双曲线及其方程-知识总结

双曲线及其方程-知识总结
双曲线及其方程-知识总结

高中数学全参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

双曲线知识点复习总结

双曲线知识点总结复习 1.双曲线的定义: (1)双曲线:焦点在x 轴上时1-2222=b y a x (222 c a b =+),焦点在y 轴上时2 222-b x a y =1(0a b >>)。双曲线方程也可设为: 22 1(0)x y mn m n -=>这样设的好处是为了计算方便。 (2)等轴双曲线: (注:在学了双曲线之后一定不要和椭圆的相关内容混淆了,他们之间有联系,可以类比。) 例一:已知双曲线C 和椭圆22 1169 x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。(要分清椭圆和双曲线中的,,a b c 。) 思考:定义中若(1)20a =;(2)122a F F =,各表示什么曲线? 2.双曲线的几何性质: (1)双曲线(以)(0,01-22 22>>=b a b y a x 为例):①范围:x a x a ≥≤-且;②焦点: 两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点 (,0),(0,)a b ±±,其中实轴长为2a ,虚轴长为2b ;④准线:两条准线2 a x c =±;⑤离心 率:c e a =,双曲线?1e >,e 越大,双曲线开口越大;e 越小,双曲线开口越小。⑥通 径22b a (2)渐近线:双曲线22 221(0,0)x y a b a b -=>>的渐近线为: 等轴双曲线的渐近线方程为:,离心率为: (注:利用渐近线可以较准确的画出双曲线的草图) 例二:方程 1112 2=--+k y k x 表示双曲线,则k 的取值范围是___________________ 例三:双曲线与椭圆 164 162 2=+y x 有相同的焦点,它的一条渐近线为x y -=,则双曲线的方程为__________________ 例四:双曲线142 2=+b y x 的离心率)2,1(∈e ,则b 的取值范围是___________________

高考数学圆锥曲线与方程章总结题型详解

圆锥曲线与方程 题型一 定义运用 1..(2017·湖南高考模拟(理))已知抛物线2 2x y = 上一点P 到焦点F 的距离为1,,M N 是直线2y =上 的两点,且2MN =,MNP ?的周长是6,则sin MPN ∠=( ) A . 4 5 B . 25 C . 23 D . 13 【答案】A 【解析】由题意,22p = ,则 122p = ,故抛物线22x y = 的焦点坐标是10,2?? ??? ,由抛物线的定义得,点P 到准线1 2y =- 的距离等于PF ,即为1 ,故点P 到直线2y =的距离为132122d ??=---= ??? . 设 点P 在直线MN 上的射影为P' ,则3 '2 PP = . 当点,M N 在P'的同一侧(不与点P'重合)时,35 2=622 PM PN MN ++> ++ ,不符合题意;当点,M N 在P'的异侧(不与点P'重合)时,不妨设()'02P M x x =<<,则'2P N x =- ,故由 2=6PM PN MN ++= ,解得0x = 或2 ,不符合题意,舍去, 综上,M N 在两点中一定有一点与点P'重合,所以 24552 sin MPN <= = ,故选A. 2.(2017·河南高考模拟(文))已知直线()()20y k x k =+>与抛物线2 :8C y x =相交于A ,B 两点,F 为C 的焦点,若2FA FB =,则点A 到抛物线的准线的距离为( ) A .6 B .5 C .4 D .3 【答案】A 【解析】由题意得,设抛物线2 8y x =的准线方程为:2l x =-,直线()2y k x =+恒过定点()2,0-, 如图过,A B 分别作AM l ⊥于M ,BN l ⊥于N ,连接OB , 由2FA FB =,则2AM BN =,点B 为AP 的中点, 因为点O 是PF 的中点,则1 2 OB AF = ,

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:12 22 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆)0(12 22 2 b a b y a x =+上的一点,21,F F 为左、右焦点,则 ii.设),(00y x P 为椭圆 )0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 2002 01 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆:12 22 2=+ b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2 cot 2θ ?b . ?-=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

