药口,杀菌灭藻剂加药口,取样阀等都集成在支路上,固定于控制柜下方(也可根据需要分开安装),用户只需在冷却水主回水管、主供水管上焊接上一旁路,与之对接即可(祥见设备安装部分),非常方便。排污阀就近安装于主回水管上,其管径和数量视循环水量大小而定,也可利用系统原来的排污管路。

循环水系统事故及应急处理方案课件.doc

循环水系统事故及应急处理方案 典型事故原因处理措施 1、补水浊度高,水质不好1、改善补水水质,加强补水 2、循环水系统周边环境恶 过滤工作。 劣,空气中灰尘含量高。2、搞好循环水场周围环境 3、循环水系统有泄露。 卫生。 4、旁滤有故障。3、通过查漏、堵漏切断污染 5、循环水微生物大量滋生。 源,视污染程度进行置 6、分析化验数据有错误。 换、排污和清洗等处理。1、循环水7、循环水系统中的悬浮物4、多反冲洗几次,如仍不 浊度高和粘泥除了一部分被旁行,检测旁滤池,对故障 滤截获外,大部分沉入池进行检修。 底,并没有随排污而排5、加强杀菌灭藻。 掉,致使循环水浊度居高6、检查化验数据是否有偏 不下。差、错误。 8、系统有设备首次投运,引7、注意清除塔、池积泥。 入外来污染源。8、设备首次投运前,进行必 要的清洗。 循环水总铁含量高时,循1、如果循环水中总铁含量 环水的色度比较高,分析数据严重超标,加大排污,降 中总铁含量偏高,主要原因:低循环水浓缩倍数的控 1、补水总铁含量高。 制,尽量使循环水中总铁 2、循环水PH值控制过低。 处于正常控制范围。 2、循环水中 3、循环水系统内设备腐蚀2、降低补水中总铁含量,如 总铁高率高。有除铁设施,加强除铁设 备的管理,降低补水中总 铁的含量。 3、循环水腐蚀率高,应加强 水质管理,降低循环水腐 蚀率。 1、加酸调PH值的循环水系1、调整循环水PH值,尽快 统,可能加酸过多。 使PH值恢复到正常控制 范围。当循环水PH小于 2、加氯量或加药量过大。 3、工艺介质泄露入循环水 2.5时,可以通过向水中 中,直接或间接造成PH添加NaOH将循环水调 节到 2.5-3.0的范围。再3、循环水中值异常。 PH异常4、冷却塔运行环境的影响, 投加碳酸钠溶液,将循环 如进入冷却塔空气中含 水PH提高至 4.5左右。 有大量二氧化硫、氨等。此时,循环水中游离的无

中央空调循环水系统水质稳定处理维保方案

中央空调循环水系统水质稳定处理维保方案 1.中央空调工艺循环水系统化学清洗、钝化、预膜保护处理技术服务 1.1艺循环水系统化学清洗、钝化、预膜保护处理工艺程序 准备工作一一水力冲洗一一杀菌灭藻剥泥――排污 柔性法清洗(除锈除垢除油) 一-排污 钝化/预膜处理――排污 人工处理,过滤器清洗等 复位检查 正常运行 水质正常保养 1.2化学清洗前的准备措施(甲乙双方配合) 1)我方进一步了解熟悉系统的有关情况。 2)化学清洗前完成系统内被清洗的各腐蚀产物,结垢物的定性、定量分析。 3)化学清洗前完成系统内各组成设备的材质确定。 4)把不参与清洗的设备却机器要加临时短管,搭接临时旁路或盲板盲死等措施与清洗系统隔开。 5)为保清洗良好进行,防止气阻和清洗液残留,循环系统应配制和确认高点气孔和低点排污口。 6)为保证清洗的良好进行,进行快速有效的补水和排污工作可配制临时补水管和排污管。7)为检查清洗效果,确定分析点。 1.3水冲洗(试压、检漏) 水冲洗的目的用大流量的水尽可能冲刷掉系统申的灰尘、泥沙、金属腐蚀物等疏松的污垢,同时检查系统有无渗漏、气阻和死角情况,如有问题应及时处理。冲洗时;高点注满,低点排放,并控制进出水平衡。水压检漏实验,将全系统注满水,调节出口回水阀门,控制泵压,检查系统中焊缝、法兰、阀门、短管连接处泄漏情况并及时处理,以保证清洗过程的正常进行。

