六种三角函数性质

六种三角函数性质
六种三角函数性质

六种三角函数性质、公式

三角函数包括。它包含六种基本函数:正弦、余弦

、正切、余切、正割、余割

1-1y=sinx

-3π2

-5π2

-7π2

7π2

2

3π2

π2

-π2

-4π-3π

-2π4π

2ππ

o

y x

1-1y=cosx

-3π

2

-5π2

-7π

2

7π2

5π2

3π2

π2

-π2

-4π-3π-2π4π

π

o

y

x

y=tanx

3π2

π

π2

-

3π2

-

π2

o

y

x

y=cotx

3π2

π

π2

-

π2

o

y

x

.反三角函数:

arcsinx

arccosx

arctanx arccotx

函数y=sinx y=cosx y=tanx y=cotx

定义域R R {x|x∈R且

x≠kπ+

2

π

,k∈Z}

{x|x∈R且

x≠kπ,k∈Z}

值域[-1,1]x=2kπ+

2

π

y max=1

x=2kπ-

2

π

时y min=-1

[-1,1]

x=2kπ时y max=1

x=2kπ+π时

y min=-1

R

无最大值

无最小值

R

无最大值

无最小值

周期性周期为2π周期为2π周期为π周期为π奇偶性奇函数偶函数奇函数奇函数

单调性在[2kπ-

2

π

,2kπ+

2

π

上都是增函数;在

在[2kπ-π,2kπ]

上都是增函数;

在[2kπ,2kπ+π]

上都是减函数

在(kπ-

2

π

在(kπ,kπ+π)内

都是减函数

(k∈Z)

y=secx的性质:

(1)定义域,{x|x≠π/2+kπ,k∈Z}

(2)值域,|secx|≥1.即secx≥1或secx≤-1;

(3)y=secx是偶函数,即sec(-x)=secx.图像对称于y轴;

(4)y=secx是周期函数.周期为2kπ(k∈Z,且k≠0),最小正周期T=2π.

(5)正割与余弦互为倒数;余割与正弦互为倒数;

(6)正割函数无限趋于直线x=π/2+Kπ;

(7) 正割函数是无界函数;

(8)正割函数的导数:(secx)′=secx×tarx;

(9正割函数的不定积分:∫secxdx=ln∣secx+tanx∣+C

y=cscx的性

1、定义域:{x|x≠kπ,k∈Z}

2、值域:{y|y≤-1或y≥1}

3、奇偶性:奇函数

4、周期性:最小正周期为2π

5、图像:

图像渐近线为:x=kπ ,k∈Z 余割函数与正弦函数互为倒数第一部分三角函数公式

·两角和与差的三角函数

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·和差化积[/url]公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·积化和差[/url]公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·倍角公式[/url]:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2

tan(2α)=2tanα/(1-tan^2α)

cot(2α)=(cot^2α-1)/(2cotα)

sec(2α)=sec^2α/(1-tan^2α)

csc(2α)=1/2*secα·cscα

·三倍角公式:

sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)

cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)

tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)

cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)

·n倍角公式:

sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…

cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…·半角公式[/url]:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

cot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)

sec(α/2)=±√((2secα/(secα+1))

csc(α/2)=±√((2secα/(secα-1))

·辅助角公式:

Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A)

Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B)

·万能公式

sin(a)= (2tan(a/2))/(1+tan^2(a/2))

cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))

tan(a)= (2tan(a/2))/(1-tan^2(a/2))

·降幂公式

sin^2α=(1-cos(2α))/2=versin(2α)/2

cos^2α=(1+cos(2α))/2=covers(2α)/2

tan^2α=(1-cos(2α))/(1+cos(2α))

·三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·si nγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·co sγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·其它公式

·两角和与差的三角函数

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

=sinα/(1-cosα) ·和差化积[/url]公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·积化和差[/url]公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·倍角公式[/url]:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2

tan(2α)=2tanα/(1-tan^2α)

cot(2α)=(cot^2α-1)/(2cotα)

sec(2α)=sec^2α/(1-tan^2α)

csc(2α)=1/2*secα·cscα

·三倍角公式:

sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)

cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)

tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)

cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)

·n倍角公式:

sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…

cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…·半角公式[/url]:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

cot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα

sec(α/2)=±√((2secα/(secα+1))

csc(α/2)=±√((2secα/(secα-1))

·辅助角公式:

Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A)

Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B)

·万能公式

sin(a)= (2tan(a/2))/(1+tan^2(a/2))

cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))

tan(a)= (2tan(a/2))/(1-tan^2(a/2))

·降幂公式

sin^2α=(1-cos(2α))/2=versin(2α)/2

cos^2α=(1+cos(2α))/2=covers(2α)/2

tan^2α=(1-cos(2α))/(1+cos(2α))

·三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·si nγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·co sγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·其它公式

1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2

csc(a)=1/sin(a) sec(a)=1/cos(a)

cos30=sin60

sin30tanα+cotα=2/sin2α

tanα-cotα=-2cot21+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=[sin(α/2)+cos(α/2)]^2

