遗传算法搜索最优解

遗传算法搜索最优解
遗传算法搜索最优解

实验一:基于遗传算法的函数优化

1、实验目的

1) 掌握Matlab子函数的编写与调用。

2) 理解基本遗传算法的原理,并利用程序实现利用遗传算法优化非线性函数的解。

2、实验内容与实验要求

1) 掌握基本遗传算法方法原理。

2) 掌握matlab子函数的编写方法及调用方法。

3) 根据基本遗传算法方法原理,编写Matlab程序,优化非线性函数的解。

4) 设f(x) = -x^2 - 4x + 1,求max f(x), x [-2, 2],解的精度保留二位小数

3、遗传算法原理

遗传算法模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。

4、主程序及子函数:

主函数:

clear

clc

my_scale=80; %种群规模

gen_len=22; %基因长度

M=100; %迭代次数

pc=0.7; %交叉概率

pm=0.05; %变异概率

new_scale=produscale(my_scale,gen_len); %产生初始种群

fitfit=[];

fittimer=[];

best_f1=[];

best_x1=[];

for i=1:M

my_f=cal_my_f(new_scale); %计算函数值

my_fit=cal_my_fit(my_f); %计算适应度值

next_scale=my_sellect(new_scale,my_fit); %采用赌轮盘法选择 cross_scale=my_cross(next_scale,pc); %按概率交叉

mut_scale=my_mutat(cross_scale,pm); %按概率变异

%寻找每一代中的最优适应度值所对应的个体

best_fit=my_fit(1);

[sx,sy]=size(new_scale);

for j=2:length(my_fit)

if best_fit

best_fit=my_fit(j);

best_f=my_f(j);

best_x=my2to10(new_scale(j,:));

best_x=-2+best_x.*4./(2^sy-1);

end

end

new_scale=mut_scale;

fitfit=[fitfit,best_fit];

best_f1=[best_f1,best_f];

best_x1=[best_x1,best_x];

fittimer=[fittimer,i];

end

[best_fit,loca]=max(fitfit);

best_f=best_f1(loca);

best_x=best_x1(loca);

disp('[best_fit,best_f,best_x]=')

disp([best_fit,best_f,best_x])

subplot(2,2,1)

plot(fittimer,fitfit)

xlabel('迭代次数(1)-wxb');

ylabel('适应度函数')

grid on

%子函数:产生初始种群

function initscale=produscale(my_scale,gen_len) initscale=round(rand(my_scale,gen_len));

end

%子函数:计算函数值

function my_f=cal_my_f(new_scale)

mychange=my2to10(new_scale);

[sx,sy]=size(new_scale);

change_x=-2+mychange.*4./(2^sy-1);

my_f=-change_x.^2-4.*change_x+1;

end

%子函数:计算适应度值

function my_fit=cal_my_fit(my_f)

f_min=5;

for i=1:length(my_f)

if my_f(i)+f_min<=0

my_fit(i)=0;

else

my_fit(i)=my_f(i)+f_min;

end

end

my_fit=my_fit';

end

%子函数:采用赌轮盘法选择

function next_scale=my_sellect(new_scale,my_fit) sum_of_f=sum(my_fit);

accum=my_fit/sum_of_f;

accum=cumsum(accum);

[sx,sy]=size(new_scale);

j=1;

while j<=sx

a=rand;

for i=1:sx-1

if accum(1)>=a

next_scale(j,:)=new_scale(1,:);

else if accum(i)=a

next_scale(j,:)=new_scale(i+1,:);

j=j+1;

end

end

end

end

end

%子函数:按概率交叉

function cross_scale=my_cross(new_scale,pc)

[sx,sy]=size(new_scale);

cross_scale=new_scale;

for i=1:2:sx-1

if rand

a=round(rand*sy);

cross_scale(i,:)=[new_scale(i,1:a),new_scale(i+1,a+1:end)];

cross_scale(i+1,:)=[new_scale(i+1,1:a),new_scale(i,a+1:end)];

end

end

%子函数:按概率变异

function mut_scale=my_mutat(new_scale,pm)

[sx,sy]=size(new_scale);

mut_scale=new_scale;

for i=1:sx

if rand

a=round(rand*sy);

if a<=0

a=1;

end

if mut_scale(i,a)==0

mut_scale(i,a)=1;

else

mut_scale(i,a)=0;

end

end

end

%子函数:2进制转10进制

function mychange=my2to10(new_scale)

[sx,sy]=size(new_scale);

new_scale1=new_scale;

for i=1:sy

new_scale1(:,i)=2.^(sy-i).*new_scale(:,i);

end

mychange=sum(new_scale1,2);

end

5、运行结果及分析

连续运行程序4次得到的运行结果如下:

第一次:(best_fit,best_f,best_x分别代表每一代中最优个体的适应度值,函数值,以及所对应的自变量x的值)

[best_fit,best_f,best_x]=

10.0000 5.0000 -1.9996

第二次:

[best_fit,best_f,best_x]=

10.0000 5.0000 -1.9985

第三次:

[best_fit,best_f,best_x]=

10.0000 5.0000 -1.9969

第四次

[best_fit,best_f,best_x]=

9.9999 4.9999 -1.9916

对应的迭代次数与适应度函数图如下:

50

1009.97

9.98

9.99

10迭代次数(1)-wxb

适应度函数

50

100

9.98

9.9859.999.995

10迭代次数(2)-wxb

适应度函数

50

100

9.97

9.98

9.99

10迭代次数(3)-wxb

适应度函数

50

100

9.9

9.95

10

迭代次数(4)-wxb

适应度函数

由连续四次的运行结果可以看出:

(1) 基本上每次运行结果都能够找到最有的解,即当x 取-2时,函数最大值为

5,说明此算法的稳定性比较高,可靠性好;

(2) 达到最大值的精度也比较的高,前三次为5,第四次为4.9999。

(3) 从迭代次数与适应度函数值的图像中分析,可以得到并不是迭代次数越

多,所对应的适应度值最大,而是在迭代的100次里面中间的某一次或者某几次适应度值最大。这是因为我们在选择的时候,采用赌轮盘的放来来选择,而此方法是以概率来选择,因此存在将相对较差的个体选择到的可能性,再加上交叉和变异也是不定向的,从而使得每代中最有个体的出现差异。

(4) 影响结果的因素:(a )迭代次数;(b )编码长度;(c )种群规模;(d )变

异和交叉的概率。

爬山算法、模拟退火算法、遗传算法

一.爬山算法( Hill Climbing ) 介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算 法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到 达到一个局部最优解。 爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜 索到全局最优解。如图1所示:假设C点为当前解,爬山算法搜索到A点 这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不 能得到更优的解。 二.模拟退火(SA,Simulated Annealing)思想(跟人一样找不 到最优解就最产生疑惑,我到底需不需要坚持,随着时间的推移,逐渐的慢慢的放弃去追寻最优解的念头) 爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。 以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。 若J( Y(i+1) )>= J( Y(i) ) (即移动后得到更优解),则总是接受该移动 若J( Y(i+1) )< J( Y(i) ) (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定) 这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。 根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为: P(dE) = exp( dE/(kT) ) 其中k是一个常数,exp表示自然指数,且dE<0。这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(否则就不叫退火了),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。 随着温度T的降低,P(dE)会逐渐降低。 我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。 关于爬山算法与模拟退火,有一个有趣的比喻:(有点意思)

用遗传算法求解Rosenbrock函数最优解实验报告

姓名学号 实验 成绩 华中师范大学计算机科学系 实验报告书 实验题目:用遗传算法求解Rosenbrock函数的最大值问题课程名称:智能计算 主讲教师:沈显君 辅导教师: 课程编号: 班级:2011级 实验时间:2011.11

用遗传算法求解Rosenbrock函数最大值问题 摘要: 本文利用遗传算法研究了求解Rosenbrock函数的最大值问题.在较多的计算机模拟实验结果中表明,用遗传算法可以有效地解决这一问题.文中分析了一种基于遗传算法对Rosenbrock函数最大值问题的求解,得到了适于解决此问题的合理的遗传操作,从而为有效地解决最速下降法所不能实现的某一类函数代化问题提供了一种新的途径.通过对基于遗传算法对Rosenbrock函数最大值问题的求解,进一步理解遗传算法对解决此类问题的思想。 关键词:遗传算法,Rosenbrock函数,函数优化,最速下降法。 Abstract: This paper deals with the maximum of Rosenbrock s function based ongenetic algorithms. The simulated results show that the problem can be solved effectivelyusing genetic algorithms. The influence of some rnodified genetic algorithms on searchspeed is also examined. Some genetic operations suitable to the optimization technique areobtained, therefore, a novel way of solving a class of optimizations of functions that cannot be realized using the method of steepest descent is proposed.Through dealing with the maximum of Rosenbrock s function based ongenetic algorithms,a better understanding of the genetic algorithm to solve such problems thinking. Keyword:ongenetic algorithms,Rosenbrock function,function optimization,Steepest descent method

遗传算法优化相关MATLAB算法实现

遗传算法 1、案例背景 遗传算法(Genetic Algorithm,GA)是一种进化算法,其基本原理是仿效生物界中的“物竞天择、适者生存”的演化法则。遗传算法的做法是把问题参数编码为染色体,再利用迭代的方式进行选择、交叉以及变异等运算来交换种群中染色体的信息,最终生成符合优化目标的染色体。 在遗传算法中,染色体对应的是数据或数组,通常是由一维的串结构数据来表示,串上各个位置对应基因的取值。基因组成的串就是染色体,或者叫基因型个体( Individuals) 。一定数量的个体组成了群体(Population)。群体中个体的数目称为群体大小(Population Size),也叫群体规模。而各个个体对环境的适应程度叫做适应度( Fitness) 。 2、遗传算法中常用函数 1)创建种群函数—crtbp 2)适应度计算函数—ranking 3)选择函数—select 4)交叉算子函数—recombin 5)变异算子函数—mut 6)选择函数—reins 7)实用函数—bs2rv 8)实用函数—rep 3、主程序: 1. 简单一元函数优化: clc clear all close all %% 画出函数图 figure(1); hold on; lb=1;ub=2; %函数自变量范围【1,2】 ezplot('sin(10*pi*X)/X',[lb,ub]); %画出函数曲线 xlabel('自变量/X') ylabel('函数值/Y') %% 定义遗传算法参数 NIND=40; %个体数目 MAXGEN=20; %最大遗传代数 PRECI=20; %变量的二进制位数 GGAP=0.95; %代沟 px=0.7; %交叉概率 pm=0.01; %变异概率

