初中数学知识点最全总结

初中数学知识点最全总结

(实用版)

编制人:__________________

审核人:__________________

审批人:__________________

编制单位:__________________

编制时间:____年____月____日

序言

下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!

并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!

Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!

In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!

初中数学知识点最全总结

初中数学知识点最全总结(精选)

小伙伴们处在中考复习阶段,我们好好梳理知识点是非常重要的一个环节。数学知识点是很重要的,下面本店铺给大家整理了关于初中数学知识点最全总结的内容,欢迎阅读,内容仅供参考!

初中数学知识点最全总结

1圆的基本性质

1.半圆或直径所对的圆周角是直角。

2.任意一个三角形一定有一个外接圆。

3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

4.在同圆或等圆中,相等的圆心角所对的弧相等。

5.同弧所对的圆周角等于圆心角的一半。

6.同圆或等圆的半径相等。

7.过三个点一定可以作一个圆。

8.长度相等的两条弧是等弧。

9.在同圆或等圆中,相等的圆心角所对的弧相等。

10.经过圆心平分弦的直径垂直于弦。

直线与圆的位置关系

1.直线与圆有唯一公共点时,叫做直线与圆相切。

2.三角形的外接圆的圆心叫做三角形的外心。

3.弦切角等于所夹的弧所对的圆心角。

4.三角形的内切圆的圆心叫做三角形的内心。

5.垂直于半径的直线必为圆的切线。

6.过半径的外端点并且垂直于半径的直线是圆的切线。

7.垂直于半径的直线是圆的切线。

8.圆的切线垂直于过切点的半径。

2平行线的两条判定定理

(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。

(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。

补充平行线的判定方法:

(1)平行于同一条直线的两直线平行。

(2)垂直于同一条直线的两直线平行。

(3)平行线的定义。

3投影

投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。

平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。

中心投影:由同一点发出的光线所形成的投影称为中心投影。

24、视图

当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。物体的三视图特指主视图、俯视图、左视图。

主视图:在正面内得到的由前向后观察物体的视图,叫做主视图。

俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图。

左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图。

中考数学学习方法

善于思考:要养成独立思考的好习惯,不要过多地依赖同学和老师。千万不能一遇到不会做的题就请教同学和老师,应给足自己足够的时间进行独立思考,老师讲的题、与同学讨论的题易忘,自己做的题、特别是做错后改正过来的题便不易忘记。

精选精练:学数学要做一定量的习题,而且要追求做题的质量。要精选精做,讲效果。只追求数量,什么问题都摸棱两可,知道的越多反而越糊涂。对于老师精心组合的题、自己平时害怕的题、容易出错的题要精做,尽可能做到一题多解、触类旁通。

建备忘录:应给自己准备一个记录本,对一些典型题解、疑难、易错和易忘问题以及一时解决不了的问题等,随时记录,以备在日常学习中加以解决。经常性地反思自己的错误,使自己的弱项变为强项,劣势变为优势。真正的掌握复习过程的主动权。

中考数学高分答题技巧

1学会梳理数学知识

总结梳理,提炼方法。对于题型的总结梳理,应摆脱盲目的题海战术,对重点习题进行归类,找出解题规律,要关注解题的思路、方

法、技巧。

如方案设计题型中有一类试题,不改变图形面积把一个图形剪拼成另一个指定图形。总结发现,这类题有三种类型,一类是剪切线的条数不限制进行拼接;一类是剪切线的条数有限制进行拼接;一类是给出若干小图形拼接成固定图形。梳理了题型就可以进一步探索解题规律。

2摸清题型

中考考生在拿到中考数学试卷后,不要着急做题,第一步应该是中考考生将数学试卷从头到尾的阅读一遍,看看题型的设置是什么,从而确定自己该如何进行答题,以防止出现答不完题的情况出现。

3辅助解答

一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举,既必不可少而又不困难。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。书写也是辅助解答。“书写要工整、卷面能得分”是说第一印象好会在阅卷老师的心理上产生光环效应:书写认真—学习认真—成绩优良—给分偏高。有些选择题,“大胆猜测”也是一种辅助解答,实际上猜测也是一种能力。

4做题原则“一快一慢”