1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2 csc(a)=1/sin(a) sec(a)=1/cos(a)

cos30=sin60

sin30=cos60

·推导公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=[sin(α/2)+cos(α/2)]^2

上海教材三角函数的概念、性质和图象

三角函数的概念、性质和图象 复习要求(以下内容摘自《考纲》) 1. 理解弧度的意义,并能正确进行弧度和角度的换算. 2. 掌握任意角的三角函数的定义、三角函数的符号、特殊角的三角函数值、三角函数的性质、同角三角函数的关系式与诱导公式,了解周期函数和最小正周期的意义.会求y =A sin(ωx +?)的周期,或者经过简单的恒等变形可化为上述函数的三角函数的周期,能运用上述三角公式化简三角函数式,求任意角的三角函数值与证明较简单的三角恒等式. 3. 了解正弦、余弦、正切、余切函数的图象的画法,会用“五点法”画正弦、余弦函数和函数y =A sin(ωx +?)的简图,并能解决与正弦曲线有关的实际问题. 4.正弦函数、余弦函数的对称轴,对称点的求法。 5.形如y x y y x y cos sin cos sin -=+=或 的辅助角的形式,求最大、最小值的总题。 6.同一问题中出现y x y x x x cos sin ,cos sin ,cos sin ?-+,求它们的范围。如求y x y x y cos sin cos sin ?++=的值域。 7.已知正切值,求正弦、余弦的齐次式的值。 如已知求,2tan =x 4cos cos sin 2sin 22++?+y y x x 的 8 正弦定理:)R R C c swinB b A a 为三角形外接圆的半径(2sin sin === C B A c b a s i n :s i n :s i n ::= 余弦定理:A ab c b a cos 2222-+=,…ab a c b A 2cos 2 22-+= 可归纳为表9-1. 表9-1 三角函数的图象三、主要内容及典型题例 三角函数是六个基本初等函数之一,三角函数的知识包括三角函数的定义、图象、性质、

三角函数图象性质一览表

三角函数图象性质一览表 正弦定理、余弦定理及应用 设ABC △的外接圆的半径是R ,内切圆的半径是r ,()c b a p ++=2 1 是半周长。 1、正弦定理: R C c B b A a 2sin sin sin ===,或 C B A c b a sin :sin :sin ::= 变式:A R a sin 2=;B R b sin 2=;C R c sin 2= R a A 2sin = ;R b B 2sin =;R c C 2sin = 2、余弦定理: A bc c b a cos 2222-+=; B ac c a b cos 2222-+=; C ab b a c cos 2222-+= 推论:bc a c b A 2cos 222-+=;ac b c a B 2cos 222-+=;ab c b a C 2cos 2 22-+= 3、面积公式:B ac A bc C ab S A B C sin 2 1 sin 21sin 21=== △ 变式:⑴C B A R abc R S A B C sin sin sin 241 2== △ ⑵()()()c p b p a p p S A B C ---=△(海伦秦九韶公式) 4、常用结论: ⑴B A B A b a sin sin >?>?> ⑵b a B A B A =?=?=sin sin ⑶若B A 2sin 2sin =,则B A B A =?=22或2 22π π=+?=+B A B A ⑷和诱导公式有关的变式: 2cos 2sin C B A =+;2cos 2sin B C A =+;2 cos 2sin A C B =+; 2sin 2cos C B A =+;2sin 2cos B C A =+;2sin 2cos A C B =+ ()C B A sin sin =+;()B C A sin sin =+;()A C B sin sin =+; ()C B A cos cos -=+;()B C A cos cos -=+;()A C B cos cos -=+ ⑸B c C b a cos cos +=;A c C a b cos cos +=;A b B a c cos cos += 5、注意两角和与差公式、二倍角公式和半角公式、辅助角公式的应用。 6、注意函数()?ω+=x A y sin 的知识在三角形中的应用: 比如求()??? ??+ =82 1sin 2πA x f ,?? ? ??∈4,0πA 的最大值。

三角函数图像与性质知识点总结

三角函数图像与性质知识 点总结 The Standardization Office was revised on the afternoon of December 13, 2020

函数图像与性质知识点总结 一、三角函数图象的性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0) ? ?? ?? ?π2,1 (π,0) ? ?? ??? 32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),? ?????π2,0,(π,-1),? ???? ? 3π2,0,(2π,1) 2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x 定义域 R R {x |x ≠k π+π 2 ,k ∈Z} 图象 值域 [-1,1] [-1,1] R 对称性 对称轴: x =k π+ π2(k ∈Z); 对称轴: x =k π(k ∈Z) 对称中心: 对称中心:? ?? ?? ?k π2,0 (k ∈Z)

3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期) 4.求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; 关于正、余弦函数的有界性 由于正余弦函数的值域都是[-1,1],因此对于?x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.

三角函数的图解和性质解读

第四章 三角函数的图解和性质 一、选择题。 1、如果函数y=sin ωx .co ωx (ω>0)的最小正周期是4π,常数ω为 ( ) A 、21 B 、2 C 、4 D 、41 2、函数y=cos 4x – sin 4x 的最小正周期是( ) A 、2π B 、π C 、2π D 、4π 3、如果函数y=sin2x+acos2x 的图象关于直线x= - 8π 对称,那么a 的值为( ) A 、2 B 、-2 C 、1 D 、-1 4、若3sinx+cosx=4-m,则实数m 的取值范围是 ( ) A 、3≤m ≤5 B 、m ≤3或m ≥5 C 、2≤m ≤6 D 、m ≤2或m ≥6 5、若A+B=32π,则函数y=cos 2A+cos 2 B 的最大值是( ) A 、21 B 、 23 C 、43 D 、42 2+ 6、函数y=-2cos 2x-2sinx+29 的最小值是 ( ) A 、29 B 、25 C 、2 D 、21 7、设fx)是R 上奇函数,且当x ∈[0,+∞]时,f(x)=x+xsinx,那么当x ∈(-∞,0)时, f(x)为( ) A 、-x-xsinx B 、x+xsinx C 、-x-xsinx D 、x-xsinx 8、要得到函数y=cos(2x-4π )的图象,只需将函数y=sin2x 的图象 ( ) A 、向左平移8π 个单位 B 、向右平移8π 个单位 C 、向左平移4π 个单位 D 、向右平移4π 个单位 9、以下命题中正确的个数是 ( ) 1) y=sin|x|与y=sinx 的图象关于y 轴对称 2) y=sin|x|与y=-sin (-x )的图象关于y 轴对称 3) y=cos(-x)与y=cos|x|的图象相同 4) y=cosxg 与y=cos|-x|的图象关于x 轴对称 A 、(1)和(4) B 、(3) 和(4) C 、(2)和 (4) D 、(1)和(3)