遗传算法模拟退火matlab编程

单钻头退火算法matlab编程 clear clc a = 0.999; % 温度衰减函数的参数 t0 = 97; tf = 3; t = t0; Markov_length = 2800; % Markov链长度 coordinates = [ ]; coordinates(:,1) = []; amount = size(coordinates,1); % 城市的数目 % 通过向量化的方法计算距离矩阵 dist_matrix = zeros(amount, amount); coor_x_tmp1 = coordinates(:,1) * ones(1,amount); coor_x_tmp2 = coor_x_tmp1'; coor_y_tmp1 = coordinates(:,2) * ones(1,amount); coor_y_tmp2 = coor_y_tmp1'; dist_matrix = sqrt((coor_x_tmp1-coor_x_tmp2).^2 + ... (coor_y_tmp1-coor_y_tmp2).^2); sol_new = 1:amount; % 产生初始解 % sol_new是每次产生的新解;sol_current是当前解;sol_best是冷却中的最好解; E_current = inf;E_best = inf; % E_current是当前解对应的回路距离; % E_new是新解的回路距离; % E_best是最优解的 sol_current = sol_new; sol_best = sol_new; p = 1; while t>=tf for r=1:Markov_length % Markov链长度 % 产生随机扰动 if (rand < 0.5) % 随机决定是进行两交换还是三交换 % 两交换 ind1 = 0; ind2 = 0; while (ind1 == ind2) ind1 = ceil(rand.*amount); ind2 = ceil(rand.*amount); end tmp1 = sol_new(ind1); sol_new(ind1) = sol_new(ind2);

遗传算法求解函数最大值

人工智能 遗传算法函数优化

目录 1引言 (3) 1.1 摘要 (3) 1.2 背景 (3) 2 实验过程 (4) 2.1 程序目标 (4) 2.2 实验原理及步骤 (4) 2.3程序 (5) 2.3.1程序理解: (5) 2.3.3调试程序: (5) 2.4 实验总结 (18)

1引言 1.1 摘要 函数优化是遗传算法的经典应用领域,也是对遗传算法进行性能评价的常用算例。本文将用一个详细的例子来说明用遗传算法解一个简单参数优化问题的过程。这里求解的是一个函数的最大值的问题。 1.2 背景 遗传算法采纳自然进化模型。通过保持一个潜在解的群体执行了多方向的搜索并支持这些方向上的信息构成和交换。群体经过一个模拟进化的过程:在每一代,相对“好”的解产生,相对“差”的解死亡。为区别不同解,我们使用了一个目标(评价)函数,它起着一个环境的作用。 选择是用来确定管理费用或交叉个体,以及被选个体将产生多少个代个体。 杂交组合了两个亲代染色体的特征,并通过交换父代相应的片断形成了两个相似的后代。杂交算子的意图是在不同潜在解之间进行信息交换。 变异是通过用一个等于变异率的概率随机地改变被选择染色体上的一个或多个基因。变异算子的意图是向群体引入一些额外的变化性。 运用遗传算法解题必经的五个步骤: 1.对问题潜在解的遗传表达。 2.产生潜在解初始群体的方法。 3.起环境作用的用“适应值”评价解的适应程度的评价函数。 4.改变后代组成的各种遗传算子。 5.遗传算法所使用的各种参数:群体规模、应用遗传算子的概率等。