这里所谓的“一快一慢”指的是审题要慢,做题要快。

题目本身实际上是这道题目的全部信息源,所以在审题的时候一定要逐字逐句地看清楚,力求从语法结构、逻辑关系、数学含义等各

方面真正地看清题意。有一些条件看起来没有给出,但实际上细致审题你才会发现,这样就可以收集更多的已知信息,为做题正确率寻求保障。

初中数学知识点总结大全

初中数学知识点总结大全 一、基本知识 一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数 数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴.②任何一个有理数都可以用数轴上的一个点来表示.③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数.在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等.④数轴上两个点表示的数,右边的总比左边的大.正数大于0,负数小于0,正数大于负数. 绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0.两个负数比较大小,绝对值大的反而小. 有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加.②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. ③一个数与0相加不变. 减法:减去一个数,等于加上这个数的相反数. 乘法:①两数相乘,同号得正,异号得负,绝对值相乘.②任何数

与0相乘得0.③乘积为1的两个有理数互为倒数. 除法:①除以一个数等于乘以一个数的倒数.②0不能作除数.乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数. 混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的. 2、实数无理数:无限不循环小数叫无理数 平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根.②如果一个数X的平方等于A,那么这个数X就叫做A的平方根.③一个正数有2个平方根/0的平方根为0/负数没有平方根.④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数. 立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根.②正数的立方根是正数、0的立方根是0、负数的立方根是负数.③求一个数A的立方根的运算叫开立方,其中A叫做被开方数. 实数:①实数分有理数和无理数.②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样.③每一个实数都可以在数轴上的一个点来表示. 3、代数式 代数式:单独一个数或者一个字母也是代数式. 合并同类项:①所含字母相同,并且相同字母的指数也相同的

初中数学知识点 初中数学知识点总结归纳(完整版)

初中数学知识点初中数学知识点总结归纳(完整版) 初中数学知识点1 一、数与式 易错点1:有理数、无理数以及实数的有关概念理解错误;相反数、倒数、绝对值的意义概念混淆,以及绝对值与数的分类。每年选择必考。 易错点2:实数的运算,要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。 易错点3:平方根、算术平方根、立方根的区别。填空题必考。 易错点4:求分式值为零时,易忽略分母不能为零。 易错点5:分式运算时要注意运算法则和符号的变化。当分式的分子、分母是多项式时要先因式分解,因式分解要分解到不能再分解为止。注意计算方法,不能去分母,把分式化为最简分式。填空题必考。 易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。 易错点7:计算第一题必考。五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。 易错点8:科学记数法。精确度,有效数字。

易错点9:代入求值要使式子有意义。各种数式的计算方法要掌握,一定要注意计算顺序。 二、方程(组)与不等式(组) 易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。 易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。(消元降次)主要陷阱是消除了一个带未知数的公因式要回头检验! 易错点3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。 易错点4:关于一元二次方程的取值范围的题目,易忽视二次项系数不为0导致出错。 易错点5:关于一元一次不等式组有解无解的条件,易忽视相等的情况。 易错点6:解分式方程时首要步骤是去分母,易忘记根检验,导致运算结果出错。 易错点7:不等式(组)的解的问题要先确定解集,确定解集的方法运用数轴。 易错点8:利用函数图象求不等式的解集和方程的解。 三、函数 易错点1:各个待定系数表示的意义。 易错点2:熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值。

初中数学知识点总结(精心总结归纳)

初中数学知识点总结 一、基本定理 1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线和已知直线垂直 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 15、定理三角形两边的和大于第三边 16、推论三角形两边的差小于第三边 17、三角形内角和定理三角形三个内角的和等于180° 18、推论1 直角三角形的两个锐角互余 19、推论2 三角形的一个外角等于和它不相邻的两个内角的和 20、推论3 三角形的一个外角大于任何一个和它不相邻的内角 21、全等三角形的对应边、对应角相等 22~26、证全等的方法:边角边、角边角、角角边、边边边、斜边-直角边 27、定理1 在角的平分线上的点到这个角的两边的距离相等 28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所有点的集合 30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33、推论3 等边三角形的各角都相等,并且每一个角都等于60° 34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35、推论1 三个角都相等的三角形是等边三角形 36、推论2 有一个角等于60°的等腰三角形是等边三角形 37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38、直角三角形斜边上的中线等于斜边上的一半 39、定理线段垂直平分线上的点和这条线段两个端点的距离相等 40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42、定理1 关于某条直线对称的两个图形是全等形 43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

初中数学知识点全总结(完美打印版)