三角函数图象和性质(总结的很全面_不看后悔)

三角函数专题辅导 课程安排 制作者:程国辉

专题辅导一 三角函数的基本性质及解题思路 课时:4-5学时 学习目标: 1. 掌握常用公式的变换。 2. 明确一般三角函数化简求值的思路。 第一部分 三角函数公式 1、两角和与差的三角函数: cos(α+β)=cos α·cos β-sin α·sin β cos(α-β)=cos α·cos β+sin α·sin β sin(α±β)=sin α·cos β±cos α·sin β tan(α+β)=(tan α+tan β)/(1-tan α·tan β) tan(α-β)=(tan α-tan β)/(1+tan α·tan β 2、倍角公式: sin(2α)=2sin α·cos α=2/(tan α+cot α) cos(2α)=(cos α)^2-(sin α)^2=2(cos α)^2-1=1-2(sin α)^2 tan(2α)=2tan α/(1-tan^2α) cot(2α)=(cot^2α-1)/(2cot α) 3、两角和与差的正弦、余弦、正切公式及倍角公式: ()sin sin cos cos sin sin 22sin cos 令αβ αβαβαβααα=±=±???→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 2 1cos2sin 2 2tan tan 21tan 令 = = αβαβαβαβααα αααβα αβααβα αα αα=±=???→=-↓=-=-±±=?-↓= - 4、同角三角函数的基本关系式: (1)平方关系:2 2 2 2 2 2 sin cos 1,1tan sec ,1cot csc αααααα+=+=+= (2)倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, (3)商数关系:sin cos tan ,cot cos sin αα αααα = =

知识讲解_三角函数的性质及其应用_基础

三角函数的性质及其应用 编稿:李霞 审稿:孙永钊 【考纲要求】 1、了解函数sin()y A x ω?=+的物理意义;能画出sin()y A x ω?=+的图象,了解参数A ,ω,?对函数图象变化的影响. 2、了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【知识网络】 【考点梳理】 考点一、函数sin()y A x ω?=+(0A >,0ω>)的图象的作法 1.五点作图法: 作sin()y A x ω?=+的简图时,常常用五点法,五点的取法是设t x ω?=+,由t 取0、2π 、π、32 π、 2π来求相应的x 值及对应的y 值,再描点作图。 2.图象变换法: (1)振幅变换:把sin y x =的图象上各点的纵坐标伸长(A>1)或缩短(00)或向右(?<0)平行移动|?|个单位,得到 sin()y A x ?=+的图象; (3)周期变换:把sin()y A x ?=+的图象上各点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的ω 1 倍(纵坐标不变),可得到sin()y A x ω?=+的图象. (4)若要作sin()y A x b ?=++,可将sin()y A x ?=+的图象向上(0)b >或向下(0)b <平移b 个单位,可得到sin()y A x b ?=++的图象.记忆方法仍为“左加右减,上正下负,纵伸(A>1)横缩(ω>1)”。 要点诠释: 由sin y x =的图象利用图象变换作函数sin()y A x ω?=+的图象时要特别注意:当周期变换和相位

三角函数的图像和性质(第一课时)

【课题】5.6三角函数的图像和性质(第一课时) 【教学目标】 知识目标: (1) 理解正弦函数的图像和性质; (2) 理解用“五点法”画正弦函数的简图的方法; (3) 了解余弦函数的图像和性质. 能力目标: (1) 认识周期现象,以正弦函数、余弦函数为载体,理解周期函数; (2) 会用“五点法”作出正弦函数、余弦函数的简图; (3) 通过对照学习研究,使学生体验类比的方法,从而培养数学思维能力. 情感目标 培养学生的审美能力,作图能力,激发学习数学的兴趣,探究其他作图的方法. 【教学重点】 (1)正弦函数的图像及性质; 0,2π上的简图. (2)用“五点法”作出函数y=sin x在[] 【教学难点】 周期性的理解. 【教学设计】 (1)结合生活实例,认识周期现象,介绍周期函数; (2)利用诱导公式,认识正弦函数的周期; (3)利用“描点法”及“周期性”作出正弦函数图像; (4)观察图像认识有界函数,认识正弦函数的性质; (5)观察类比得到余弦函数的性质. 【教学备品】 课件,实物投影仪,三角板,常规教具. 【课时安排】 1课时.(45分钟) 【教学过程】 一、揭示课题 5.6三角函数的图像和性质 二、创设情景兴趣导入 1、问题 观察钟表,如果当前的时间是2点,那么时针走过12个小时后,显示的时间是多少呢?