1.4杀菌灭藻清洗 杀菌灭藻清洗的目的:杀死系统内的微生物,并将表面附着的生物粘泥剥离脱落。排尽冲洗物后,注水充满系统循环,加入适量的杀菌灭藻剂后循环清洗,当系统内的浓度达到平衡时,即可结束。 1.5柔性化学清洗法" "柔性化学清洗法"的目的:利用有机高分子聚合物的对金属离子的高度选择性而只与金属的离子发生反应,生成溶度度极高的金属络合物(蟹合物),从而促进了铁锈、铜锈及其它金属氧化物和盐垢的溶解,而对金属基体无任何损害,从而达到除锈除垢的目的。注意高点排气放空,低点排污,阻止气阻和阻塞现象发生,影响清洗效果。定期测试清洗液浓度,金属离子浓度、温度、PH值,当金属离子浓度曲线趋于平衡时,即为清洗结束。 1.6钝化/预膜保护处理, 钝化/预膜处理目的:设备及管线经过清洗后,其金属表面处于高度活性状态,它很容易重新与氧结合而被氧化返锈。钝化/预膜保护处理的作用是在金属表面上形成能抑制金属阳极溶解过程中的电化学分子导体膜,而这层膜本身在介质申溶解度很小,以致使金属阳极溶解速度保持在很小的数值,则这层表面膜成为钝化/预膜。在金属表面形成完整钝化膜从而达到防锈防腐的目的。因此,设备和管线在清洗后则需要钝化/预膜处理,然后投入使用或加以封存。 1.7清洗后的水冲洗排污 水冲洗排污目的为了除去残留的污水溶液和系统脱落的固体颗粒,保证一个清洁的系统,以便下一个工作程序的顺利进行。清洗结束后,用大量的水冲洗,全系统开路清洗,不断轮开系统导淋,以使沉淀在短管内的杂质、残液排除。冲洗过程申,应每隔10分钟测定一次,当其曲线趋于平衡时停止冲洗。 1.8人工机械清理检查 对在系统清洗过程申,可能会有各类不溶的固体杂粒如石子、泥砂等沉积在过滤器、低处弯管处,因此将此 类污垢沉积物进行全面机械、人工清理。 1.9复位检查 检查完毕后,拆除或隔离临时系统,临时盲板,将系统复位至正常状态,以各调试启用。1.I0化学清洗总结

循环水控制指标及解释

循环水水质控制指标及注释 1、PH:7、0-9、2 在25℃时pH=7、0的水为中性,故pH=7、0-9、2的水大体上属于中性或微碱性的范围;冷却水的腐蚀性随pH值的上升而下降;循环水的pH值低于这一范围时,水的腐蚀性将增加,造成设备的腐蚀;循环水的pH值高于这一范围时,则水的结垢倾向增大,容易引起换热器的结垢。 2、悬浮物:≤10mg/L 悬浮物会吸附水中的锌离子,降低锌离子在水中的浓度;一般情况下,循环冷却水的悬浮物浓度或浊度不应大于20mg/L,当使用板式、翅片管式或螺旋板式换热器时,悬浮物浓度或浊度不宜大于10mg/L。 3、含盐量:≤2500mg/L 含盐量也可通过电导率来间接表示,天然淡水的电导率通常在50-500μS/cm;电导率与含盐量大致成正比关系,其比值1μS/cm的电导率相当于0、55-0、90mg/L的含盐量;在含盐量高的水中,Cl-与SO42-的含量往往较高,因而水的腐蚀性较强;含盐量高的水中,如果Ca2+、Mg2+与HCO3-的含量较高,则水的结垢倾向较大;投加缓蚀剂、阻垢剂时,循环冷却水的含盐量一般不宜大于2500mg/L。 4、Ca2+离子:30≤X≤200 mg/L 从腐蚀的角度瞧,软水虽不易结垢,但其腐蚀性较强,因此循环水中钙离子浓度不宜小于30mg/L;从结垢的角度瞧,钙离子就是循环水中最主要的成垢阳离子,因此循环水中钙离子浓度也不宜过高;在投加阻垢分散剂的情况下,钙离子浓度的高限不宜大于200mg/L。 5、Mg2+离子: 镁离子也就是冷却水中一种主要的成垢阳离子,循环水中镁离子浓度不宜大于60mg/L或2、5mmol/L(以Mg2+计);由于镁离子易与循环水中的硅酸根生成类似于蛇纹石组成的不易用酸除去的硅酸镁垢,故要求循环水中镁离子浓度遵从以下

循环水系统加药系统方案要点

2000m3/h,2×1500m3/h 循环水系统投药系统 设 计 方 案 苏州得润水处理设备有限公司 2010年10月

目录 一、概述 (2) 二、循环冷却水处理设计的原则和要求 (2) 三、工艺流程的确定 (3) 四、循环水系统设计参数 (4) 五、设计规范标准 (6) 六、药剂选用原则 (7) 七、补充水及旁滤处理 (7) 八、循环水处理 (7) 九、清洗与预膜处理 (10) 十、药剂的选用及投药量 (13) 十一、投药设备的选型 (14) 十二、供货清单 (16) 十三、设备的投资概算 (16)

一、概述 在冷却水循环使用的过程中,通过冷却构筑物的传热与传质交换,循环水中Ca2+、Mg2+、CL-、 2 SO等离子,溶解性固体,悬浮物相应增加,空气中污染物如 4 尘土、杂物、可溶性气体和换热器物料渗漏等均可进入循环水,致使微生物大量繁殖和在循环冷却水系统的管道中产生结垢、腐蚀和粘泥,造成换热器换热效率降低,能源浪费,过水断面减少,通水能力降低,甚至使设备管道腐蚀穿孔,酿成事故。 循环冷却水处理的目的就在于消除或减少结垢、腐蚀和生物粘泥等危害,使系统可靠地运行。 循环水中能产生的盐垢有许多种,如碳酸钙、硫酸钙、碳酸镁、氢氧化锰、硅酸钙等,其中以碳酸钙垢最为常见,危害最大。 二、循环冷却水处理设计的原则和要求 1、安全生产、保护环境、节约能源、节约用水是在工业循环冷却水处理设计中需要贯彻的国家技术方针政策的几个重要方面。在符合安全生产要求方面:循环冷却水处理不当,首先会使用权冷却设备产生不同程度的结垢和腐蚀,导致能耗增加,严重时不仅会损坏设备,而且会引起工厂停车、停产和减产的生产事故,造成极大的经济损失。因此,安全生产首先应保证循环冷却水处理设施连续、稳定地运行并能达到预期的处理要求。其次,在循环冷却水处理的各个环节如循环水处理、旁流水处理、补充水处理及辅助生产设施如仓库、加药间等,设计中都应考虑生产上安全操作的要求。特别是使用的各种药剂如酸、碱、阻垢剂、杀菌灭藻剂等,常常是有腐蚀性、有素,对人体有害的。因此,对各种药剂的贮存、运输、配制和使用,设计上都必须有保证工作人员卫生、安全的设施。并按使用药剂的特性,具体考虑其防火、防腐、防素、防尘等安全生产要求。 2、循环冷却水处理,可以概括为去除悬浮物、控制泥垢、控制腐蚀及微生物等四个方面。 3、敞开式循环冷却水系统中冷却水吸收热量后,以冷却塔与大气直接接触,二氧化碳逸散,溶解氧和浊度增加,水中溶解盐类浓度增加以及工艺介质泄漏等,使循环水水质恶化,给系统带来结垢、腐蚀、污泥和菌藻问题。