七年级数学上 第一章有理数 1.有理数2.数轴3.相反数4.绝对值5.有理数比大小6.互为倒数 7. 有理数加法法则8.有理数加法的运算律9.有理数减法法则10 有理数乘法法则 11 有理数乘法的运算律:12.有理数除法法则13.有理数乘方的法则: 14.乘方的定义15.科学记数法16.近似数的精确位17.有效数字18.混合运算法则 第二章整式的加减 1.单项式2.单项式的系数与次数3.多项式4.多项式的项数与次数 第三章一元一次方程 1.一元一次方程 2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0). 3.一元一次方程解法的一般步骤4.列一元一次方程解应用题: (1)读题分析法:…………多用于“和,差,倍,分问题” (2)画图分析法: …………多用于“行程问题” 4.列方程解应用题的常用公式: (1)行程问题:距离=速度·时间; (2)工程问题:工作量=工效·工时; (3)比率问题:部分=全体·比率; (4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·,利润=售价-成本,; (6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C 正方形=4a, S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥=πR2h. 七年级数学下 第五章相交线与平行线 1.邻补角 2.对顶角 3.垂线 4.平行线 5.同位角、内错角、同旁内角: 6.命题 7.平移 8.对应点 9.定理与性质10垂线的性质: 11.平行公理12.平行线的性质:13.平行线的判定: 第六章平面直角坐标系 1.有序数对 2.平面直角坐标系 3.横轴、纵轴、原点 4.坐标 5.象限 第七章三角形 1.三角形 2.三边关系 3.高 4.中线 5.角平分线 6.三角形的稳定性6.多边形 7.多边形的内角 8.多边形的外角 9.多边形的对角线10.正多边形11.平面镶嵌12.公式与性质 三角形的内角和:三角形的内角和为180° 三角形外角的性质,多边形内角和公式,多边形的外角和

初中数学知识点归纳(14篇)

初中数学知识点归纳(14篇) 初中数学知识点归纳1 1.通过猜测,验证,计算得到的定理: (1)全等三角形的判定定理: (2)与等腰三角形的相关结论: ①等腰三角形两底角相等(等边对等角) ②等腰三角形顶角的平分线,底边上的中线,底边上的高互相重合(三线合一) ③有两个角相等的三角形是等腰三角形(等角对等边) (3)与等边三角形相关的结论: ①有一个角是60°得等腰三角形是等边三角形 ②三个角都相等的三角形是等边三角形 ③三条边都相等的三角形是等边三角形 (4)与直角三角形相关的结论: ①勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方 ②勾股定理逆定理:在一个三角形中两直角边的平方和等于斜边的平方,那么这个三角形一定是直角三角形 ③HL定理:斜边和一条直角边对应相等的两个三角形全等 ④在三角形中30°角所对的直角边等于斜边的一半 2.两条特殊线 (1)线段的垂直平分线 ①线段的垂直平分线上的点到线段两边的距离相等互为逆定理{ ②到一条线段两个端点距离相等的点在这条线段的垂直平分线上 ③三角形的三条垂直平分线交于一点,并且这一点到这三个顶点的距离相等 (2)角平分线 ①角平分线上的点到这个角的两边距离相等互为逆定理{ ②在一个角的内部,并且到这个角的两边距离相等的的点,在这个角的角

平分线上 3.命题的逆命题及真假 ①在两个命题中,如果一个命题的条件与结论是另一个命题的结论与条件,我们就说这两个命题互为逆命题,其中一个是另一个的逆命题 ②如果一个定理的逆命题是真命题,那么他也是一个定理,我们称这两个定理为互逆定理 ③反正法:从否认命题的结论入手,并把对命题结论的否认作为推理的条件,进行正确的逻辑推理,使之得到与条件,定理相矛盾,矛盾的原因是假设不成立,所以肯定了命题的结论,使命题获得了证明 第二章一元二次方程 1.一元二次方程:只含有一个未知数X的整式方程,并且可以化成 aX?+bX+C=0(a≠0)形式称它为一元二次方程 aX?+bX+C=0(a≠0)→一般形式 aX?叫二次项bX叫一次项C叫常数项a叫二次项系数b叫一次项系数 2.一元二次方程解法: (1)配方法:(X±a)?=b(b≥0)注:二次项系数必须化为1 (2)公式法:aX?+bX+C=0(a≠0)确定a,b,c的值,计算b?-4ac≥0 假设b?-4ac>0那么有两个不相等的实根,假设b?-4ac=0那么有两个相等的实根,假设b?-4ac 假设b?-4ac≥0那么用公式X=-b±√b?-4ac/2a注:必须化为一般形式 (3)分解因式法 ①提公因式法:ma+mb=0→m(a+b)=0 平方差公式:a?-b?=0→(a+b)(a-b)=0 ②运用公式法:{ 完全平方公式:a?±2ab+b?=0→(a±b)?=0 ③十字相乘法 例题:X?-2X-3=0 1/111