再经过12个小时后,显示的时间是多少呢?. 2、解决 每间隔12小时,当前时间2点重复出现. 3、推广 类似这样的周期现象还有哪些? 三动脑思考 探索新知 概念 对于函数()y f x =,如果存在一个不为零的常数T ,当x 取定义域D 内的每一个值时,都有x T D +∈,并且等式()()f x T f x +=成立,那么,函数()y f x =叫做周期函数,常数T 叫做这个函数的一个周期. 由于正弦函数的定义域是实数集R ,对α∈R ,恒有2π()k k α+∈∈R Z ,并且 sin(2π)=sin ()k k αα+∈Z ,因此正弦函数是周期函数,并且 2π,4π, 6π,及2π-,4π-, 都是它的周期. 通常把周期中最小的正数叫做最小正周期,简称周期,仍用T 表示.今后我们所研究的函数周期,都是指最小正周期.因此,正弦函数的周期是2π. 四、构建问题 探寻解决 说明 由周期性的定义可知,在长度为2π的区间(如[]0,2π,[]2,0-π,[]2,4ππ)上,正弦函数的图像相同,可以通过平移[]0,2π上的图像得到.因此,重点研究正弦函数在一个周期内,即在[]0,2π上的图像. 1、问题 用“描点法”作函数x y sin =在[]0,2π上的图像. 2、解决 把区间[]0,2π分成12等份,并且分别求得函数x y sin =在各分点及区间端点的函数值,列表如下:(见教材) 以表中的y x ,值为坐标,描出点(,)x y ,用光滑曲线依次联结各点,得到[]sin 0,2y x =π在上的图像.(见教材) 3、推广 将函数sin y x =在[]0,2π上的图像向左或向右平移2π,4π,,就得到sin ,y x =∞+∞在(-)上的图像,这个图像叫做正弦曲线.(见教材) 五、动脑思考 探索新知 1、概念 正弦曲线夹在两条直线1y =-和1y =之间,即对任意的角x ,都有sin 1x 成立,函 数的这种性质叫做有界性. 一般地,设函数)(x f y =在区间),(b a 上有定义,如果存在一个正数M ,对任意的

三角函数所有公式及基本性质

三角函数所有公式及基本性质整理

————————————————————————————————作者:————————————————————————————————日期: 2

一、任意角的三角比 (一)诱导公式 ααπsin )2sin(=+k ααπcos )2cos(=+k ααπtg k tg =+)2( ααπctg k ctg =+)2( ααsin )sin(-=- ααcos )cos(=- ααtg tg -=-)( ααctg ctg -=-)( ααπsin )sin(-=+ ααπcos )cos(-=+ ααπtg tg =+)( ααπctg ctg =+)( ααπsin )sin(=- ααπcos )cos(-=- ααπtg tg -=-)( ααπctg ctg -=-)( ααπsin )2sin(-=- ααπcos )2cos(=- ααπtg tg -=-)2( ααπctg ctg -=-)2( ααπ cos )2 sin( =- ααπ sin )2 cos(=- ααπ ctg tg =-)2 ( ααπ tg ctg =-)2 ( ααπ cos )2sin( =+ ααπsin )2cos(-=+ ααπctg tg -=+)2( ααπ tg ctg -=+)2( ααπcos )23sin( -=- ααπsin )23cos(-=- ααπctg tg =-)23( ααπ tg ctg =-)23( ααπcos )2 3sin( -=+ ααπsin )23cos(=+ ααπctg tg -=+)23( ααπ tg ctg -=+)2 3( (二)关系结构图 (三)三角比符号 αsin α sec α tg α ctg αcos α csc 1 + + _ _ cos α&sec α sin α&csc α + + _ _ + + _ _ tg α&ctg α

三角函数的概念及性质

一、球与正方体的切与接 命题1 棱长为a的正方体的内切球、棱切球、外接球的半径依次为r1,r2,r3,则r1= a r2= a r3= a 正方体的内切球、棱切球是与正方体的六个面、十二条棱都相切的球,外接球是过正方体的八个顶点的球,它们是同一个正方体的球心相同的球。如图1所示,过正方体的对角面可作含各球基本量的截面图,不难发现,三类球的直径依次增大,分别是正方体的棱长,面对角线长,体对角线长,从而得r1= a,r2= a,r3= a。 题1 (2006年,福建)已知正方体外接球的体积是,那么正方体的棱长等于() 题2 (2007年,湖南)棱长为1的正方体ABCD-A1B1C1D1的8个顶点都在球O 的表面上,E、F分别是棱AA1、DD1的中点,则直线EF被球截得的线段长为() 解析:根据命题1,球O的半径为,如图2所示,作过E、F、O的球的截面图,直线EF分别交圆O于M、N两点,过O作OH⊥EF于点H,则OH= ,H是MN的中点,连结OM,由勾股定理易得MH= ,故MN=2MH= ,故选D。 二、球与正四面体的切与接 命题2 棱长为a的正四面体的内切球、棱切球、外接球的半径依次为r1、r2、r3,则r1= a r2= a r3= a 正四面体的内切球、棱切球是指与正四面体的四个面、六条棱都相切的球,外接球是指过正四面体的四个顶点的球。同一个正四面体的三类球的球心相同。如图3所示,过正四面体的任一条棱AB及对棱的中点E作一截面,可得包含各球基本量的截面图,不难得出r1= a,r2= a,r3= a。

