拉氏变换表(包含计算公式)

拉氏变换表(包含计算公式)
拉氏变换表(包含计算公式)

1

拉氏变换及反变换公式

1. 拉氏变换的基本性质 1

线性定理

齐次性

)()]([s aF t af L =

叠加性

)()()]()([2121s F s F t f t f L ±=±

2

微分定理

一般形式

=

-=][ '- -=-=----=-∑

1

1

)

1()

1(1

2

2

2

)

()()

0()()

(0)0()(])

([)

0()(])([k k k k n

k k

n n

n

n

dt

t f d

t f

f

s

s F s dt

t f d

L f sf s F s dt t f d

L f s sF dt t df L )

初始条件为0时

)(])

([

s F s dt

t f d

L n

n

n

=

3 积分定理

一般形式

???????????==+-===+=+

+

=

+

=

n

k t n

n k n n

n

n t t t dt t f s

s

s F dt t f L s

dt t f s

dt t f s

s F dt t f L s dt t f s

s F dt t f L 1

1

2

2

2

2

]))(([1)(])()([]))(([])([)(]))(([])([)(])([个

共个

初始条件为0时

n

n

n s

s F dt t f L )(]))(([=??个

4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts

-=--

5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=-

6 终值定理 )(lim )(lim 0

s sF t f s t →∞

→=

7 初值定理 )(lim )(lim 0

s sF t f s t ∞

→→=

8 卷积定理

)()(])()([])()([210

210

21s F s F d t f t f L d f t f L t

t =-=-??τττττ

2

2. 常用函数的拉氏变换和z 变换表 序

号 拉氏变换E(s)

时间函数e(t) Z 变换E(z)

1 1

δ(t)

1

2 Ts

e

--11

∑∞

=-=

)()(n T nT t t δδ

1

-z z 3 s

1 )(1t

1

-z z 4 2

1s

t

2

)

1(-z Tz

5 3

1s

2

2

t

3

2

)

1(2)

1(-+z z z T

6 1

1+n s

!

n t

n

)(

!

)1(lim

aT

n

n n

a e

z z

a

n -→-??

-

7 a

s +1 at

e

- aT

e

z z -- 8 2

)

(1a s + at

te

- 2

)

(aT

aT e

z Tze --- 9 )(a s s a + at

e

--1 )

)(1()1(aT

aT

e

z z z

e

-----

10 )

)((b s a s a

b ++- bt

at

e

e

---

bT

aT

e

z z e

z z ----

- 11 2

2

ω

ω

+s t

ωsin 1

cos 2sin 2

+-T z z T z ωω

12 2

2

ω

+s s t

ωcos

1

cos 2)cos (2

+--T z z T z z ωω

13 2

2)(ω

ω

++a s t e

at

ωsin - aT

aT aT

e

T ze

z T ze

22cos 2sin ---+-ωω 14 2

2

)(ω

+++a s a s

t e

at

ωcos -

aT

aT

aT

e

T ze z

T

ze

z 22

2

cos 2cos ---+--ωω

15

a

T s ln )/1(1-

T

t a

/

a

z z

-

3

3. 用查表法进行拉氏反变换

用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式

11

10111)

()()(a s a s

a s a

b s b s

b s

b s A s B s F n n n

n m m m m ++++++++==

---- (m n >)

式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根

这时,F(s)可展开为n 个简单的部分分式之和的形式。

=-=

-+

+-+

+-+

-=

n

i i

i n

n i

i s s c s s c s s c s s c s s c s F 1

2

21

1)(

式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算:

)()(lim s F s s c i s s i i

-=→

i

s s i s A s B c ='=

)

()(

式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数

[]??

????-==∑=--n i i i s s c L s F L t f 11

1

)()(=t

s n

i i i

e c -=∑1

② 0)(=s A 有重根

设0)(=s A 有r 重根1s ,F(s)可写为

())()()()

(11n r r

s s s s s s s B s F ---=+

=n

n i

i r r r r r

r s s c s s c s s c s s c s s c s s c -+

+-+

+-+

-+

+-+

-++-- 1

1111111)

()

()

(

式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

4

其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:

)()(lim 11

s F s s c r

s s r -=→

)]()([lim

111

s F s s ds

d c r

s s r -=→-

)()(lim

!11)

()(1s F s s ds

d

j c r

j j s s j r -=

→- (F-5)

)()(lim

)!1(1

1)

1()1(11s F s s ds

d

r c r

r r s s --=--→

原函数)(t f 为 [])()(1s F L t f -=

??????-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 11111

1111

)()()

( t

s n

r i i

t s r r r r i e

c e c t c t r c t r c ∑+=---+

??