双曲线知识点归纳总结

双曲线知识点归纳总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

第二章 2.3 双曲线

① 当|MF 1|-|MF 2|=2a 时,则表示点M 在双曲线右支上; 当a MF MF 212=-时,则表示点M 在双曲线左支上; ② 注意定义中的“(小于12F F )”这一限制条件,其根据是“三角形两边之和之差小于第三边”。 若2a =2c 时,即2121F F MF MF =-,当2 12 1F F MF MF =-,动点轨迹是以2F 为端点向 右延伸的一条射线;当2112F F MF MF =-时,动点轨迹是以1F 为端点向左延伸的一条射线; 若2a >2c 时,动点轨迹不存在. 2. 双曲线的标准方程判别方法是: 如果2x 项的系数是正数,则焦点在x 轴上; 如果2y 项的系数是正数,则焦点在y 轴上. 对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 3. 双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 4. 形如)0(12 2 AB By Ax =+的方程可化为11122=+ B y A x 当01 ,01 B A ,双曲线的焦点在y 轴上; 当01 ,01 B A ,双曲线的焦点在x 轴上; 5.求双曲线的标准方程, 应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.

双曲线知识点归纳总结

第二章 2.3 双曲线

① 当|MF 1|-|MF 2|=2a 时,则表示点M 在双曲线右支上; 当a MF MF 212=-时,则表示点M 在双曲线左支上; ② 注意定义中的“(小于12F F )”这一限制条件,其根据是“三角形两边之和之差小于第三边”。 若2a =2c 时,即2 12 1F F MF MF =-,当2121F F MF MF =-,动点轨迹是以2F 为端点向

右延伸的一条射线;当2 112 F F MF MF =-时,动点轨迹是以1F 为端点向左延伸的一 条射线; 若2a >2c 时,动点轨迹不存在. 2. 双曲线的标准方程判别方法是: 如果2x 项的系数是正数,则焦点在x 轴上; 如果2y 项的系数是正数,则焦点在y 轴上. 对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 3. 双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 4. 形如)0(12 2πAB By Ax =+的方程可化为11122=+ B y A x 当01 ,01φπB A ,双曲线的焦点在y 轴上; 当01 ,01πφB A ,双曲线的焦点在x 轴上; 5.求双曲线的标准方程, 应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. 6. 离心率与渐近线之间的关系 22 2 22222 1a b a b a a c e +=+== 1)2 1?? ? ??+=a b e 2) 12-=e a b 7. 双曲线的方程与渐近线方程的关系 (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上). (4)与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-22 22b y a x 0(≠λ

圆锥曲线方程总结

圆锥曲线方程后期复习系列 北海七中高二数学备课组 1、已知定点)0,3(),0,3(21F F -,在平面上动点P 的轨迹中是椭圆的是(答:C ) A .421=+PF PF B .621=+PF PF C .102 1=+PF PF D .122 22 1=+PF PF 2、方程8表示的曲线是_____(答:双曲线的左支) 3、已知P 为抛物线2 2 1x y =上的动点,点P 在x 轴上的射影为M , 点A 的坐标是)217, 6(,则PM PA +的最小值是 _____ (答:2 19) 4、已知方程1232 2=-++k y k x 表示椭圆,则k 的取值范围为___(答:11(3,)(,2)22--- )5、 若R y x ∈,,且62322=+y x ,则y x +的最大值是_,22y x +的最小值是_2) 6、方程221Ax By +=表示双曲线的充要条件是什么?(A ,B 异号)。 7、双曲线的离心率等于2 5 ,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程 (答:2 214 x y -=); 8、设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=) 9、方程1212 2=-+-m y m x 表示焦点在y 轴上的椭圆,则m 的取值范围是)23,1()1,( --∞ 10、若椭圆1522=+m y x 的离心率510 = e ,则m 的值是__(答:3或325); 11、以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时, 则椭圆长轴的最小值为__(答:22)

圆锥曲线与方程 知识点详细

椭圆 1、椭圆的第一定义:平面一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。. 注意:若)(2121 F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的 轨迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示: 221x y m n += 或者 mx 2+ny 2=1 。 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴 为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对 称中心称为椭圆的中心。 (2)围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆 122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。 a 和 b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值围是)10(<>),且已知椭 圆的准线方程为2 a x c =±,试推导出下列式子:(提示:用三角 函数假设P 点的坐标e PM PF PM PF == 2 21 1

双曲线知识点总结 (1)

双曲线知识点 知识点一:双曲线的定义: 在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且) 的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距. 注意: 1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解; 2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支; 3. 若常数满足约束条件:,则动点轨迹是以F 1 、F 2 为端点的两条射线(包括端点); 4.若常数满足约束条件:,则动点轨迹不存在; 5.若常数,则动点轨迹为线段F 1 F 2 的垂直平分线。 标准方程 图形 性质 焦点,, 焦距 范围,, 对称性关于x轴、y轴和原点对称 顶点