另:如果把正四面体补成一个正方体,如图4所示,那么正四面体的棱切球也是正方体的内切球,正四面体的外接球也是正方体的外接球。 题3 (2006年,山东)在等腰梯形ABCD中,AB=2CD=2,∠DAB=60°,E为AB 的中点,将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,如图5所示,则三棱锥P-DEC的外接球的体积为() 解析:根据题意,三棱锥P-DEC是棱长为1的正四面体,则外接球半径为,故V= ,选C。 题4 (2007年,安徽)半径为1的球面上的四点A、B、C、D是正四面体的顶点,则A、B两点的球面距离为()。 A、arcos(- ) B、arcos(- ) C、arcos(- ) D、arcos(- ) 解析:根据命题2,正四面体的棱长为,设球心为O,则在△AOB中由余弦定理cos ∠AOB=- ,即∠AOB=arcos(- ),所以,A、B的球面距离为arcos(- ),选C。 三、球与直角四面体的切与接 命题3 共点的互相垂直的三条棱长分别为a、b、c的直角四面体的外接球半径r1= ,内切球半径r2= = ,其中V为体积,S为表面积。 同一个顶点上的三条棱两两垂直的四面体叫直角四面体,如图6所示,四面体S-ABC 中,SA⊥SB⊥SC,则称为直角四面体。将其补成一个长方体,则其外接球就是长方体的

三角函数的图像与性质

一、选择题 1.函数y =sin 2x +sin x -1的值域为( ) A .[-1,1] B .[-5 4,-1] C .[-5 4,1] D .[-1,5 4 ] [答案] C [解析] 本题考查了换元法,一元二次函数闭区间上的最值问题,通过sin x =t 换元转化为t 的二次函数的最值问题,体现了换元思想和转化的思想,令t =sin x ∈[-1,1],y =t 2 +t -1,(-1≤t ≤1),显然-5 4 ≤y ≤1,选C. 2.(2011·山东理,6)若函数f (x )=sin ωx (ω>0)在区间[0,π 3]上单调递增, 在区间[π3,π 2 ]上单调递减,则ω=( ) A .3 B .2 C.32 D.2 3 [答案] C [解析] 本题主要考查正弦型函数y =sin ωx 的单调性 依题意y =sin ωx 的周期T =4×π3=43π,又T =2π ω, ∴2πω=43π,∴ω=32 .

故选C(亦利用y =sin x 的单调区间来求解) 3.(文)函数f (x )=2sin x cos x 是( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为π的奇函数 D .最小正周期为π的偶函数 [答案] C [解析] 本题考查三角函数的最小正周期和奇偶性. f (x )=2sin x cos x =sin2x ,最小正周期T =2π 2=π, 且f (x )是奇函数. (理)对于函数f (x )=2sin x cos x ,下列选项中正确的是( ) A .f (x )在(π4,π 2)上是递增的 B .f (x )的图像关于原点对称 C .f (x )的最小正周期为2π D .f (x )的最大值为2 [答案] B [解析] 本题考查三角函数的性质.f (x )=2sin x cos x =sin2x ,周期为π,最大值为1,故C 、D 错;f (-x )=sin(-2x )=-2sin x ,为奇函数,其图像关 于原点对称,B 正确;函数的递增区间为???? ??k π-π4,k π+π4,(k ∈Z)排除A. 4.函数y =sin2x +a cos2x 的图像关于直线x =-π 8对称,则a 的值为 ( )

三角函数的性质

三角函数的性质 一.1.基础知识精讲: y=sinx y=cosx y=tanx (x y cot =) 定义域: R R ? ????? +≠∈2,|ππk x R x x {}πk x R x x ≠∈,| 值域: [-1,1] [-1,1] R R 周期: 2π 2π π π 奇偶性: 奇函数 偶函数 奇函数 奇函数 单调区间: 增区间;?? ????++-ππππk k 22,22; []πππk k 2,2+-; ??????++-ππππk k 2,2 减区间??????++ππππk k 223,22 ; []πππk k 2,2+ 无 对称轴:2π π+=k x πk x = 无 对称中心: ()0,πk ??? ??+0,2ππk ?? ? ??0,2πk (以上均Z k ∈) 2.重点: 三角函数的值域(最值)、周期、单调区间的求法及未经给出的三角函数的特征研究. 二.问题讨论 例1: (1)cos cos()3 y x x π=++的最大值是? (2)2sin(3)4 y x π=-的图象的两条相邻对称轴之间的距离是. 例2.P[60](1)已知f(x)的定义域为[0,1],求f(cosx)的定义域; (2).求函数y=lgsin(cosx)的定义域 [思维点拔] 例3:求函数y=sin 6x+cos 6x 的最小正周期,并求出X 为何值时Y 有最大值.

例4求下列函数的值域: (1)3cos 2sin 22-+=x x y (2)10cos 23sin 3+-= x x y 解(1)2121cos 21cos 2cos 222-??? ? ?--=-+-=x x x y 215,4921cos 41,2121cos 23,1cos 1-≤≤-∴≤??? ??-≤∴≤-≤- ∴≤≤-y x x x 即原函数的值域为?????? -2 1,5 (2)010cos 2≠+x 310cos 2sin 3+=-∴y x y x ()310sin 492+=-+∴y x y ?,其中32tan y =?,由()249310sin y y x ++=-?和()1sin ≤-?x 得()222 49310.1493 10y y y y +≤+∴≤++, 整理得0582≤+y y ,所以085≤≤- y 即原函数的值域为?? ????- 0,85 [思维点拔] 前面学过的求函数的值域的方法也适用于三角函数,但应注意三角函数的有界性 .例5:求下列函数的定义域: 1)x y x tan log 22 1+ += (2)x x y cos 21)2sin 2lg(---= 解(1)x 应满足()???? ?????∈+≠>≥≥+z k k x x x x 200tan 0log 221ππ,即为()?????∈+<≤≤

三角函数的性质及其应用 专题3

高考数学复习优质专题学案(附经典解析) 三角函数的性质及其应用 基础知识:

一、典型例题 1. 函数1()sin()cos()536f x x x ππ =++-的最大值为( ). A. 65 B. 1 C. 35 D. 1 5 2. 若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是( ). A. π4 B. π2 C. 3π4 D. π 3. 已知函数()2 ππsin 2sin 22cos 166f x x x x ??? ?=++-+- ? ?? ? ? ? . (1)求函数()f x 的最小正周期和最大值; (2)讨论函数()f x 在区间ππ,122??-? ??? 上的单调性. 二、课堂练习 1. 设函数()sin(2)3f x x π =+,以下四个结论:①它的周期为π;②它的图象关于直线12 x π= 对称;③它的图象关于点(,0)3π对称;④在区间(,0)6π -上是增函数. 其中正确的结论有( ). A. ①②③④ B. ①② C. ②③④ D.①③ 2. 已知函数()πsin (0)3f x x ωω??=+> ?? ? ,ππ63f f ????= ? ??? ?? ,且()f x 在区间ππ,63?? ??? 上有最小 值,无最大值,则ω的值为( ). A. 23 B. 11 3 C. 73 D. 143 3. 函数()πcos 36f x x ?? =+ ?? ? 在[]0,π的零点个数为________. 三、课后作业 1. 函数ππsin 2cos 263y x x ????=++- ? ?? ? ? ? 的最小正周期和振幅分别是( ). A. π B. π,2 C. 2π,1 D. 2π

必修4三角函数的图像与性质

§1.4.1正弦函数、余弦函数的图象 学习目标:1.能借助正弦线画出正弦函数的图象,并在此基础上由诱导公式画出余弦函数的图象. 2.能熟练运用“五点法”作图. 学习重点:运用“五点法”作图 学习难点:借助于三角函数线画y=sinx的图象 学习过程: 一、情境设置 遇到一个新的函数,画出它的图象,通过观察图象获得对它的性质的直观认识是研究函数的基本方法,那么,一般采用什么方法画图象? 二、探究研究 问题1. 在直角坐标系内把单位圆十二等分,分别画出对应角的正弦线. 问题2. 在相应坐标系内,在x轴表示12个角(实数表示),把单位圆中12个角的正弦线进行右移. 问题3. 通过刚才描点(x0,sinx0),把一系列点用光滑曲线连结起来,能得到什么? 问题4. 观察所得函数的图象,五个点在确定形状是起关键作用,哪五个点? 问题5.如何作y=sinx,x∈R的图象(即正弦曲线)? 问题6.用诱导公式cosx=________(用正弦式表示),y=cosx的图象(即余弦曲线)怎样得到? 问题7. 关键五个点.三、例题精讲 例1:用“五点法”画下列函数的简图 (1)y=1+sinx ,x∈[]π2,0 (2) y=-cosx,x∈[]π2,0 思考:(1)从函数图象变换的角度出发,由y=sinx,x∈[]π2,0的图象怎样得到y=1+sinx ,x∈[]π2,0的图像?由y=cosx,x∈[]π2,0的图象怎样得到y=-cosx, ,x∈[]π2,0的图像? 四、巩固练习 1、在[0,2π]上,满足 1 sin 2 x≥的x取值范围是( ). A.0, 6 π ?? ?? ?? B.5, 66 ππ ?? ?? ?? C.2, 63 ππ ?? ?? ?? D.5, 6 π π ?? ?? ?? 2、 用五点法作) y=1-cosx, x∈[]π2,0的图象. 3、结合图象,判断方程x sinx=的实数解的个数. 五、课堂小结 在区间] 2,0 [π上正、余弦函数图象上起关键作用的五个点分别是它的最值点及其与坐标轴的交点(平衡点).函数的图象可通过描述、平移、对称等手段得到. 六、当堂检测 1、观察正弦函数的图象,以下4个命题: (1)关于原点对称(2)关于x轴对称(3)关于y轴对称(4)有无数条对称轴其中正确的是

六种三角函数性质

六种三角函数性质、公式 三角函数包括。它包含六种基本函数:正弦、余弦、正切、余切、正割、余割 1 -1 y=sinx -3π 2 -5π 2 -7π 2 7π 2 5π 2 3π 2 π 2 - π 2 -4π-3π-2π4π 3π 2π π -π o y x 1 -1 y=cosx -3π 2 -5π 2 -7π 2 7π 2 5π 2 3π 2 π 2 - π 2 -4π -3π -2π4π 3π 2π π -π o y x y=tanx 3π 2 π π 2 - 3π 2 -π- π 2 o y x y=cotx 3π 2 π π 2 2π -π-π 2 o y x

.反三角函数: arcsinx arccosx arctanx arccotx 函数y=sinx y=cosx y=tanx y=cotx 定义 域 R R {x|x∈R且 x≠kπ+ 2 π ,k∈Z} {x|x∈R且 x≠kπ,k∈Z}值域 [-1,1]x=2kπ+ 2 π 时 y max=1 x=2kπ- 2 π 时y min=-1 [-1,1] x=2kπ时y max=1 x=2kπ+π时 y min=-1 R 无最大值 无最小值 R 无最大值 无最小值 周期 性 周期为2π周期为2π周期为π周期为π 奇偶 性 奇函数偶函数奇函数奇函数 单调 性 在[2kπ- 2 π ,2kπ+ 2 π ] 在[2kπ-π, 2kπ]上都是增在(kπ-2 π , 在(kπ, kπ+π)内都是

y=secx的性质: (1)定义域,{x|x≠π/2+kπ,k∈Z} (2)值域,|secx|≥1.即secx≥1或secx≤-1; (3)y=secx是偶函数,即sec(-x)=secx.图像对称于y轴; (4)y=secx是周期函数.周期为2kπ(k∈Z,且k≠0),最小正周期T=2π. (5)正割与余弦互为倒数;余割与正弦互为倒数; (6)正割函数无限趋于直线x=π/2+Kπ; (7) 正割函数是无界函数; (8)正割函数的导数:(secx)′=secx×tarx; (9正割函数的不定积分:∫secxdx=ln∣secx+tanx∣+C y=cscx的性