2 实验过程 2.1 程序目标 在实验过程中,我们应用遗传算法来模拟一个函数优化的问题。程序所要解决的问题是求f(x1,x2)=21.5+x1*sin(4pi*x1)+x2*sin(20pi*x2)的最大值,其中-3.0≤x1≤12.1及4.1≤x2≤5.8。 2.2 实验原理及步骤 1 )首先确立变量x1的定义域长度为15.1;所要求的小数点以后第四位精度意味着区间[-3.0, 12.1]应该至少被分成15.1*10000个等距区间,即染色体的第一部分需要18位;自变量x2域长度为 1.7,精度要求区间[4.1, 5.8]应该至少被分成1.7*10000个等距区间,即染色体的第二部分需要15位。所以染色体总长度为33位。用遗传算法的优化函数f,产生了一个有pop_size = 20个染色体的群体。所有染色体的33位都是随机初始化。对每个染色体进行解码并计算解码后的(x1,x2)的适应函数值,eval(vi) (i=1,..,pop_size) = f(x1,x2)。 2)为选择过程建立一个轮盘。计算群体的总适应值F,并计算每个染色体vi (i=1,..,pop_size)的选择概率pi:pi = eval(vi) / F 和累积概率qi: qi = p1 + .. + pi. 3)转动轮盘20次,每次为新群体选择一单个染色体。生成一个区间[0,1]里的20个数的一个随机序列。如果一个随机数位于qi于q(i+1)之间,则q(i+1)被选择。4)对新群体中的个体应用杂交算子。杂交概率pc = 0.25,所以预计染色体中平均有25%将经历杂交。杂交按照下面的方法进行:对新群体中的每个染色体,产生在区间[0,1]里的随机数r,并从随机序列中选出r<0.25的染色体进行杂交。 5)对被选择的染色体随机进行配对。并从区间[1,32]里产生一个随机整数pos。数字pos表示杂交点的位置。 6)算子变异。在一位一位基础上执行。变异概率pm = 0.01,所以我们预计平均将有1%的位经历变异。整个群体共有m*pop_size = 660位,可以预计平均每代有6.6次变异。因为每一位都有均等的机会被变异,所以对群体中的每一位可以产生区间

遗传算法求解实例

yj1.m :简单一元函数优化实例,利用遗传算法计算下面函数的最大值 0.2)*10sin()(+=x x x f π,∈x [-1, 2] 选择二进制编码,种群中个体数目为40,每个种群的长度为20,使用代沟为0.9, 最大遗传代数为25 译码矩阵结构:?????????? ??????? ???? ?=ubin lbin scale code ub lb len FieldD 译码矩阵说明: len – 包含在Chrom 中的每个子串的长度,注意sum(len)=length(Chrom); lb 、ub – 行向量,分别指明每个变量使用的上界和下界; code – 二进制行向量,指明子串是怎样编码的,code(i)=1为标准二进制编码, code(i)=0则为格雷编码; scale – 二进制行向量,指明每个子串是否使用对数或算术刻度,scale(i)=0为算术 刻度,scale(i)=1则为对数刻度; lbin 、ubin – 二进制行向量,指明表示范围中是否包含每个边界,选择lbin=0或 ubin=0,表示从范围中去掉边界;lbin=1或ubin=1则表示范围中包含边界; 注:增加第22行:variable=bs2rv(Chrom, FieldD);否则提示第26行plot(variable(I), Y, 'bo'); 中variable(I)越界 yj2.m :目标函数是De Jong 函数,是一个连续、凸起的单峰函数,它的M 文件objfun1包含在GA 工具箱软件中,De Jong 函数的表达式为: ∑ == n i i x x f 1 2 )(, 512512≤≤-i x 这里n 是定义问题维数的一个值,本例中选取n=20,求解 )(min x f ,程序主要变量: NIND (个体的数量):=40; MAXGEN (最大遗传代数):=500; NV AR (变量维数):=20; PRECI (每个变量使用多少位来表示):=20; GGAP (代沟):=0.9 注:函数objfun1.m 中switch 改为switch1,否则提示出错,因为switch 为matlab 保留字,下同! yj3.m :多元多峰函数的优化实例,Shubert 函数表达式如下,求)(min x f 【shubert.m 】

4遗传算法与函数优化

第四章遗传算法与函数优化 4.1 研究函数优化的必要性: 首先,对很多实际问题进行数学建模后,可将其抽象为一个数值函数的优化问题。由于问题种类的繁多,影响因素的复杂,这些数学函数会呈现出不同的数学特征。除了在函数是连续、可求导、低阶的简单情况下可解析地求出其最优解外,大部分情况下需要通过数值计算的方法来进行近似优化计算。 其次,如何评价一个遗传算法的性能优劣程度一直是一个比较难的问题。这主要是因为现实问题种类繁多,影响因素复杂,若对各种情况都加以考虑进行试算,其计算工作量势必太大。由于纯数值函数优化问题不包含有某一具体应用领域中的专门知识,它们便于不同应用领域中的研究人员能够进行相互理解和相互交流,并且能够较好地反映算法本身所具有的本质特征和实际应用能力。所以人们专门设计了一些具有复杂数学特征的纯数学函数,通过遗传算法对这些函数的优化计算情况来测试各种遗传算法的性能。 4.2 评价遗传算法性能的常用测试函数 在设计用于评价遗传算法性能的测试函数时,必须考虑实际应用问题的数学模型中所可能呈现出的各种数学特性,以及可能遇到的各种情况和影响因素。这里所说的数学特性主要包括: ●连续函数或离散函数; ●凹函数或凸函数; ●二次函数或非二次函数; ●低维函数或高维函数; ●确定性函数或随机性函数; ●单峰值函数或多峰值函数,等等。 下面是一些在评价遗传算法性能时经常用到的测试函数: (1)De Jong函数F1: 这是一个简单的平方和函数,只有一个极小点f1(0, 0, 0)=0。