轴长实轴长 =,虚轴长= 离心率 渐近线方 程 1.通径:过焦点且垂直于实轴的弦,其长 a b2 2 2.等轴双曲线 :当双曲线的实轴长与虚轴长相等即2a=2b时,我们称这样的双曲线为等轴双曲线。其离心率,两条渐近线互相垂直为,等轴双曲线可设为 3.与双曲线有公共渐近线的双曲线方程可设为(,焦点在轴上,,焦点在y轴上) 4.焦点三角形的面积 2 cot 2 2 1 θ b S F PF = ? ,其中 2 1 PF F ∠ = θ 5.双曲线的焦点到渐近线的距离为b. 6.在不能确定焦点位置的情况下可设双曲线方程为:)0 (1 2 2< = +mn ny mx 7. 椭圆双曲线 根据|MF 1 |+|MF 2 |=2a 根据|MF 1 |-|MF 2 |=±2a a>c>0, a2-c2=b2(b>0) 0<a<c, c2-a2=b2(b>0) , (a>b>0) , (a>0,b>0,a不一定大于b)

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212 121212121,2, 2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+πφ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:) 0(12 22 2 φφb a b y a x =+. ii. 中心在原点,焦点在y 轴上:) 0(12 222 φφb a b x a y =+ . ②一般方程: ) 0,0(122φφB A By Ax =+. ③椭圆的标准方程:122 2 2 =+b y a x 的参数方程为???==θ θ sin cos b y a x (一象限θ应是属于 2 0π θπ π). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距: 2 221,2b a c c F F -==. ⑤准线: c a x 2 ± =或 c a y 2 ± =. ⑥离心率: )10(ππe a c e = . ⑦焦点半径: i. 设),(00y x P 为椭圆) 0(12 22 2 φφb a b y a x =+ 上的一点,21,F F ii.设),(00y x P 为椭圆) 0(12 22 2 φφb a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知: )0()(),0()(0002 200201φπx a ex x c a e pF x ex a c a x e pF -=-=+=+ =归结起来为 ? -=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

圆锥曲线与方程单元知识总结

圆锥曲线与方程单元知识总结、公式及规律 一、圆锥曲线 1.椭圆 (1)定义 定义1:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点). 定义2:点M 与一个定点的距离和它到一条定直线的距离的比是常 数=<<时,这个点的轨迹是椭圆. e (0e 1)c a (2)图形和标准方程 图-的标准方程为:+=>>图-的标准方程为:+=>>811(a b 0) 821(a b 0) x a y b x b y a 222 2222 2 (3)几何性质

2.双曲线 (1)定义 定义1:平面内与两个定点F F2的距离的差的绝对值等于常数(小于|F1F2|)的点 1、

的轨迹叫做双曲线(这两个定点叫双曲线的焦点). 定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点). (2)图形和标准方程 图8-3的标准方程为: x a y b 2 2 2 2 -=>,> 1(a0b0) 图8-4的标准方程为: y a x b 2 2 2 2 -=>,> 1(a0b0) (3)几何性质

3.抛物线 (1)定义 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. (2)抛物线的标准方程,类型及几何性质,见下表: ①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离. ②p 的几何意义:焦点F 到准线l 的距离. ③弦长公式:设直线为=+抛物线为=,=y kx b y 2px |AB|212+k |x x ||y y |2121-=-11 2+ k 焦点弦长公式:|AB|=p +x 1+x 2 4.圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义 与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e 表示,当0<e <1时,是椭圆,当e >1时,是双曲线,当e =1时,是抛物线. 二、利用平移化简二元二次方程 1.定义 缺xy 项的二元二次方程Ax 2+Cy 2+Dx +Ey +F =0(A 、C 不同时为0)※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程. A =C 是方程※为圆的方程的必要条件. A 与C 同号是方程※为椭圆的方程的必要条件. A 与C 异号是方程※为双曲线的方程的必要条件. A 与C 中仅有一个为0是方程※为抛物线方程的必要条件.