(完整版)初中数学知识点归纳总结(精华版)

第一章 有理数 考点一、实数的概念及分类 (3分) 1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数 无理数 无限不循环小数 负无理数 2、无理数:32,7,3 π+8,sin60o 。 第二章 整式的加减 考点一、整式的有关概念 (3分) 1、单项式 只含有数字与字母的积的代数式叫做单项式。 注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 23 13-。一个单项式中,所有字母的指数的和叫做这个单项式的次数。如c b a 235-是6次单项式。 考点二、多项式 (11分) 1、多项式 几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。 2、同类项 所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。 第三章 一元一次方程 考点一、一元一次方程的概念 (6分) 1、一元一次方程 只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。 第四章 图形的初步认识 考点一、直线、射线和线段 (3分) 1、点和直线的位置关系有线面两种: ①点在直线上,或者说直线经过这个点。 ②点在直线外,或者说直线不经过这个点。 2、线段的性质 (1)线段公理:所有连接两点的线中,线段最短。也可简单说成:两点之间线段最短。 (2)连接两点的线段的长度,叫做这两点的距离。 (3)线段的中点到两端点的距离相等。

初中数学知识点大全(完整版)

第一册 第一章有理数 1.1正数和负数 以前学过的0以外的数前面加上负号“-”的书叫做负数。 以前学过的0以外的数叫做正数。 数0既不是正数也不是负数,0是正数与负数的分界。 在同一个问题中,分别用正数和负数表示的量具有相反的意义 1.2有理数 1.2.1有理数 正整数、0、负整数统称整数,正分数和负分数统称分数。 整数和分数统称有理数。 1.2.2数轴 规定了原点、正方向、单位长度的直线叫做数轴。 数轴的作用:所有的有理数都可以用数轴上的点来表达。 注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。 ⑵同一根数轴,单位长度不能改变。 一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。 1.2.3相反数 只有符号不同的两个数叫做互为相反数。 数轴上表示相反数的两个点关于原点对称。 在任意一个数前面添上“-”号,新的数就表示原数的相反数。

1.2.4绝对值 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。 一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。 在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。 比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。 ⑵两个负数,绝对值大的反而小。 1.3有理数的加减法 1.3.1有理数的加法 有理数的加法法则: ⑴同号两数相加,取相同的符号,并把绝对值相加。 ⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。 ⑶一个数同0相加,仍得这个数。 两个数相加,交换加数的位置,和不变。 加法交换律:a+b=b+a 三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。 加法结合律:(a+b)+c=a+(b+c) 1.3.2有理数的减法 有理数的减法可以转化为加法来进行。

(完整版)初中数学知识点全总结(打印版)

七年级数学(上)知识点 人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章 有理数 一、知识框架 二.知识概念 1.有理数: (1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数; (2)有理数的分类: ① ⎪⎪⎩ ⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=) 0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大; (6)大数-小数 > 0,小数-大数 < 0.

6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律: (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac . 12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0 a . 13.有理数乘方的法则: (1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义: (1)求相同因式积的运算,叫做乘方; (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法. 16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减. 本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题. 体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。

初中数学知识点总结归纳(6篇)

初中数学知识点总结归纳 一、构建完整的知识框架 2.正确理解和掌握数学的一些基本概念、法则、公式、定理,把握他们之间的内在联系。由于数学是一门知识的连贯性和逻辑性都很强的学科,正确掌握学过的每一个概念、法则、公式、定理可以为以后的学习打下良好的基础,如果在学习某一内容或解某一题时碰到了困难,那么很有可能就是因为与其有关的、以前的一些基本知识没有掌握好所造成的,因此要经常查缺补漏,找到问题并及时解决之,努力做到发现一个问题及时解决一个问题。只有基础扎实,解决问题才能得心应手,成绩才会提高。 二、初中数学知识重难点分析 1.函数(一次函数、反比例函数、二次函数)特别是二次函数经常出现在各阶段的考试中,也是考试中的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。 而且一道解答题一般会在试卷最后两题出现,二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。 如果在这一环节掌握不好,将会直接影响代数的基础,会对考试的分数会造成很大的影响。 2.应用题,在各阶段考试中占有较大的比重,包括方程(组)应用、一元一次不等式(组)应用、函数应用、解三角形应用、概率与统计应用几种题型。 一般会出现2~3道解答题(30分左右)及2~3道选择、填空题(10分~15分),占考试总分的30%左右。