(2)De Jong 函数F2: 这是一个二维函数,它具有一个全局极小点f 2(1,1) = 0。该函数虽然是单峰值的函数,但它却是病态的,难以进行全局极小化。 (3)De Jong 函数F3: 这是一个不连续函数,对于]0.5,12.5[--∈i x 区域内的每一个点,它都取全局极小值 30),,,,(543213-=x x x x x f 。

基于改进遗传算法的连续函数优化

基于改进遗传算法的连续函数优化 摘要:为了进一步避免连续函数优化过程中的“早熟收敛”和“搜索迟钝”,在简单遗传算法基础上提出了划分寻优区间、基于排序和最佳保留的轮盘赌选择算子,可以用来提高遗传算法的运行效率和收敛速度,达到了既能够选出最好个体又能够保证种群多样性的效果;同时采用择优交叉算子和二元变异算子,这样既保证了种群的收敛性,又可在陷入局部最优时为种群引入新基因。仿真实验表明,与简单遗传算法相比,改进后的遗传算法能有效地提高遗传算法的收敛速度和避免陷入局部最优。 关键词:遗传算法;轮盘赌选择算子;最佳保留;择优交叉;连续函数优化遗传算法(geneticalgorithm简称GA)是近年来迅速发展起来的一种全新的随机搜索与优化算法。其基本思想是基于Darwin的进化论和mendel的遗传学说。遗传算法最早由美国holand教授提出。遗传算法提供了一种求解复杂系统优化问题的通用框架,可以不用依赖于问题的具体领域,对解决问题的种类有很强的鲁棒性,所以应用广泛,其中函数优化是遗传算法的经典应用领域。但是在算法的具体实施过程中,经常遇到诸如收敛速度慢和早熟等问题,这使得在计算中需要很长时间才能找到最优解,而且很容易陷入局部极值。本文对简单遗传算法加以改进,引入划分寻优区间、排序和最佳保留的轮盘选择算子、择优交叉算子、二元变异算子等,以提高遗传算法的收敛速度和避免陷入局部最优,来获得连续函数的最优解。 一、遗传算法基本原理 遗传算法是一种基于生物进化原理构想出来的搜索最优解的仿生算法,它模拟基因重组与进化的自然过程。与传统搜索算法不同,遗传算法从一组随机产生的初始解(称为群体),开始搜索过程。首先把待解决问题参数编码成基因,群体中的每个个体是问题的一个解,称为染色体。这些染色体在后续迭代中不断进化,称为遗传。遗传算法主要通过选择算子、交叉算子和变异算子实现。交叉或变异运算生成下一代染色体,称为后代。染色体的好坏用适应度来衡量。根据适应度的大小从上一代和后代中选择一定数量的个体,作为下一代群体,再继续进化,这样经过若干代之后,算法收敛于最好的染色体,它很可能就是问题的最优解或次优解。遗传算法中使用适应度这个概念来度量群体中的各个个体的在优化计算中有可能到达最优解的优良程度。度量个体适应度的函数称为适应度函数。适应度函数的定义一般与具体求解问题有关。习惯上,适应度值越大,表示解的质量越好。对于求最小值问题,可以通过变换转化为求最大值问题。 1.1简单遗传算法(sinplegeneticalgorithm,SGA) SGA应用于求最优解的过程中,通过把要求解的参数编码转换为生物进化过程中的染色体,并且依据各个个体的适应值的大小,进行选择、交叉和变异操作,从而得到新的个体,重复进行这些操作直到达到算法结束条件,其算法的流程如图1所示。

(实例)matlab遗传算法工具箱函数及实例讲解

matlab遗传算法工具箱函数及实例讲解 核心函数: (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数 【输出参数】 pop--生成的初始种群 【输入参数】 num--种群中的个体数目 bounds--代表变量的上下界的矩阵 eevalFN--适应度函数 eevalOps--传递给适应度函数的参数 options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B], 如 precision--变量进行二进制编码时指定的精度 F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度) (2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,... termFN,termOps,selectFN,selectOps,xOverFNs,xOverO ps,mutFNs,mutOps)--遗传算法函数 【输出参数】 x--求得的最优解 endPop--最终得到的种群 bPop--最优种群的一个搜索轨迹 【输入参数】 bounds--代表变量上下界的矩阵 evalFN--适应度函数 evalOps--传递给适应度函数的参数 startPop-初始种群 opts[epsilon prob_ops display]--opts(1:2)等同于initializega 的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0] termFN--终止函数的名称,如['maxGenTerm'] termOps--传递个终止函数的参数,如[100] selectFN--选择函数的名称,如['normGeomSelect'] selectOps--传递个选择函数的参数,如[0.08] xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover'] xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0] mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation'] mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]