循环水处理方案

循环水系统水质处理方案 1 前言 水是人类最宝贵的财富之一,地球上的淡水资源是有限的,可供人类利用的水资源就更少,节约水资源已刻不容缓。为此近年来国家在宪法中又颁发了"水法"这些做法都促进并强迫我们重视节约使用水资源,减少水的污染,以利工农业进一步发展和人类自身的繁衍。 为了使循环冷却水系统正常运行,确保换热设备的长期使用,防止循环水在使用中所生产的腐蚀、结垢及微生物污垢的危害,提高热交换设备的冷却效率,确保生产的正常运行,必须对循环冷却水进行水质稳定化学处理,这不仅能提高冷却效率,延长设备的使用寿命,并且对节约能源(节水、节电),减少大修费用及工作量和保护环境都有非常积极的意义。 根据对循环水处理的经验,再综合系统的特点,建议对循环水系统进行水清洗、化学清洗预膜,然后进入正常运行阶段。正常运行中投加氧化型杀菌剂和非氧化型杀菌灭藻剂来控制循环水系统的细菌、粘泥的大量滋生。 2 系统参数及水质状况 2.1 系统参数

2.2 水质状况

根据工厂的实际状况,采用软化水作为冷却塔的补水,补充水水质如下:

从上表可以看出,如果该补充水未经过浓缩,在40℃的情况下运行,可以看出在供、回水管道、冷却塔中都呈腐蚀性,只有在换热装置表面80℃的情况下,才略呈结垢的特性,所以在此情况下正常运行,只需要用杀菌、缓蚀的化学品。在浓缩5倍40℃的情况下: 在浓缩倍数是5倍80℃的情况下:

通过以上分析,在5倍的浓缩倍数下运行,只需要进行杀菌灭藻。 3 系统水冲洗 3.1 清洗的目的 主要是冲洗在安装过程中进入地下管道和设备中的泥沙和焊渣,为化学清洗做准备。 3.2 冲洗前应具备的条件 3.2.1 为保证管道清洗效果,各使用循环水的车间,入户管阀门已经安装完毕,在入户阀前已经安装了旁路阀,避免管道中的泥沙和焊接的焊渣等进入到换热器中。 3.2.2 循环水泵已经安装完毕,机械、电气具备启动条件,冷却塔已经安装完成,循环水的回水直接可以回到冷却水池,与上塔部分相连的管道已经拆开,避免堵塞冷却塔溅水装置和填料。 3.2.3 冷却塔的补水管路安装完毕,并具备补水条件。 3.2.4 每个循环回路上的所有使用循环冷却水的设备安装完毕。 3.3 冲洗步骤

循环水控制指标及解释

循环水控制指标及解释Last revision on 21 December 2020

循环水水质控制指标及注释 1、PH:在25℃时pH=的水为中性,故pH=的水大体上属于中性或微碱性的范围;冷却水的腐蚀性随pH值的上升而下降;循环水的pH值低于这一范围时,水的腐蚀性将增加,造成设备的腐蚀;循环水的pH值高于这一范围时,则水的结垢倾向增大,容易引起换热器的结垢。 2、悬浮物:≤10mg/L 悬浮物会吸附水中的锌离子,降低锌离子在水中的浓度;一般情况下,循环冷却水的悬浮物浓度或浊度不应大于20mg/L,当使用板式、翅片管式或螺旋板式换热器时,悬浮物浓度或浊度不宜大于10mg/L。 3、含盐量:≤2500mg/L 含盐量也可通过电导率来间接表示,天然淡水的电导率通常在50-500μS/cm;电导率与含盐量大致成正比关系,其比值1μS/cm的电导率相当于的含盐量;在含盐量高的水中,Cl-和SO42-的含量往往较高,因而水的腐蚀性较强;含盐量高的水中,如果Ca2+、Mg2+和HCO3-的含量较高,则水的结垢倾向较大;投加缓蚀剂、阻垢剂时,循环冷却水的含盐量一般不宜大于2500mg/L。 4、Ca2+离子:30≤X≤200mg/L 从腐蚀的角度看,软水虽不易结垢,但其腐蚀性较强,因此循环水中钙离子浓度不宜小于30mg/L;从结垢的角度看,钙离子是循环水中最主要的成垢阳离子,因此循环水中钙离子浓度也不宜过高;在投加阻垢分散剂的情况下,钙离子浓度的高限不宜大于200mg/L。 5、Mg2+离子: 镁离子也是冷却水中一种主要的成垢阳离子,循环水中镁离子浓度不宜大于60mg/L 或L(以Mg2+计);由于镁离子易与循环水中的硅酸根生成类似于蛇纹石组成的不易用酸除去的硅酸镁垢,故要求循环水中镁离子浓度遵从以下关系:[Mg2+](mg/L)*[SiO2](mg/L)<15000,式中[Mg2+]以CaCO3计,[SiO2]以SiO2计。