现在数学考试对数学实际应用的考查会越来越多,数学与生活联系越来越紧密,应用题要求学生的理解辨别能力很强,能从问题中读出必要的数学信息,并从数学的角度寻求解决问题的策略和方法。方程思想、函数思想、数形结合思想也是中学阶段一种很重要的数学思想、是解决很多问题的工具。 3.整式、分式、二次根式的化简运算。整式的运算、因式分解、二次根式、科学记数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解、因式分解和整式乘法运算的关系、分式的运算是难点。 在考试中一般以选择、填空形式出现,但却是解答题完整解答的基础。运算能力的熟练程度和答题的正确率有直接的关系,掌握不好,答题正确率就不会很高,进而后面的的方程、不等式、函数也无法学好。 4.圆,包括圆的基本性质,点、直线与圆位置关系,圆心角与圆周角,切线的性质和判定,扇形弧长及面积,这章节知识是在初三学习的。 其中切线的性质和判定、圆中的基本性质的理解和运用、直线与圆的位置关系、圆中的一些线段长度及角度的计算是重点也是难点。 5.三角形(全等、相似、角平分线、垂直平分线、高线、解直角三角形)、四边形(平行四边形、矩形、菱形、正方形),在各阶段考试中占有较大比重。 三角形是初中几何图形中内容最多的一块知识,也是学好平面几何的必要基础,贯穿初二到初三的几何知识,其中的几何证明题及线段长度和角度的计算也是难点。

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版) 初中数学知识点总结归纳(完整版) 总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成情况加以回顾和分析,得出教训和一些规律性认识的一种书面材料,它可以提升我们发现问题的能力,让我们一起认真地写一份总结吧。你所见过的总结应该是什么样的?以下是小编为大家整理的初中数学知识点总结归纳(完整版),欢迎阅读与收藏。 初中数学知识点总结归纳(完整版) 篇1 1、菱形的定义:有一组邻边相等的平行四边形叫做菱形。 2、菱形的性质:⑴矩形具有平行四边形的一切性质; ⑵菱形的四条边都相等; ⑶菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。 ⑷菱形是轴对称图形。 提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。 3、因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。 4、因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c) 5、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。 6、公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。 7、提取公因式步骤:①确定公因式。②确定商式③公因式与商式写成积的形式。 8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。a叫被开方数。

9、中被开方数的取值范围:被开方数a≥0 10、平方根性质:①一个正数的平方根有两个,它们互为相反数。 ②0的平方根是它本身0。③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。 11、平方根与算术平方根区别:定义不同、表示方法不同、个数不同、取值范围不同。 12、联系:二者之间存在着从属关系;存在条件相同;0的算术平方根与平方根都是0 13、含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。 14、求正数a的算术平方根的方法; 完全平方数类型:①想谁的平方是数a。②所以a的平方根是多少。 ③用式子表示。 求正数a的算术平方根,只需找出平方后等于a的正数。 初中数学知识点总结归纳(完整版) 篇2 1、一元二次方程解法: (1)配方法:(X±a)2=b(b≥0)注:二次项系数必须化为1 (2)公式法:aX2+bX+C=0(a≠0)确定a,b,c的值,计算b2-4ac≥0 若b2-4ac>0则有两个不相等的实根,若b2-4ac=0则有两个相等的实根,若b2-4ac<0则无解 若b2-4ac≥0则用公式X=-b±√b2-4ac/2a注:必须化为一般形式 (3)分解因式法 ①提公因式法:ma+mb=0→m(a+b)=0 平方差公式:a2-b2=0→(a+b)(a-b)=0 ②运用公式法: 完全平方公式:a2±2ab+b2=0→(a±b)2=0 ③十字相乘法 2、锐角三角函数定义 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割

初中数学知识点归纳总结(全)