遗传算法多目标函数优化

多目标遗传算法优化 铣削正交试验结果 说明: 1.建立切削力和表面粗糙度模型 如: 3.190.08360.8250.5640.45410c e p z F v f a a -=(1) a R =此模型你们来拟合(上面有实验数据,剩下的两个方程已经是我帮你们拟合好的了)(2) R a =10?0.92146v c 0.14365f z 0.16065a e 0.047691a p 0.38457 10002/c z p e Q v f a a D π=-????(3) 变量约束范围:401000.020.080.25 1.0210c z e p v f a a ≤≤??≤≤??≤≤? ?≤≤? 公式(1)和(2)值越小越好,公式(3)值越大越好。π=3.14 D=8 2.请将多目标优化操作过程录像(同时考虑三个方程,优化出最优的自变量数值),方便我后续进行修改;将能保存的所有图片及源文件发给我;将最优解多组发给我,类似于下图(黄色部分为达到的要求)

遗传算法的结果:

程序如下: clear; clc; % 遗传算法直接求解多目标优化 D=8; % Function handle to the fitness function F=@(X)[10^(3.19)*(X(1).^(-0.0836)).*(X(2).^0.825).*(X(3).^0.564).*(X(4).^0. 454)]; Ra=@(X)[10^(-0.92146)*(X(1).^0.14365).*(X(2).^0.16065).*(X(3).^0.047691).*( X(4).^0.38457)]; Q=@(X)[-1000*2*X(1).*X(2).*X(3).*X(4)/(pi*D)];

遗传算法求解函数极值C语言代码

#include "stdio.h" #include "stdlib.h" #include "conio.h" #include "math.h" #include "time.h" #define num_C 12 //个体的个数,前6位表示x1,后6位表示x2 #define N 100 //群体规模为100 #define pc 0.9 //交叉概率为0.9 #define pm 0.1 //变异概率为10% #define ps 0.6 //进行选择时保留的比例 #define genmax 2000 //最大代数200 int RandomInteger(int low,int high); void Initial_gen(struct unit group[N]); void Sort(struct unit group[N]); void Copy_unit(struct unit *p1,struct unit *p2); void Cross(struct unit *p3,struct unit *p4); void Varation(struct unit group[N],int i); void Evolution(struct unit group[N]); float Calculate_cost(struct unit *p); void Print_optimum(struct unit group[N],int k); /* 定义个体信息*/ typedef struct unit { int path[num_C]; //每个个体的信息 double cost; //个体代价值 }; struct unit group[N]; //种群变量group int num_gen=0; //记录当前达到第几代 int main() { int i,j; srand((int)time(NULL)); //初始化随机数发生器 Initial_gen(group); //初始化种群 Evolution(group); //进化:选择、交叉、变异 getch(); return 0; } /* 初始化种群*/ void Initial_gen(struct unit group[N]) { int i,j; struct unit *p; for(i=0;i<=N-1;i++) //初始化种群里的100个个体 {

三个遗传算法matlab程序实例

遗传算法程序(一): 说明: fga.m 为遗传算法的主程序; 采用二进制Gray编码,采用基于轮盘赌法的非线性排名选择, 均匀交叉,变异操作,而且还引入了倒位操作! function [BestPop,Trace]=fga(FUN,LB,UB,eranum,popsize,pCross,pMutation,pInversion,options) % [BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation) % Finds a maximum of a function of several variables. % fmaxga solves problems of the form: % max F(X) subject to: LB <= X <= UB % BestPop - 最优的群体即为最优的染色体群 % Trace - 最佳染色体所对应的目标函数值 % FUN - 目标函数 % LB - 自变量下限 % UB - 自变量上限 % eranum - 种群的代数,取100--1000(默认200) % popsize - 每一代种群的规模;此可取50--200(默认100) % pcross - 交叉概率,一般取0.5--0.85之间较好(默认0.8) % pmutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1) % pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2) % options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编 %码,option(2)设定求解精度(默认1e-4) % % ------------------------------------------------------------------------ T1=clock; if nargin<3, error('FMAXGA requires at least three input arguments'); end if nargin==3, eranum=200;popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==4, popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==5, pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==6, pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==7, pInversion=0.15;options=[0 1e-4];end if find((LB-UB)>0) error('数据输入错误,请重新输入(LB