(完整版)双曲线经典知识点总结

双曲线知识点总结班级姓名 知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0 且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距. 注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解; 2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支; 3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点); 4.若常数满足约束条件:,则动点轨迹不存在; 5.若常数,则动点轨迹为线段F1F2的垂直平分线。 知识点二:双曲线的标准方程 1.当焦点在轴上时,双曲线的标准方程:,其中; 2.当焦点在轴上时,双曲线的标准方程:,其中. 注意:1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程; 2.在双曲线的两种标准方程中,都有; 3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上, 双曲线的焦点坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为, . 知识点三:双曲线的简单几何性质 双曲线(a>0,b>0)的简单几何性质 (1)对称性:对于双曲线标准方程(a>0,b>0),把x换成― x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以双曲线(a>0,b >0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。 (2)范围:双曲线上所有的点都在两条平行直线x=―a和x=a的两侧,是无限延伸的。因此双曲线上点的横坐标满足x≤-a或x≥a。(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。 ②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(―a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。 ③两个顶点间的线段A1A2叫作双曲线的实轴;设B1(0,―b),B2(0,b)为y轴上的两个点,则线段B1B2叫做双曲线的虚轴。实轴和虚轴的长度分别为|A1A2|=2a,|B1B2|=2b。a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长。 注意:①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。 ②双曲线的焦点总在实轴上。③实轴和虚轴等长的双曲线称为等轴双曲线。 (4)离心率:①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e表示,记作。 ②因为c>a>0,所以双曲线的离心率。由c2=a2+b2,可得, 所以决定双曲线的开口大小,越大,e也越大,双曲线开口就越开阔。所以离心率可以用来表示 双曲线开口的大小程度。③等轴双曲线,所以离心率。 (5)渐近线:经过点A2、A1作y轴的平行线x=±a,经过点B1、B2作x轴的平行线y=±b,四条直线 围成一个矩形(如图),矩形的两条对角线所在直线的方程是,我们把直线叫做双曲线的渐近线。 注意:双曲线与它的渐近线无限接近,但永不相交。 标准方程 图形 性质 焦点,, 焦距 范围,,

高考数学圆锥曲线与方程总结题型详解

高考数学圆锥曲线与方程章总结题型详解 圆锥曲线与方程 题型一 定义运用 1..(2017·湖南高考模拟(理))已知抛物线2 2x y = 上一点P 到焦点F 的距离为1,,M N 是直线2 y =上的两点,且2MN =,MNP ?的周长是6,则sin MPN ∠=( ) A . 4 5 B . 25 C . 23 D . 13 【答案】A 【解析】由题意,22p = ,则 122p = ,故抛物线22x y = 的焦点坐标是10,2?? ??? ,由抛物线的定义得,点P 到准线1 2y =- 的距离等于PF ,即为1 ,故点P 到直线2y =的距离为132122d ??=---= ??? . 设 点P 在直线MN 上的射影为P' ,则3 '2 PP = . 当点,M N 在P'的同一侧(不与点P'重合)时,35 2=622 PM PN MN ++> ++ ,不符合题意;当点,M N 在P'的异侧(不与点P'重合)时,不妨设()'02P M x x =<<,则'2P N x =- ,故由 2=6PM PN MN ++= ,解得0x = 或2 ,不符合题意,舍去, 综上,M N 在两点中一定有一点与点P'重合,所以 24552 sin MPN <= = ,故选A. 2.(2017·河南高考模拟(文))已知直线()()20y k x k =+>与抛物线2 :8C y x =相交于A ,B 两点, F 为C 的焦点,若2FA FB =,则点A 到抛物线的准线的距离为( ) A .6 B .5 C .4 D .3 【答案】A 【解析】由题意得,设抛物线2 8y x =的准线方程为:2l x =-,直线()2y k x =+恒过定点()2,0-, 如图过,A B 分别作AM l ⊥于M ,BN l ⊥于N ,连接OB ,

双曲线方程知识点总结_公式总结

双曲线方程知识点总结_公式总结 双曲线方程 1. 双曲线的第一定义: ⑴①双曲线标准方程:. 一般方程: . ⑴①i. 焦点在x轴上: 顶点:焦点:准线方程渐近线方程:或 ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或,参数方程:或. ②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率. ④准线距(两准线的距离);通径. ⑤参数关系. ⑥焦点半径公式:对于双曲线方程 (分别为双曲线的左、右焦点或分别为双曲线的上下焦点) “长加短减”原则: 构成满足 (与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)

⑴等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率. ⑴共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:. ⑴共渐近线的双曲线系方程:的渐近线方程为 如果双曲线的渐近线为时,它的双曲线方程可设为.例如:若双曲线一条渐近线为且过,求双曲线的方程? 解:令双曲线的方程为:,代入得. ⑴直线与双曲线的位置关系: 区域①:无切线,2条与渐近线平行的直线,合计2条; 区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条; 区域③:2条切线,2条与渐近线平行的直线,合计4条; 区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;区域⑤:即过原点,无切线,无与渐近线平行的直线. 小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条. (2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积同号. ⑴若P在双曲线,则常用结论1:P到焦点的距离为m = n,则P到两准线的距离比为m︰n.