循环水分析 全套标准

循环水分析 1、碱度的测定 1.1分析原理 用硫酸标准滴定溶液,滴定水中所有能和酸反应的所有物质。以酚酞或甲基橙为指示剂进行滴定,根据酸的浓度及消耗体积进行碱度的计算。 1.2试剂 1.2.1 酚酞指示液1%; 1.2.2 甲基橙指示液0.1%; 1.2.3 硫酸标准滴定溶液 C(1/2H 2SO 4 )= 0.05 mol/L。 1.3 分析步骤 量取100ml透明水样,注入三角瓶中。加入2~3滴酚酞指示液,此时溶液若显红色,则用0.1000mol/L或0.0100mol/L(脱盐水或冷凝水用0.0100mol/L)硫酸标准溶液滴定至恰好为无色,记录消耗酸量V1,在三角瓶中再加入2滴甲基橙指示液,继续用硫酸标准溶液滴定至橙红色为止,记录消耗的总体积数V2。 如果加酚酞后不显色,可直接加甲基橙指示液用硫酸标准溶液滴定,记录消耗酸量V2。 1.4 结果计算 酚酞碱度(mmol/L)JD 酚 =C× V1×10 (1) 总碱度JD(mmol/L) 甲 =C× V2×10 (2) 式中: C -硫酸标准溶液的浓度,mol/L; V 1 -以酚酞为指示剂时消耗酸的体积,mL; V 2 -以甲基橙为指示剂时消耗的总体积数,mL。 1.5 注意事项 1.5.1 总碱度即为甲基橙碱度。 1.5.2 在用此方法区分水中的重碳酸盐、碳酸盐、氢氧化物时,水中不能有其它有机酸或弱无机酸盐。

2 硬度的测定 2.1测定原理 水中的钙镁离子在pH值为10的条件下, 2.2试剂和溶液 0.01mol/L EDTA标准溶液(高硬度用) 0.005mol/L EDTA标准溶液(低硬度用) 氨-氯化铵缓冲溶液 硼砂缓冲溶液 0.5%铬黑T指示液(乙醇溶液) 酸性铬兰K指示剂:5g/l 。 2.2分析步骤 量取100ml透明水样注入250ml三角瓶中,加入5ml氨-氯化铵缓冲溶液和2滴铬黑T指示液(脱盐水加1ml硼砂缓冲溶液,2-3滴酸性格兰K)。在不断的摇动下,用0.01mol/L(或0.005mol/L)EDTA标准溶液滴定至蓝色,即为终点。同时做空白。 2.3结果计算 C(V1-V0)×1000 YD(mmol/L)= v 式中C-EDTA标准溶液的浓度,mol/L -消耗EDTA标准溶液的体积,ml V 1 V-水样的体积,ml 3氯离子含量的测定 3.1试剂和溶液 硝酸银标准滴定溶液0.01mol/L 50g/L铬酸钾溶液 10g/L酚酞指示液 2g/L氢氧化钠溶液

循环水系统水处理加药细则

循环水系统 | 水处理加药人员日常工作细则 水处理加药人员日常工作细则 一、加药人员操作规程 1、加药原则 (1)必须准确、按时、按量进行加药; (2)采用间断排污时,应在排污之后加药; (3)每次在配药前,均需将配药桶冲洗干净后,才能将药剂倒入配药桶中,且将药剂加完后均需对配药桶冲洗2~3次; (4)如采用两种杀菌灭藻剂应交替投加,且加入时间间隔均匀分布; (5)加入杀菌灭藻剂的当天不投加阻垢缓蚀剂; (6)详细记录日常加药情况及排污置换情况。 2、加药方式 根据系统现状和药剂特性,可将杀菌灭藻剂直接加入集水池中。阻垢缓蚀剂的加药方式为:在循环冷却水集水池旁配置一配药槽,配药槽上部有补水管,下部有排污口,药剂加入配药槽中用补充水稀释后,用计量泵连续均匀地逐渐加入集水池中. 3、加药位置 药剂加入集水池中不要靠近排水口,以免药剂不进入循环水系统就被直接排走;药剂在池中要有一个混合的时间,使其混合均匀;不要靠近某一台泵的入口加药,这样会造成药剂浓度分布不均匀。 4、加药方法