基于遗传算法的参数优化估算模型

基于遗传算法的参数优化估算模型 【摘要】支持向量机中参数的设置是模型是否精确和稳定的关键。固定的参数设置往往不能满足优化模型的要求,同时使得学习算法过于死板,不能体现出来算法的智能化优点,因此利用遗传算法(Genetic Algorithm,简称GA)对估算模型的参数进行优化,使得估算模型灵活、智能,更加符合实际工程建模的需求。 【关键词】遗传算法;参数优化;估算模型 1.引言 随着支持向量机估算模型在工程应用的不断深入。研究发现,支持向量机算法(包括LS-SVM算法)存在着一些本身不可避免的缺陷,最为突出的是参数的选取和优化问题,以往在参数选取方面,一般依靠专家系统或者设定初始值盲目搜寻等等,在实际应用必然会影响模型的精准度,造成一定影响。如何选取合理的参数成为支持向量机算法应用过程中应用中关注的问题,同时也是目前应用研究的重点。而常用的交叉验证试算的方法,不仅耗时,且搜索目的不清,使得资源浪费,耗时耗力。不能有效的对参数进行优化。 针对参选取的问题,本文使用GA算法对模型中的参数设置进行优化。 2.遗传算法 2.1 遗传算法的实施过程 遗传算法的实施过程中包括了编码、产生群体、计算适应度、复制、交换、变异等操作。图1详细的描述了遗传算法的流程。 其中,变量GEN是当前进化代数;N是群体规模;M是算法执行的最大次数。 遗传算法在参数寻优过程中,基于生物遗传学的基本原理,模拟自然界生物种群的“物竞天则,适者生存”的自然规律。把自变量看作生物体,把它转化成由基因构成的染色体(个体),把寻优的目标函数定义为适应度,未知函数视为生存环境,通过基因操作(如复制、交换和变异等),最终求出全局最优解。 2.2 GA算法的基本步骤 遗传算法操作的实施过程就是对群体的个体按照自然进化原则(适应度评估)施加一定的操作,从而实现模型中数据的优胜劣汰,使得进化过程趋于完美。从优化搜索角度出发,遗传算法可使问题的解,一代一代地进行优化,并逼近最优解。 通常采用的遗传算法的工作流程和结果形式有Goldberg提出的,常用的GA 算法基本步骤如下: ①选择编码策略,把参数集合X和域转换为位串结构空间S。常用的编码方法有二进制编码和浮点数编码。 ②定义合适的适应度函数,保证适应度函数非负。 ③确定遗传策略,包括选择群体大小,选择、交叉、变异方法,以及确定交叉概率、变异概率等其它参数。 ④随机初始化生成群体N,常用的群体规模:N=20~200。 ⑤计算群体中个体位串解码后的适应值。 ⑥按照遗传策略,运用选择、交叉和变异算子作用于群体,形成下一代群体。 ⑦判断群体性能是否满足某一个指标,或者以完成预订迭代次数,若满足则

遗传算法代码

%求下列函数的最大值% %f(x)=10*sin(5x)+7*cos(4x)x∈[0,10]% %将x的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01。% %将变量域[0,10]离散化为二值域[0,1023],x=0+10*b/1023,其中b是[0,1023]中的一个二值数。 %2.1初始化(编码) %initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), %长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name:initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength));%rand随机产生每个单元为{0,1}行数为popsize,列数为chromlength的矩阵, %roud对矩阵的每个单元进行圆整。这样产生的初始种群。 %2.2计算目标函数值 %2.2.1将二进制数转化为十进制数(1) %遗传算法子程序 %Name:decodebinary.m %产生[2^n2^(n-1)...1]的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop) [px,py]=size(pop);%求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2);%求pop1的每行之和 %2.2.2将二进制编码转化为十进制数(2) %decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置 %(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1), %参数1ength表示所截取的长度(本例为10)。 %遗传算法子程序 %Name:decodechrom.m

毕业设计--基于量子遗传算法的函数寻优算法设计

毕业论文(设计) 题目:基于量子遗传算法的函数寻优算法设计学院:数理与信息学院 学生姓名: 专业:计算机科学与技术 班级: 指导教师: 起止日期: 2014年11月16日至2015年6月12日 2015 年5 月13日

基于量子遗传算法的函数寻优算法设计 摘要 量子遗传算法(QGA)是20世纪90年代后期兴起的一种崭新的遗传进化算法。该算法主要是将量子计算的概念引入其中,将量子的态矢量表达引入了遗传编码,使一条染色体可以表达多个信息态的叠加,同时利用量子旋转门实现染色体的演化,实现了目标解的进化。相比传统遗传算法,量子遗传算法能够在较小的种群规模下,快速的收敛到全局最优解。 本文首先介绍了量子遗传算法的基本原理与算法结构,然后对量子遗传算法提出疑问。虽然量子遗传算法的优化性能大大优于传统遗传算法,但是,对于一些多峰函数的优化问题,该类算法依旧容易陷入“局部最优”。在实际的应用中有很多优化问题都是多变量的连续优化问题,现有的量子遗传算法不能有效的解决这些问题。针对量子遗传算法容易陷入局部最优和未成熟收敛的缺陷,我们提出了一种新的优化算法——含有退火操作的量子遗传算法,该优化算法能够以可变的概率选择性地接受恶化的优化函数解,使种群解集的进化方向改变,不在依靠当前解进行遗传演化。从而使算法不易“早熟收敛”。而且在该算法中加入了全干扰的量子交叉操作,使各染色体能进行遗传信息的交换,使种群染色体更具有代表性。最后根据改进后的方案,对改进的量子遗传算法进行了数值仿真。有效地证明了改进算法在函数寻优方面的优越性。 【关键词】量子遗传算法,量子编码,退火思想,量子交叉,函数寻优