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:122 2 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. > ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆 )0(12222 b a b y a x =+ 上的一点,21,F F 为左、右焦点,则 》 ii.设),(00y x P 为椭圆)0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 200201 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆: 12 22 2=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 ? -=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

经典双曲线知识点

双曲线:了解双曲线的定义、几何图形和标准方程;了解双曲线的简单几何性质。 重点:双曲线的定义、几何图形和标准方程,以及简单的几何性质. 难点:双曲线的标准方程,双曲线的渐进线. 知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点 的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距. 注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解; 2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中 靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支; 3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点); 4.若常数满足约束条件:,则动点轨迹不存在; 5.若常数,则动点轨迹为线段F1F2的垂直平分线。 知识点二:双曲线的标准方程 1.当焦点在轴上时,双曲线的标准方程:,其中; 2.当焦点在轴上时,双曲线的标准方程:,其中. 注意: 1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程; 2.在双曲线的两种标准方程中,都有; 3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上,双曲线的焦点 坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为,. 知识点三:双曲线的简单几何性质 双曲线(a>0,b>0)的简单几何性质 (1)对称性:对于双曲线标准方程(a>0,b>0),把x换成―x,或把y换成―y,或把x、y同时换成―x、― y,方程都不变,所以双曲线(a>0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。 (2)范围:双曲线上所有的点都在两条平行直线x=―a和x=a的两侧,是无限延伸的。因此双曲线上点的横坐标满足x≤-a 或x≥a。(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。 ②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(―a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。 ③两个顶点间的线段A1A2叫作双曲线的实轴;设B1(0,―b),B2(0,b)为y轴上的两个点,则线段B1B2叫做双曲线的虚轴。实轴和虚轴的长度分别为|A1A2|=2a,|B1B2|=2b。a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长。 注意:①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。

曲线与方程知识点及题型归纳总结 (2)

曲线与方程知识点及题型归纳总结 知识点精讲 一、曲线的方程和方程的曲线 在直角坐标系中,如果是某曲线C (看作适合某种条件的点的集合或轨迹)上的点与一个二元方程 (),0f x y =的实数解建立了如下的关系: (1) 曲线上的点的坐标都是这个方程的解(完备性) (2) 以这个方程的解为坐标的点都是曲线上的点(纯粹性) 那么,这个方程叫做曲线的方程,这条曲线叫方程的曲线。事实上,曲线可以看作一个点集C ,以一个二元方程的解作为坐标的点也组成一个点集F ,上诉定义中C F ????=????条件(1)C F 条件(2)F C 二、直接法求动点的轨迹方程 利用直接法求动点的轨迹方程的步骤如下: (1) 建系-----建立适当的坐标系 (2) 设点-----设轨迹上的任一点(),P x y (3) 列式-----列出有限制关系的几何等式 (4) 代换-----将轨迹所满足的条件用含,x y 的代数式表示,如选用距离和斜率公式等将其转化为 ,x y 的方程式化简 (5) 证明(一般省略)-----证明所求方程即为符合条件的动点轨迹方程(对某些特殊值应另外补 充检验)。 简记为:建设现代化,补充说明。 注:若求动点的轨迹,则不但要求出动点的轨迹方程,还要说明轨迹是什么曲线。 题型归纳及思路提示 题型1 求动点的轨迹方程 思路提示: 动点的运动轨迹所给出的条件千差万别,因此求轨迹的方法也多种多样,但应理解,所求动点的轨迹方程其实质即为其上动点的横纵坐标,x y 所满足的等量关系式,通常的方法有直译法,定义法,相关点法(代入法),参数法。 一、直译法 如果动点满足的几何条件本身就是一些几何量的等量关系且这些几何简单明了且易于表达,那么只需把这些关系“翻译”成含,x y 的等式,就可得到曲线的轨迹方程,由于这种求轨迹方程的过程不需要其他步骤,也不需要特殊的技巧,所以被称为直译法。 例10.30 在平面直角坐标系xOy 中,点B 与点()1,1A -关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于1 3 -,求动点P 的轨迹方程。 分析 设点(),P x y ,将题设中直线AP 与BP 斜率之积等于1 3 - 翻译成含,x y 的等式。 解析:因为点B 与点()1,1A -关于原点O 对称,所以点B 的坐标为()1,1-,设点(),P x y ,由题意得 111 113 y y x x -+=-+-g ,化简得()22341x y x +=≠± ,故动点P 的轨迹方程为()22341x y x +=≠± 变式1 已知动圆过定点()4,0A ,且在y 轴上截得的弦的长为8,求动圆圆心的轨迹C 的方程

圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()()12120000A a A a B b B b --,、,,、, ()()()()12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

高考数学圆锥曲线与方程知识点梳理

高考数学圆锥曲线与方程知识点梳理 一、方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。 点与曲线的关系:若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上?f(x 0,y 0)=0;点P 0(x 0,y 0)不在曲线C 上?f(x 0,y 0)≠0。 两条曲线的交点:若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则点P 0(x 0,y 0)是C 1,C 2的交点?{ ),(0),(002001==y x f y x f 方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没 有实数解,曲线就没有交点。 二、圆 1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 2、方程: (1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2 圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2 (2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2 ,2(E D --半径是2 422F E D -+。配方,将方程x 2+y 2 +Dx+Ey+F=0化为 (x+ 2D )2+(y+2 E )2=4 4F -E D 22+ ②当D 2+E 2-4F=0时,方程表示一个点(- 2D ,-2 E ); ③当D 2+E 2-4 F <0时,方程不表示任何图形.

双曲线知识点归纳总结.

第二章 2.3 双曲线 双曲线 标准方程(焦点在x 轴) )0,0(122 22>>=-b a b y a x 标准方程(焦点在y 轴) )0,0(122 22>>=-b a b x a y 定义 第一定义:平面内与两个定点1F ,2F 的距离的差的绝对值是常数(小于12F F )的点的轨迹叫双曲线。这两个定点叫做双曲线的焦点,两焦点的距离叫焦距。 {}a MF MF M 22 1 =-()212F F a < 第二定义:平面内与一个定点F 和一条定直线l 的距离的比是常数e ,当1e >时,动点的轨迹是双曲线。定点F 叫做双曲线的焦点,定直线叫做双曲线的准线,常数e (1e >)叫做双曲线的离心率。 范围 x a ≥,y R ∈ y a ≥,x R ∈ 对称轴 x 轴 ,y 轴;实轴长为2a ,虚轴长为2b 对称中 心 原点(0,0)O 焦点坐标 1(,0)F c - 2(,0)F c 1(0,)F c - 2(0,)F c 焦点在实轴上,22c a b =+;焦距:122F F c = 顶点坐标 (a -,0) (a ,0) (0, a -,) (0,a ) x y P 1 F 2 F x y P x y P 1F 2F x y x y P 1 F 2 F x y x y P 1F 2F x y P

离心率 e a c e (= >1) 准线方 程 c a x 2 ± = c a y 2 ± = 准线垂直于实轴且在两顶点的内侧;两准线间的距离:c a 2 2 顶点到准线的 距离 顶点1A (2A )到准线1l (2l )的距离为c a a 2 - 顶点1 A (2A )到准线2l (1l )的距离为a c a +2 焦点到准线的 距离 焦点1F (2F )到准线1l (2l )的距离为c a c 2 - 焦点1F (2F )到准线2l (1l )的距离为c c a +2 渐近线 方程 x a b y ±= x b a y ±= 共渐近 线的双曲线系 方程 k b y a x =-2222(0k ≠) k b x a y =-22 2 2(0k ≠) 1. 双曲线的定义 ① 当|MF 1|-|MF 2|=2a 时,则表示点M 在双曲线右支上; 当a MF MF 212=-时,则表示点M 在双曲线左支上; ② 注意定义中的“(小于12F F )”这一限制条件,其根据是“三角形两边之和之差小于第三边”。 若2a =2c 时,即2 12 1F F MF MF =-,当2121F F MF MF =-,动点轨迹是以2F 为端点向 右延伸的一条射线;当2112F F MF MF =-时,动点轨迹是以1F 为端点向左延伸的一条射线; 若2a >2c 时,动点轨迹不存在. 2. 双曲线的标准方程判别方法是: 如果2x 项的系数是正数,则焦点在x 轴上; 如果2y 项的系数是正数,则焦点在y 轴上. 对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 3. 双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<.

相关文档
最新文档