初中数学知识点 1、一元一次方程根的情况 △=b2-4ac 当△>0时,一元二次方程有2个不相等的实数根; 当△=0时,一元二次方程有2个相同的实数根; 当△<0时,一元二次方程没有实数根 2、平行四边形的性质: ①两组对边分别平行的四边形叫做平行四边形。 ②平行四边形不相邻的两个顶点连成的线段叫他的对角线。 ③平行四边形的对边/对角相等。 ④平行四边形的对角线互相平分。 菱形:①一组邻边相等的平行四边形是菱形 ②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。 ③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。 矩形与正方形: ①有一个内角是直角的平行四边形叫做矩形。 ②矩形的对角线相等,四个角都是直角。 ③对角线相等的平行四边形是矩形。 ④正方形具有平行四边形,矩形,菱形的一切性质。

⑤一组邻边相等的矩形是正方形。 多边形: ①N边形的内角和等于(N-2)180度 ②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度) 平均数:对于N个数X 1,X 2…X N,我们把(X 1+X 2+…+X N)/N叫做这个N个数的算术平均数,记为X 加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。 二、基本定理 1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线和已知直线垂直 6、直线外一点与直线上各点连接的所有线段中,垂线段最短

最全面初中数学知识点归纳总结(全)(精华版)

知识点归纳 初中数学知识点 1、一元一次方程根的情况 2 △ =b -4ac 当厶〉。时,一元二次方程有2个不相等的实数根; 当△=()时,一元二次方程有2个相同的实数根; 当AvO时,一元二次方程没有实数根 2、平行四边形的性质: ①两组对边分别平行的四边形叫做平行四边形。 ②平行四边形不相邻的两个顶点连成的线段叫他的对角线。 ③平行四边形的对边/对角相等。 ④平行四边形的对角线互相平分。 菱形:①一组邻边相等的平行四边形是菱形 ②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。 ③判定条件:定义/对角线互相垂直的平行四边形 /四条边都相等的四边形。 矩形与正方形: ①有一个内角是直角的平行四边形叫做矩形。 ②矩形的对角线相等,四个角都是直角。 ③对角线相等的平行四边形是矩形。 ④正方形具有平行四边形,矩形,菱形的一切性质。 ⑤一组邻边相等的矩形是正方形。 多边形: ①N边形的内角和等于(N・2) 180度 ②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)

平均数:对于N个数Xi, X2X N,我们把(X 1+X2+ +X N)/N叫做这个N个数的算术平均数,记为X 加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权, 这就是加权平均数。 二、基本定理 1、过两点有且只有一条直线 2、两点之间线段最短

3、 同角或等角的补角相等 4、 同角或等角的余角相等 5、 过一点有且只有一条直线和已知直线垂直 6、 直线外一点与直线上各点连接的所有线段屮,垂线段最短 7、 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8、 如果两条直线都和第三条直线平行,这两条直线也互相平行 9、 同位角相等,两直线平行 10、 内错角相等,两直线平行 11、 同旁内角互补,两直线平行 12、 两直线平行,同位角相等 13、 两直线平行,内错角相等 14、 两直线平行,同旁内角互补 15、 定理三角形两边的和大于第三边 16、 推论三角形两边的差小于第三边 17、 三角形内角和定理 三角形三个内角的和等于 180° 18、 推论1直角三角形的两个锐角互余 19、 推论2三角形的一个外角等于和它不相邻的两个内角的和 20、 推论3三角形的一个外角大于任何一个和它不相邻的内角 21、 全等三角形的对应边、对应角相等 (SAS )有两边和它们的夹角对应相等的两个三角形全等 23、 角边角公理(ASA )有两角和它们的夹边对应相等的 两个三角形全等 24、 推论(AAS )有两角和其中一角的对边对应相等的两个三角形全等 26、 斜边、直角边公理(HL )有斜边和一条直角边对应相等的两个直角三角形全等 27、 定理1在角的平分线上的点到这个角的两边的距离相等 28、 定理2到一个角的两边的距离相同的点,在这个角的平分线上 29、 角的平分线是到角的两边距离相等的所有点的集合 30、 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 22、边角边公理 25、边边边公理 (SSS )有三边对应相等的两个三角形全等

(完整版)初中数学知识点归纳总结(精华版)

(完整版)初中数学知识点归纳总结(精华版)【完整版】初中数学知识点归纳总结(精华版) 一、数的性质与运算 1. 自然数与整数 自然数是大于等于0的整数,而整数包括正整数、负整数和0。 2. 有理数 有理数是可以表示为两个整数的比值的数,包括整数和分数。 3. 实数 实数包括有理数和无理数,可以用数轴表示。 4. 数的分类与运算规律 数可以分为正数、负数和零,对于加法、减法、乘法和除法,都有相应的运算法则和运算规律。 二、代数表达式与简单方程 1. 代数表达式 代数表达式是用数、字母和运算符号表示的数学式子。 2. 同类项与合并同类项 同类项具有相同的字母部分和相同的指数,可以合并同类项简化代数表达式。