三角函数的图象及性质知识点汇总

三角函数的图象与性质 一、知识网络 三、知识要点(一)三角函数的性质 1、定义域与值域 2、奇偶性 (1)基本函数的奇偶性奇函数:y=sinx,y=tanx;偶函数:y=cosx. (2)型三角函数的奇偶性 (ⅰ)g(x)=(x∈R) g(x)为偶函数 由此得; 同理,为奇函数. (ⅱ)为偶函数;为奇函数.

3、周期性 (1)基本公式 (ⅰ)基本三角函数的周期y=sinx,y=cosx的周期为;y=tanx,y=cotx 的周期为. (ⅱ)型三角函数的周期 的周期为; 的周期为. (2)认知 (ⅰ)型函数的周期 的周期为; 的周期为. (ⅱ)的周期 的周期为; 的周期为. 均同它们不加绝对值时的周期相同,即对y=的解析式施加绝对值后,该函数的周期不变.注意这一点与(ⅰ)的区别. (ⅱ)若函数为型两位函数之和,则探求周期适于“最小公倍数法”. (ⅲ)探求其它“杂”三角函数的周期,基本策略是试验――猜想――证明. (3)特殊情形研究 (ⅰ)y=tanx-cotx的最小正周期为; (ⅱ)的最小正周期为;

(ⅲ)y=sin4x+cos4x的最小正周期为. 由此领悟“最小公倍数法”的适用类型,以防施错对象. 4、单调性 (1)基本三角函数的单调区间(族) 依从三角函数图象识证“三部曲”: ①选周期:在原点附近选取那个包含全部锐角,单调区间完整,并且最好关于原点对称的一个周期; ②写特解:在所选周期写出函数的增区间(或减区间); ③获通解:在②中所得特解区间两端加上有关函数的最小正周期的整数倍,即得这一函数的增区间族(或减区间族) 循着上述三部曲,便可得出课本中规的三角函数的单调区间族. 揭示:上述“三部曲”也适合于寻求简单三角不等式的解集或探求三角函数的定义域. (2)y=型三角函数的单调区间 此类三角函数单调区间的寻求“三部曲”为 ①换元、分解:令u=,将所给函数分解为、外两层:y=f(u),u=; ②套用公式:根据对复合函数单调性的认知,确定出f(u)的单调性,而后利用(1)中公式写出关于u的不等式; ③还原、结论:将u=代入②中u的不等式,解出x的取值围,并用集合或区 间形成结论. (二)三角函数的图象 1、对称轴与对称中心 (1)基本三角函数图象的对称性 (ⅰ)正弦曲线y=sinx的对称轴为;正弦曲线y=sinx的对称中心为(,0). (ⅱ)余弦曲线y=cosx的对称轴为;余弦曲线y=cosx的对称中心 (ⅲ)正切曲线y=tanx的对称中心为;正切曲线y=tanx无对称轴.

三角函数图像及其性质

【本讲教育信息】 一.教学内容: 三角函数的图象与性质 二.教学目的: 了解三角函数的周期性,知道三角函数y=A sin(ωx+φ),y=A cos(ωx +φ)的周期为。 能画出y=sin x,y=cos x,y=tan x的图象,并能根据图象理解正弦函 数、余弦函数在[0,2π],正切函数在(-,)上的性质(如单调性、最大值和最小值、图象与x轴的交点等)。 了解三角函数y=A sin(ωx+φ)的实际意义及其参数A,ω,φ对函数图象变化的影响;会画出y=A sin(ωx+φ)的简图,能由正弦曲线y=sin x通过平移、伸缩变换得到y=A sin(ωx+φ)的图象。 会用三角函数解决一些简单的实际问题,体会三角函数是描述周期变化现象的重要函数模型。 三.教学重点:三角函数的性质与运用 教学难点:三角函数的性质与运用。 四.知识归纳 1.正弦函数、余弦函数、正切函数的图像 2.三角函数的单调区间: 的递增区间是, 递减区间是; 的递增区间是,

递减区间是, 的递增区间是, 3.函数 最大值是,最小值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象 与直线的交点都是该图象的对称中心。 4.由y=sinx的图象变换出y=sin(ωx+)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换 利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现.无论哪种变形,请切记每一个变换总是对字母x而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少. 途径一:先平移变换再周期变换(伸缩变换) 先将y=sinx的图象向左(>0)或向右(<0=平移||个单位,再将图象上各点的横坐标变为原来的倍(ω>0),便得y=sin(ωx+)的图象。 途径二:先周期变换(伸缩变换)再平移变换。 先将y=sinx的图象上各点的横坐标变为原来的倍(ω>0),再沿x轴向左(>0)或向右(<0=平移个单位,便得y=sin(ωx+)的图象。 5.由y=Asin(ωx+)的图象求其函数式: 给出图象确定解析式y=Asin(ωx+)的题型,有时从寻找“五点”中的第一零点(-,0)作为突破口,要从图象的升降情况找准第一个零点的位置. 6.对称轴与对称中心: 的对称轴为,对称中心为; 的对称轴为,对称中心为; 对于和来说,对称中心与零点相联系,对称轴与最值点联系。 7.求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A、的正负。利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; 8.求三角函数周期的常用方法: 经过恒等变形化成“、”的形式,再利用周期公式,另外还有图像法和定义法。 9.五点法作y=Asin(ωx+)的简图: 五点取法是设x=ωx+,由x取0、、π、、2π来求相应的x值及对应的y值,再描点作图。