(1)阻垢缓蚀剂的加入方法:按量将药剂加入已洗净的配药桶中,在不断搅拌下加入补充水将药剂稀释3~5倍左右(稀释的目的是为了平衡加药时间,根据需要也可以不稀释),搅拌混匀后,开启加药泵调节加药阀,使药剂连续均匀地加入集水池中,并控制在20~24小时以内加完。 (2)杀菌灭藻剂的加入方法:采用冲击间歇式投加方式进行操作,按量将药剂直接加入集水池中,使循环水在一段时间里保持相当的药剂浓度,从而获得最有效的杀生和剥离效果。 5、注意事项 (1)将水处理药剂按牌号整齐堆放于库房中,以免混淆、错用。 (2)需根据水质化验结果(浓缩倍数、浊度、总磷)与循环水控制指标及加药表进行对照,按要求进行排污、置换或加药操作。 (3)加药人员在进行操作时,应穿戴好防护用品,避免药剂与皮肤和眼睛直接接触。如果不慎将药剂与皮肤接触,应立即用大量清水进行冲洗干净。 (4)投加水处理药剂的方法,需严格按有关要求执行,并做好安全生产工作。 二、循环冷却水运行操作控制 1、根据每天水质分析化验结果,对排污水量、补充水量及加药量进行必要的控制,使之达到要求指标。

循环水处理方案

. 循环水系统水质处理方案 1 前言 水是人类最宝贵的财富之一,地球上的淡水资源是有限的,可供人类利用的水资源就更少,节约水资源已刻不容缓。为此近年来国家在宪法中又颁发了水法这些做法都促进并强迫我们重视节约使用水资源,减少水的污染,以利工农业进一步发展和人类自身的繁衍。 为了使循环冷却水系统正常运行,确保换热设备的长期使用,防止循环水在使用中所生产的腐蚀、结垢及微生物污垢的危害,提高热交换设备的冷却效率,确保生产的正常运行,必须对循环冷却水进行水质稳定化学处理,这不仅能提高冷却效率,延长设备的使用寿命,并且对节约能源(节水、节电),减少大修费用及工作量和保护环境都有非常积极的意义。 根据对循环水处理的经验,再综合系统的特点,建议对循环水系统进行水清洗、化学清洗预膜,然后进入正常运行阶段。正常运行中投加氧化型杀菌剂和非氧化型杀菌灭藻剂来控制循环水系统的细菌、粘泥的大量滋生。 2 系统参数及水质状况 2.1 系统参数

专业资料 . 状质况2.2 水根据工厂的实际状况,采用软化水作为冷却塔的补水,补充水水质如下:

专业资料 . 从上表可以看出,如果该补充水未经过浓缩,在40℃的情况下运行,可以看出在供、回水管道、冷却塔中都呈腐蚀性,只有在换热装置表面80℃的情况下,才略呈结垢的特性,所以在此情况下正常运行,只需要用杀菌、缓蚀的化学品。在浓缩5倍40℃的情况下: 在浓缩倍数是5倍80℃的情况下:

通过以上分析,在5倍的浓缩倍数下运行,只需要进行杀菌灭藻。 3 系统水冲洗 3.1 清洗的目的 主要是冲洗在安装过程中进入地下管道和设备中的泥沙和焊渣,为化学清洗做准备。 3.2 冲洗前应具备的条件 3.2.1 为保证管道清洗效果,各使用循环水的车间,入户管阀门已经安装完毕,在入户阀前已经安装了旁路阀,避免管道中的泥沙和焊接的焊渣等进入到换热器中。 3.2.2 循环水泵已经安装完毕,机械、电气具备启动条件,冷却塔已经安装完专业资料 . 成,循环水的回水直接可以回到冷却水池,与上塔部分相连的管道已经拆开,避免堵塞冷却塔溅水装置和填料。 3.2.3 冷却塔的补水管路安装完毕,并具备补水条件。 3.2.4 每个循环回路上的所有使用循环冷却水的设备安装完毕。 3.3 冲洗步骤

十种常见不良水质及处理方案

1.酱油色水 藻相:以裸藻、鞭毛藻、褐藻为主。透明度较低,水质老化。 产生原因:投饵不当,水质老化,池底高度恶化,水中有机质较多。 不良影响:藻类不易消化,不利于幼苗的生长,容易滋生寄生虫,水中的氨氮、亚硝酸盐偏高。 处理建议:排水后上午使用“解毒护水宝”解毒,下午使用“黑精底改”改底,次日使用“芽孢杆菌”调节水质,并注意防止缺氧。 2.灰褐色水 藻相:水中以老化藻类为主,缺少新生藻类。 产生原因:老化藻类的胡萝卜素和叶黄素含量增加,水体缺乏藻类必需有微量元素,叶绿素含量减少。 不良影响:在池塘表面形成泡沫或出现油膜。“倒藻”或“转水”时易产生这种水色,有机物含量高,容易引发疾病。 处理建议:排水后当天施用“黑精底改”,次日使用“鱼虾可乐”或“复合芽孢杆菌”调节水质。 3.暗绿色水 藻相:以蓝藻门的微囊藻和绿藻门的纤维藻占优势,俗称“湖靛”。 产生原因:池底老化,气温和水温偏高,水体缺乏营养,过量使用化肥和杀虫剂,导致水体高氮和高碱度,微囊藻和纤维藻大量繁殖。 不良影响:在水面形成一层油漆状绿色油膜,有难闻气味,阻止了水体和空气的物质交换,水体PH值波动很大,藻类死亡后产生藻毒素,氨氮、亚硝酸盐偏高。 处理建议:排水后使用“解毒护水宝”解毒,注意防止缺氧。第二天上午施用“双效底改”,下午使用“复合芽孢杆菌”等调节水质和底质。 4.白浊水 藻相:浮游植物的数量和种类很少,泥沙等悬浮颗粒较多。 产生原因:轮虫、枝角类、纤毛虫等浮游动物大量繁殖,水中的藻类大部份被吞食。严重时水面泛红,成块状分布。 不良影响:水体中PH值和溶解氧偏低、亚硝酸盐较高,细菌和寄生虫大量繁殖。 处理建议:早晨6点左右使用“纤虫净”和“解毒护水宝”等,次日施用“氨基酸肥水素”和“肥水EM菌”,培肥水质。 5.黄色水 藻相:以双鞭毛金藻或三毛金藻为优势。