3. 方程与解方程 方程是含有未知数的等式,解方程就是求出使等式成立的未知数的值。 三、平面图形与坐标系 1. 点、直线、线段与射线 点是没有长度、宽度和高度的,直线是由无穷多个点连在一起的路径,线段是在两个点之间的部分,射线是一个起点固定的直线段。 2. 角与三角形 角是由两条射线共享一个公共起点形成的,三角形是由三条线段相交形成的,有等边三角形、等腰三角形和直角三角形等。 3. 坐标系与坐标 坐标系由横纵两条相互垂直的线段组成,坐标是表示一个点在坐标系中位置的数对。 四、比例与相似 1. 比例和比例的性质 比例是两个等式之间的比较关系,其中有比的前项和比的后项,比例具有相等的比值。 2. 类比与相似

类比是指两个或多个比例关系相同的比,相似是指形状相似,但尺寸不同的图形。 3. 相似三角形与比例定理 相似三角形的对应角相等,对应边成比例,有相似三角形的比例定理可以解决各种相关问题。 五、数与代数 1. 分式与整式 分式是由分子和分母构成的,整式则不包含分式。 2. 一元二次方程与解方程 一元二次方程是最高次项的次数为2的一元方程,可以使用求根公式求解。 六、函数与图象 1. 函数的概念与函数的图象 函数是一个将定义域中的每个元素映射到值域中唯一元素的关系,函数的图象可以表示函数各点的对应关系。 2. 线性函数与一次函数的图象 线性函数是函数表达式中次数最高的项的次数为1的函数。 3. 常数函数、幂函数与指数函数

初中数学知识点总结(最新最全)

初中数学知识点总结 一、基本知识 ㈠、数与代数 A、数与式: 1、有理数 有理数:①整数→正整数/0/负整数 ②分数→正分数/负分数 数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。 绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。 两个负数比较大小,绝对值大的反而小。 有理数的运算: 加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。 减法:减去一个数,等于加上这个数的相反数。 乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。 除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。 混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。 2、实数 无理数:无限不循环小数叫无理数 平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。 ③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。 立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。 实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。 3、代数式 代数式:单独一个数或者一个字母也是代数式。 合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。 4、整式与分式 整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。 整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。 幂的运算:AM+AN=A(M+N) (AM)N=AMN

初中数学知识点归纳总结(全)

初中数学知识点归纳总结(全)

初中数学知识点 1、一元一次方程根的情况 △=b2-4ac 当△>0时,一元二次方程有2个不相等的实数根; 当△=0时,一元二次方程有2个相同的实数根; 当△<0时,一元二次方程没有实数根 2、平行四边形的性质: ①两组对边分别平行的四边形叫做平行四边形。 ②平行四边形不相邻的两个顶点连成的线段叫他的对角线。 ③平行四边形的对边/对角相等。 ④平行四边形的对角线互相平分。 菱形:①一组邻边相等的平行四边形是菱形 ②领心的四条边相等,两条对角线互相垂直平分,每一组对角 线平分一组对角。 ③判定条件:定义/对角线互相垂直的平行四边形/四条边都相 等的四边形。 矩形与正方形: ①有一个内角是直角的平行四边形叫做矩形。 ②矩形的对角线相等,四个角都是直角。 ③对角线相等的平行四边形是矩形。 ④正方形具有平行四边形,矩形,菱形的一切性质。

⑤一组邻边相等的矩形是正方形。 多边形: ①N边形的内角和等于(N-2)180度 ②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度) 平均数:对于N个数X1,X2…X N,我们把(X1+X2+…+X N)/N叫做这个N个数的算术平均数,记为X 加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。 二、基本定理 1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线和已知直线垂直 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理经过直线外一点,有且只有一条直线与这条直线 平行

初中数学知识点大全(完整版)