遗传算法与模拟退火算法比较

一、遗传算法与模拟退火算法比较 分析模拟退火算法的基本原理可以看出,模拟退火算法是通过温度的不断下降渐进产生出最优解的过程,是一个列马尔科夫链序列,在一定温度下不断重复Metropolis过程,目标函数值满足Boltzmann概率分布。在温度下降足够慢的条件下,Boltzmann分布收敛于全局最小状态的均匀分布,从而保证模拟退火算法以概率为1收敛到全局最优。另外,不难看出,模拟退火算法还存在计算结构简单、通用性好以及鲁棒性强等优点。但是,模拟退火算法存在如下缺陷: 1. 尽管温度参数下降缓慢时理论上可以保证算法以概率为1地收敛到最优值,但是需要的时间过长加之误差积累与时间长度的限制,难以保证计算结果为最优; 2.如果降温过程加快,很可能得不到全局最优解,因此,温度的控制是一个需要解决的问题; 3.在每一种温度下什么时候系统达到平衡状态,即需要多少次Metropolis过程不易把握,从而影响模拟退火算法的最终结果。 与模拟退火算法相比较,遗传算法具有如下典型特征: 这两种算法的相同点是都采用进化控制优化的过程。主要不同点是模拟退火是采用单个个体进行进化,遗传算法是采用种群进行进化。模拟退火一般新解优于当前解才接受新解,并且还需要通过温度参数进行选择,并通过变异操作产生新个体。而遗传算法新解是通过选择操作进行选择个体,并通过交叉和变异产生新个体。具体说来,遗传算法具有如下特点: (1)与自然界相似,遗传算法对求解问题的本身一无所知,对搜索空间没有任何要求(如函数可导、光滑性、连通性等),只以决策编码变量作为运算对象并对算法所产生的染色体进行 评价,可用于求解无数值概念或很难有数值概念的优化问题,应用范围广泛; (2)搜索过程不直接作用到变量上,直接对参数集进行编码操作,操作对象可以是集合、序列、矩阵、树、图、链和表等; (3)搜索过程是一组解迭代到另一组解,采用同时处理群体中多个个体的方法,因此,算法具有并行特性;

遗传算法求函数极大值(matlab实现)

遗传算法求函数最大值(matlab实现) 一、题目: 寻找f(x)=x2,,当x在0~31区间的最大值。 二、源程序: %遗传算法求解函数最大值 %本程序用到了英国谢菲尔德大学(Sheffield)开发的工具箱GATBX,该工具箱比matlab自带的GATOOL使用更加灵活,但在编写程序方面稍微复杂一些 Close all; Clear all; figure(1); fplot('variable*variable',[0,31]); %画出函数曲线 %以下定义遗传算法参数 GTSM=40; %定义个体数目 ZDYCDS=20; %定义最大遗传代数 EJZWS=5; %定义变量的二进制位数 DG=0.9; %定义代沟 trace=zeros(2, ZDYCDS); %最优结果的初始值

FieldD=[5;-1;2;1;0;1;1]; %定义区域描述器的各个参数%以下为遗传算法基本操作部分,包括创建初始种群、复制、交叉和变异 Chrom=crtbp(GTSM, EJZWS); %创建初始种群,即生成给定 规模的二进制种群和结构gen=0; %定义代数计数器初始值variable=bs2rv(Chrom, FieldD); %对生成的初始种群进行十进制转换 ObjV=variable*variable; %计算目标函数值f(x)=x2 while gen

用遗传算法优化BP神经网络的Matlab编程实例

用遗传算法优化BP神经网络的 Matlab编程实例 由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。 程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY) %-------------------------------------------------------------------------- % GABPNET.m % 使用遗传算法对BP网络权值阈值进行优化,再用BP 算法训练网络 %-------------------------------------------------------------------------- %数据归一化预处理 nntwarn off XX=premnmx(XX); YY=premnmx(YY); %创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},' trainlm'); %下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模 initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数 %下面调用gaot工具箱,其中目标函数定义为gabpEval [x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,... 'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutatio n',[2 gen 3]); %绘收敛曲线图 figure(1) plot(trace(:,1),1./trace(:,3),'r-'); hold on plot(trace(:,1),1./trace(:,2),'b-'); xlabel('Generation'); ylabel('Sum-Squared Error'); figure(2) plot(trace(:,1),trace(:,3),'r-'); hold on plot(trace(:,1),trace(:,2),'b-'); xlabel('Generation'); ylabel('Fittness'); %下面将初步得到的权值矩阵赋给尚未开始训练的BP网络 [W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x); net.LW{2,1}=W1; net.LW{3,2}=W2; net.b{2,1}=B1; net.b{3,1}=B2; XX=P; YY=T; %设置训练参数 net.trainParam.show=1; net.trainParam.lr=1; net.trainParam.epochs=50; net.trainParam.goal=0.001; %训练网络 net=train(net,XX,YY); 程序二:适应值函数 function [sol, val] = gabpEval(sol,options) % val - the fittness of this individual % sol - the individual, returned to allow for Lamarckian evolution % options - [current_generation] load data2 nntwarn off XX=premnmx(XX); YY=premnmx(YY); P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 for i=1:S, x(i)=sol(i); end; [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x);

相关文档
最新文档