影响循环水水质的原因和处理

影响循环水水质的原因和处理

影响循环水水质的原因和处理 、

目录 摘要 (3) 关键词 (3) 一、物料泄漏对水质的影响及处理 (3) 二、环境变化对水质的影响及处理 (4) 三、结论 (5) 参考文献 (5)

影响循环水水质的原因和处理 摘要:冷却水重复利用是节水减排的必然趋势,循环水的水质直接影响装置水冷却器及管路的安全运行,水质超标,对换热器形成腐蚀,造成泄漏,泄漏进一步使水质恶化,恶化的水质再对冷换设备加重腐蚀,形成恶心循环,严重时可影响装置生产。 关键词:循环水、物料泄漏、水垢、剥离 工厂在生产过程中,循环水投用污水回用水,冷却水重复使用是节水减排的必然趋势。一方面, 水冷却器制造质量问题发生而使水冷却器发生泄漏的现象在实际生产中也会碰到,其中出现的主要问题是换热管与花板接头处焊接不实或涨管不严,从而引起泄漏;有些沉积物的存在还将处进碳钢表面腐蚀电池的形成,造成高传染区的腐蚀穿孔事故。另一方面循环水冷却塔不是一个封闭的系统, 塔池直接与外部世界接触,由外面的世界带来的污染物更多。因在塔池周围的粉尘、泥沙、杂草、树叶等杂物,在有风的日子里极易进入冷却塔水池。这些有机和无机杂质,可以跟水通过管道、热交换器,在其表面沉积下来形成污垢。如果热交换器漏油量大、这些漏油和其它污物会附着在换热器和管壁上。由于温度高,通过复杂的效果,也可以形成较硬的污垢。所以,结垢、腐蚀相互促进,形成了复杂的协同效应,影响甚至破坏了生产系统的正常运行。主要分析了影响循环水水质的因素,并提出了相应的保证循环水水质的措施。 一、物料泄漏对水质的影响及处理 因为水冷却器制造质量问题发生而使水冷却器发生泄漏的现象在实际生产中也会碰到,其中出现的主要问题是换热管与花板接头处焊接不实或涨管不严,从而引起泄漏;有些沉积物的存在还将处进碳钢表面腐蚀电池的形成,造成高传染区的腐蚀穿孔事故。同时微生物的大量繁殖使水质恶化,浊度升高,COD升高。泄漏发生后,由于循环水水质恶化,打破原来在循环水系统所建立起来的抑制腐蚀、污垢沉积和微生物繁殖的平衡,使水冷却器换热效率下降,腐蚀进一步加剧,因此直接影响到各装置的正常生产。循环水系统发生泄漏,可以使水中黏泥量增加,这种黏泥因黏性强而及易在换热器内形成污垢。如果发生物料泄漏后,一些换热管内因黏泥沉积使空间减小,严重时甚至将换热管完全堵塞,这对水冷却器的效果产生极大影响。由于泄漏时许多酸性物料会进入到循环水中,引起循环水PH值降低,因此还加

循环水加药方案注意事项

循环水加药方案注意事项 一、循环水药剂的作用: CLP-401C阻垢缓蚀剂的作用 可以阻止水垢的形成、沉积或增加碳酸钙的溶解度,同时可以抑制或降低金属和合金腐蚀速率,改变金属相合金腐蚀电极过程。为复合磷酸盐物质。 2)投加操作方法 ①将桶装CLP -401C缓蚀剂按照规定数量倒入加药桶内,用循环冷却水稀释至加药桶满。 ②调节加药装置计量泵流量至35%-40%左右。 ③启动加药泵,打开冷水泵入口管道上加药阀;观察药液注入情况是否正常。 ④每小时巡检一次加药装置运行情况。 ⑤流量调节以加药泵连续运行24小时一桶为宜,但不得抽空。桶底液位不应低于10cm,如果液位过低,可补充一定量循环冷却水维持至下一次加药时间。 ⑥每日定时加药,加药量可根据化验室对总磷(以PO43-计)分析结果4-6mg/l,在规定数量的基础上略有增减,以保证指标在范围之内。 ⑵CLP-401A缓蚀剂加药操作 1)CLP-401A缓蚀剂的作用 可以抑制或降低金属和合金腐蚀速率,改变金属相合金腐蚀电极过程。 2)投加操作方法 ①将桶装CLP -401A缓蚀剂按照规定数量不用稀释装入瓶子内,以水滴的形式滴入循环水池内,但要保证最长时间要在24小时以内。可以缩短时间但不可以直接全部加入。 ②每天投加一次,加药量可根据化验室对总锌(以Zn2+计)分析结果1.5-2.5mg/l,在规定数量的基础上略有增减,以保证指标在范围之内。 ⑵CLB-501氧化性杀菌剂加药操作 1)CLB-501氧化性杀菌剂的作用 固体活性溴是一种氧化性杀菌剂,具有较强的氧化性,能够使微生物体内一些和新陈代谢密切相关的酶发生氧化而杀灭微生物及藻类物质。 2)投加操作 ①将杀菌剂按照规定数量放入专用塑料框内。 ②调整专用塑料框的水平高度,确保杀菌剂被冷水池冷水液位浸没溶解,但框堰不应低于水位。 ③30-45分钟后测定余溴(氯),在0.3~0.8mg/l,每隔一小时测定一次,并连续测定3小时,记录所测定结果。若测定余溴(氯)不足时应进行补加,如果余溴(氯)结果稳定则视加药正常。 ④正常运行时,夏季每周投加2次,时间定为每周一、周五。其它季节每周投加1次,