初中数学知识点大全(完整版) 初中数学知识点大全(完整版) 在日常过程学习中,不管我们学什么,都需要 掌握一些知识点,知识点就是学习的重点。哪些知识点能够真正帮助到我们 呢?以下是小编帮大家整理的初中数学知识点大全(完整版),仅供参考,欢迎 大家阅读。 初中数学知识点大全(完整版)1 一、线段的比※1、如果选用同一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成. ※2、四条线段a、 b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d 叫做成比例线段,简称比例线段. ※3、注意点: ①a:b=k,说明a是b的k倍; ②由于线段a、b的长度都是正数,所以k是正数; ③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致; ④除了a=b之外,a:b≠b:a,与互为 倒数; ⑤比例的根本性质:假设,那么ad=bc;假设ad=bc,那么二、黄金分割 ※1、如图1,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C 黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比. ※2、黄 金分割点是最优美、最令人赏心悦目的点. 四、相似多边形¤1、一般地,形状相同的图形称为相似图形. ※2、对应角相等、对应边成比例的两个多边形 叫做相似多边形.相似多边形对应边的比叫做相似比. 五、相似三角形※1、在相似多边形中,最为简简单的就是相似三角形. ※2.对应角相等、对应边成 比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比. ※3、全等三角形是相似三角的特例,这时相似比等于1.注意:证两个相似三角形,与证两 个全等三角形一样,应把表示对应顶点的字母写在对应的位置上. ※4、相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比. ※5、相似三角形周长的比等于相似比. ※6、相似三角形面积的比等于相似比的平方. 六、探索三角形相似的条件※1、相似三角形的判定方法: 一般三角形直角 三角形根本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似. ①两角对应相等; ②两边对应成比例,且夹角相等; ③三边对应成比例.①一个锐角对应相等; ②两条边对应成

初中数学知识点总结(最新最全)

初中数学知识点总结(最新最全) 一、数的基本概念 1. 自然数:1,2,3,4,...,称为自然数。 2. 整数:自然数、0、自然数的相反数(负整数)的总称。 3. 实数:实数指有理数与无理数的总体。 4. 有理数:整数与分数的总称。 5. 无理数:不能表示成两个整数之比的数。 6. 小数:有限小数与无限小数。有限小数终止于个位,无限小数没有个位。 7. 分数:分母表示分成的份数,分子表示取的份数。 8. 百分数:以100为基数,百分号表示百分之几。 9. 实数的大小关系:大小关系与数轴上的位置一致。 10. 数轴:数轴上的每一点都表示一个实数。 二、比例 1. 比:表示两个量之间的大小关系的比。 2. 比例:四个有理数的等比关系称为比例,比例可以用比例式表示。 3. 等比数列:公比相等的数列,常用公比q表示。 三、图形的面积和体积 1. 平行四边形:底和高之积即为面积。 2. 矩形:底和高之积即为面积。 3. 三角形:底和高之积的一半即为面积。 4. 梯形:上底和下底之和再乘以高的一半即为面积。

5. 圆:πr²,r为半径。 6. 圆环:外圆面积减去内圆面积,即π(R²-r²),R 和r分别为外半径和内半径。 7. 球:4/3πr³,r为半径。 8. 圆柱体:底的面积(圆面积)乘以高,即πr²h,r 为半径,h为高。 9. 圆锥体:底的面积乘以高再除以3,即1/3πr²h,r 为半径,h为高。 四、代数式与方程 1. 代数式:用字母表示数的式子称为代数式。 2. 项:代数式中的部分,项包括系数和字母,常数项中没有字母。 3. 同类项:具有相同字母的项称为同类项。 4. 合并同类项:将代数式中的同类项合并,即将系数相加。 5. 方程:等号连接的代数式称为方程,一般可以找出未知量,使等式成立。 6. 解方程:表示出未知量的值,使得等式成立。 五、直角三角形与三角函数 1. 直角三角形:有一个角是90°的三角形称为直角三角形。 2. 斜边:直角三角形中最长的一条边称为斜边,用小写字母c表示。 3. 正弦:在直角三角形中,对于一个锐角,正弦等于对边与斜边的比,用sin表示。 4. 余弦:在直角三角形中,对于一个锐角,余弦等于邻边与斜边的比,用cos表示。

初中数学知识点全总结(完美打印版)

初中数学知识点全总结(完美打印版) 有理数 一、知识框架 二.知识概念 1.有理数: (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数; (2)有理数的分类: ①② 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ? a+b=0 ? a、b互为相反数. 4.绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2) 绝对值可表示为:或;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0. 6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律: (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10 有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac . 12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,. 13.有理数乘方的法则: (1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或(a-b)n=(b-a)n .

相关主题
相关文档
最新文档