最全三角函数的图像与性质知识点总结

三角函数的图像与性质 一、 正弦函数、余弦函数的图像与性质 二、正切函数的图象与性质 定义域 {|,}2 x x k k Z π π≠ +∈ 函数 y =sin x y =cos x 图 象 定义域 R R 值域 [-1,1] [-1,1] 单调性 递增区间:2,2() 2 2k k k Z ππππ??-+∈??? ? 递减区间:32,2()2 2k k k Z ππππ??++∈??? ? 递增区间:[2k π-π,2k π] (k ∈Z ) 递减区间:[2k π,2k π+π] (k ∈Z ) 最 值 x =2k π+π 2(k ∈Z )时,y max =1; x =2k π-π 2(k ∈Z )时,y min =-1 x =2k π(k ∈Z )时,y max =1; x =2k π+π(k ∈Z ) 时,y min =-1 奇偶性 奇函数 偶函数 对称性 对称中心:(k π,0)(k ∈Z )(含原点) 对称轴:x =k π+π 2,k ∈Z 对称中心:(k π+π 2,0)(k ∈Z ) 对称轴:x =k π,k ∈Z (含y 轴) 最小正周期 2π 2π

三、三角函数图像的平移变换和伸缩变换 1. 由x y sin =的图象得到)sin(?ω+=x A y (0,0A ω>>)的图象 注意:定要注意平移与伸缩的先后顺序,否则会出现错误。 2. )sin(?ω+=x A y (0,0A ω>>)的性质 (1)定义域、值域、单调性、最值、对称性: 将?ω+x 看作一个整体,与相应的简单三角函数比较得出; (2)奇偶性:只有当?取特殊值时,这些复合函数才具备奇偶性: )sin(?ω+=x A y ,当π?k =时为奇函数,当2 ππ?±=k 时为偶函数; (3)最小正周期:ω π2=T

三角函数性质

第六课时 三角函数的性质 【学习目标】 1. 通过三角变换后,得到求最值、单调性及周期的基本型sin()y A x ω?=+进行求解了解函数的周期性 2. 以极度的热情投入学习,体会成功的快乐。 【学习重点】 三角函数的性质,特别是单调性和周期性以及最值是重中之重。 【学习难点】 三角函数的性质,特别是单调性和周期性以及最值是重中之重。 [自主学习] 2.函数y =sinx 的对称性与周期性的关系.

⑴ 若相邻两条对称轴为x =a 和x =b ,则T = . ⑵ 若相邻两对称点(a ,0)和(b ,0) ,则T = . ⑶ 若有一个对称点(a ,0)和它相邻的一条对称轴x =b ,则T = . 注:该结论可以推广到其它任一函数. [典型例析]例1. 已知函数)12(sin 2)62sin(3)(2π π -+-=x x x f )(R x ∈; (1)求函数f(x)的最小正周期; (2)求使函数f(x)取得最大值的x 的集合. 例2. 已知函数f (x)=2 1log (sinx -cosx) ⑴ 求它的定义域和值域; ⑵ 求它的单调区间; ⑶ 判断它的奇偶性; ⑷ 判定它的周期性,如果是周期函数,求出它的最小正周期.

例3.某港口水的深度y(米)是时间t(0≤t<24,单位:时)的函数,记作y=f(t),下面是某日水深的数据: 经过长期观察,y=f(t)x+b的图象. (1)试根据以上数据,求出函数y=f(t)的近似表达式; (2)一般情况下,船底离海底的距离为5米或5米以上时认为是安全的(船舶停靠时,船底中需不碰海底即可),某船吃水深度(船底离水面的距离)为6.5米,如果希望该船在一天内安全进出港,请问,它至多在港里停留多长时间(忽略进出港所需的时间)?

三角函数的图像和性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型 1 已知函数解析式确定函数性质 【思路提示】一般所给函数为 y =A sin( ω x +φ)或y =A cos( ω x +φ),A>0,ω>0,要根 据 y = sin x ,y = cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin (x )(0≤ < )是R 上的偶函数,则 等于( ) B . C . D . 42 A 充分不必要条件 B .必要不充分条 C .充要条件 变式 3.设f (x) sin( x ),其中 0,则 f (x)是偶函数的充要条件是( ) A. f (0) 1 B . f (0) 0 C . f '(0) 1 D . f '(0) 0 例2.设f (x) sin(2 x )(x R),则 f(x)是( ) 2 A. 最小正周期为 的奇函数 B . 最小正周期为 的偶函数 C .最小正周期为 的奇函数 D . 最小正周期为 的偶函数 22 结论: (1) 若y Asin( x )是奇函数,则 k (k Z); (2) 若 y Asin( x )是偶函数,则 k + (k 2 Z); (3) 若 y Acos(x )是奇函数,则 k 2(k Z); (4) 若 y Acos( x )是偶函数,则 k (k Z); (5) 若 y A tan(x )是奇函数,则 k 2 (k Z). 变式 1.已知 a R , 函数 f (x) sin x | a | 为奇函数, 则 a 等 于 B . 1 C . 1 D . 1 【评注】由 y sin x 是奇函数, y cosx 是偶函数可拓展得到关于三角函数奇偶性的重要 变式 2.设 R ,则 “ 0”是“f(x) cos(x )(x R)为偶函数 ” 的( ) D .无关条件

相关文档
最新文档