水质劣化处理

第三节机组汽水品质劣化时的反事故处理措施 3.1 水汽质量劣化时的处理原则 当水汽质量劣化时,应迅速检查取样是否有代表性;检测和化验结果是否正确;并综合分析系统中水、汽质量的变化,确认判断无误后,应立即采取措施,使水、汽质量在允许的时间内恢复到运行标准值。水汽质量劣化时的三级处理: 一级处理——有造成腐蚀、结垢、积盐的可能性,应在72小时内恢复至标准值。 二级处理——肯定会造成腐蚀、结垢、积盐,应在24小时内恢复至标准值。 三级处理——正在加快腐蚀、结垢、积盐,如水质不好转,应在4小时内停炉。 在异常处理的每一级中,如果在规定的时间内尚不能恢复正常,则应采用更高一级的处理方法。 化学值班员在监测到水质异常后,立即汇报值长并通知化学主任。填写水质异常报告单,交由值长签名保存在值长室做存档。报告单上应该明确异常原因及项目水质项目,测量值及建议处理措施,值长需根据水质异常情况做出决定,通知相关专业采取相应措施,尽快使水汽合格。 3.2 凝结水(凝结水泵出口)水质异常时的处理标准 3.2.1 检查确认凝汽器检漏装置氢电导率的检测 3.2.1.1当值人员检查确认检漏装置氢电导率表取样流量样水有无杂质及有无空气泄漏,检查检漏装置取样系统的密闭性;否则采取正确的措施处理。 3.2.1.2检查确认在线仪表的正常运行,通知化验班和仪表班进行检查确认。 3.2.1.3通过氢电导率的检测及钠和氯及硬度结合判断凝汽器是否泄漏、泄漏点位置及采取正确的措施处理,保证机组安全运行。

3.2.2 凝结水异常应采取的应急措施 当凝结水质明显恶化,应在数分钟内就要采取各种应急措施。一般说来,检查核实电导率测定结果的可靠性,同时测定凝结水及给水硬度、钠、及氯的含量。如果凝汽器明显泄漏,那么凝结水中硬度必然增大,钠与氯离子含量增高。 3.2.2.1当凝结水水质达到一级处理标准值时(氢电导率(25℃)大于0.2μS/cm或钠大于10g/L,加强凝结水等水质的监控,保证精处理全容量100%处理凝结水,并及时报告值长组织通知有关人员进行查漏和堵漏,按要求凝结水水质应在72h内恢复至标准值。 3.2.2.2 凝汽器查漏堵管过程应迅速有效。 3.2.2.3 进行凝汽器单边互换隔离确认,水质不见好转,凝结水中钠含量大于400μg/l时,应紧急停机。 3.3 高压给水水质异常时的处理标准和措施 3.3.1高压给水水质异常时的处理按下表的标准严格执行 3.3.2高压给水水质劣化时检查处理步骤 3.3.2.1当水汽质量劣化时,当值值班人员应立即到汽水取样间现场检查确认在线仪表正常运行,同时通知化学仪表班人员检查在线仪表和验班人员进行取样化验确认,汇报值长。 3.3.2.2检查确认化学在线仪表取样流量在正常值,各种仪表的流量推荐值如下(就地仪表流量计已用红线标注正常取样流量刻度):

关于循环水水质异常分析

关于循环水水质异常分析 发表时间:2020-01-18T09:56:55.907Z 来源:《基层建设》2019年第28期作者:张建锋田智强[导读] 摘要:针对循环水中游离氯含量不稳定性,通过排除系统,制定试验方案,对循环水水质异常进行分析,并形成分析报告。陕西北元化工集团股份有限公司热电分公司陕西省神木县 719319摘要:针对循环水中游离氯含量不稳定性,通过排除系统,制定试验方案,对循环水水质异常进行分析,并形成分析报告。关键词:循环水;游离氯;氧化性物质;亚硝酸盐 某公司4×125MW机组汽轮机的排汽均分别采用直接空冷系统。机炉所有辅机的冷却方式采用了填料式机械通风冷却塔的湿式循环冷却水系统。四台机组冷却水量约为:2781m3/h。循环水系统能够保证在各种工况下连续不断的供给主厂房内工业水系统,以满足发电机、给水泵、锅炉送、引风机、主机冷油器及其他类设备的轴承、热交换器等设备的冷却用水,以带走各设备排放的热量,由机力塔散热冷却后循环使用。本文主要针对循环水水质异常进行分析,并对异常数据进行跟踪总结。 1.循环水系统与化工采卤关联工艺流程 2.循环水异常经过与分析 2.1第一次试验分析 2019年3月19日供化工采卤回用水中检测出游离氯,经过排查确定是由于二期循环水中游离氯偏高所致,随后对一、二期循环水的游离氯含量进行跟踪。同时添加亚硫酸钠后,游离氯恢复正常。4月份除添加正常的循环水阻垢剂外,未添加任何药剂,循环水中的游离氯又出现超标现象。5月11日一、二期循环系统各投加非氧化杀菌剂各0.6吨。投加非氧化杀菌剂6天后二期游离氯含量开始上升,一期游离氯含量维持稳定(图1),同时分析二期循环水铁离子含量明显较一期偏大。 图1 原因分析:通过做烧杯试验,循环水投加过量还原剂后,检测游离氯为0mg/l,同时检测还原后水中氯离子含量,与还原前后无明显变化,初步判断水中氧化性物质非氯型,同时分析二期循环水系统管道防腐保护膜已破坏。 2.2第二次试验分析 6月份经内蒙电力工程技术研究院专家、循环水药剂厂家现场排查分析,推断循环水中含有NH4+,系统中存在的硝化菌,将NH4+转化为NO2-,碘量法分析导致循环水中含有氧化性物质。 8月份、9月份暂停对循环水系统投加杀菌剂,缓释阻垢剂正常投加,跟踪游离氯含量。8月份先上升后降低,一、二期循环水游离氯最高值分别为:34.49mg/l、142.79mg/l。8月9日安排对循环水及补水水样进行分析,二期系统亚硝盐含量明显偏高,一期为1.63mg/l,二期为41.05mg/l。8月5日至11日期间,二期系统氧化性物质含量异常升高,与系统亚硝酸盐含量有关。9月27日再次对系统硝酸盐和亚硝酸盐含量进行分析(图2),系统亚硝酸盐含量均降低后,系统氧化性物质含量同时降低。图2 原因分析:循环水中游离氯偏高与系统中亚硝盐含量有关。 2.3第三次试验分析 9月28日,一二期系统中氧化性物质含量均为0mg/l,水质波动不明显,对系统投加非氧化杀菌剂再次进行试验,检测循环水氧化性物质含量情况。10月1日一、二期循环系统各投加0.6吨。投加非氧化杀菌剂5天后二期氧化性物质含量开始上升,一期氧化性物质含量维持稳定。10月16日早班二期循环水系统氧化性物质含量翻倍增长。同时检测一二期系统含氨量,一期为0mg/l;二期为0.1mg/l。10月23日检测检测亚硝酸盐含量,一期0.079mg/l、二期80.641mg/l。10月28日系统氧化性物质含量逐渐降低。同时投加氧化性杀菌剂,二期系统氧化性物质物质先降低后升高,11月16日投机还原剂,将循环水中的氧化性物质进行还原。原因分析:循环水中氧化性物质含量偏高与系统中亚硝盐含量有关。 2.4第四次试验分析 12月2日,一二期系统中氧化性物质含量均为0mg/l,水质波动不明显,对系统投加非氧化杀菌剂再次进行试验,检测循环水氧化性物质含量情况。一、二期循环系统各投加0.6吨。投加非氧化杀菌剂4天后二期氧化性物质含量开始上升,一期氧化性物质含量维持稳定。检查挂片情况,不锈钢挂片表面光滑,碳钢挂片表面锈蚀。 原因分析:循环水中氧化性物质含量偏高与系统腐蚀有关。

循环水处理整体项目解决方案

循环水处理整体解决方案 一. 循环冷却水系统概况 二. 问题概述 循环冷却水系统日常运行面临的问题: 2.1 设备结垢,阻碍传热,增加能耗,降低生产负荷 结垢:是指水中溶解或悬浮的无机物,由于种种原因,而沉积在金属表面。 冷却水中富含碳酸氢钙等不稳定盐类,在换热管壁受热,即转变为碳酸钙等致密硬垢,规则沉积在管壁,其传热效率仅为碳钢的1%左右,也就是在换热管壁如果沉积0.5mm厚的硬垢,就相当于换热管壁厚增加了50mm,严重阻碍传热的正常进行,能耗增加,从而对生产负荷构成极大影响,甚至停车。 2.2 滋生粘泥软垢,阻碍传热;加速设备腐蚀,特别是发生点蚀事故 阻碍传热:微生物繁殖、代谢产生的黏液(象胶水一样具有很强黏性),与循环水中的悬浮物(补充水进入、冷却塔抽风冷却水洗涤空气灰尘进入)和微生

物尸体等交织黏附在一起,随水流黏附在设备壁面,不久就会形成一层滑腻的垢层,即所谓的表面疏松多孔的软垢。附着在换热管壁的软垢,是热的不良导体(导热系数很小,只有不锈钢材的百分之一),因此会造成换热效果明显下降,影响生产负荷。 发生点蚀:软垢层疏松多孔,为氧气的渗入形成良好通道,在循环水这个大的电导池中(富含盐),形成无数个小浓差电池,每个小电池就是一个点发生电化学反应,从而加速设备点蚀现象的发生,久之即发生纵深腐蚀穿孔事故。 2.3 设备腐蚀,缩短使用寿命 腐蚀:是指通过化学或电化学反应使金属被消耗破坏的现象。 在循环水系统中,主要以溶解氧化学或电化学腐蚀为主,这种腐蚀除了会造成系统的水冷设备损坏或使用寿命减少外,还会由于腐蚀造成水冷器穿孔,从而引起工艺介质泄漏造成计划外的停车事故等,另外由于腐蚀会产生锈镏,会引起换热效率下降或管线堵塞等危害。 三. 循环冷却水处理技术要求 3.1 循环冷却水系统设计标准 HG/T 20690-2000《化工企业循环冷却水处理设计技术规定》, 《GB50050-95》 3.2 补充水预处理水质要求

相关文档
最新文档