????+++-+-=1

122

111

)!2()!1( (F-6)

拉氏变换和z变换表

附录A 拉普拉斯变换及反变换 1.拉氏变换的基本性质 附表A-1 拉氏变换的基本性质 1()([n n k f t dt s s -+= +∑?个

2.常用函数的拉氏变换和z变换表 附表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,, ,,m m b b b b -都是实常数;n m ,是正整数。按代数定理 可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= )() ( (F-3)

式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=1 i n s t i i c e =∑ (F-4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…,n s 为F(s)的n r -个单根;其中,1+r c ,…,n c 仍按式(F-2)或式(F-3)计算,r c ,1-r c ,…,1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ 11lim [()()]i r r s s d c s s F s ds -→=- )()(lim !11)() (1s F s s ds d j c r j j s s j r -=→- (F-5) )()(lim )!1(11)1() 1(11s F s s ds d r c r r r s s --=--→ 原函数)(t f 为 [])()(1 s F L t f -= ??????-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 11 111 1111)()() ( t s n r i i t s r r r r i e c e c t c t r c t r c ∑+=---+?? ????+++-+-=112211 1 )!2()!1( (F-6)

拉氏变换及其计算机公式

时域的函数可以通过线性变换的方法在变换域中表示,变换域的表示有时更为简捷、方便。例如控制理论中常用的拉普拉斯变换,简称拉氏变换,就是其中的一种。 一、拉氏变换的定义 已知时域函数,如果满足相应的收敛条件,可以定义其拉氏变换为 (2-45) 式中,称为原函数,称为象函数,变量为复变量,表示为 (2-46) 因为是复自变量的函数,所以是复变函数。 有时,拉氏变换还经常写为 (2-47) 拉氏变换有其逆运算,称为拉氏反变换,表示为 (2-48)

上式为复变函数积分,积分围线为由到的闭曲线。 二、常用信号的拉氏变换 系统分析中常用的时域信号有脉冲信号、阶跃信号、正弦信号等。现复习一些基本时域信号拉氏变换的求取。 (1)单位脉冲信号 理想单位脉冲信号的数学表达式为 (2-49) 且 (2-50) 所以 (2-51) 说明: 单位脉冲函数可以通过极限方法得到。设单个方波脉冲如图2-13所示,脉冲的宽度为,脉冲的高度为,面积为1。当保持面积不变,方波脉冲的宽度趋

于无穷小时,高度趋于无穷大,单个方波脉冲演变成理想的单位脉冲函数。在坐标图上经常将单位脉冲函数 表示成单位高度的带有箭头的线段。 由单位脉冲函数的定义可知,其面积积分的上下限是从到的。因此在求它的拉氏变换时,拉氏变换的积分下限也必须是。由此,特别指明拉氏变换定义式中的积分下限是,是有实际意义的。所以,关于拉氏变换的积分下限根据应用的实际情况有,,三种情况。为不丢掉信号中位于处可能存在的脉冲函数,积分下限应该为。 (2)单位阶跃信号 单位阶跃信号的数学表示为 (2-52) 又经常写为 (2-53)

由拉氏变换的定义式,求得拉氏变换为 (2-54) 因为 阶跃信号的导数在处有脉冲函数存在,所以单位阶跃信号的拉氏变换,其积分下限规定为。 (3)单位斜坡信号 单位斜坡信号的数学表示为 (2-55) 图2-15单位斜坡信号

拉氏变换和z变换表(精选.)

word. 附录A 拉普拉斯变换及反变换 1.拉氏变换的基本性质 1()([n n k f t dt s s -+=+∑? 个

2.常用函数的拉氏变换和z变换表 word.

word. 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,, ,,m m b b b b -都是实常数;n m ,是正整数。按代数定理 可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=1 i n s t i i c e =∑ (F-4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为

常用函数的拉氏变换[1]

附录A 拉普拉斯变换及反变换 419

420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉氏变换与反变换

机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。 拉普拉斯变换的定义 如果有一个以时间为自变量的实变函数,它的定义域是,那么的拉普拉斯变换定义为 式中,是复变数,(σ、ω均为实数),称为拉普拉斯积分;是函数的拉普拉斯变换,它是一个复变函数,通常也称为的象函数,而称为的原函数;L是表示进行拉普拉斯变换的符号。 式()表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数。 几种典型函数的拉氏变换 1.单位阶跃函数的拉氏变换 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为 单位阶跃函数如图所示,它表示在时刻突然作用于系统一个幅值为1的不变量。单位阶跃函数的拉氏变换式为 当,则。 所以 () 图单位阶跃函数 2.指数函数的拉氏变换 指数函数也是控制理论中经常用到的函数,其中是常数。 令

则与求单位阶跃函数同理,就可求得 () 3.正弦函数与余弦函数的拉氏变换 设,,则 由欧拉公式,有 所以 )同理 )4.单位脉冲函数δ(t)的拉氏变换 单位脉冲函数是在持续时间期间幅值为的矩形波。其幅值和作用时间的乘积等于1,即。如图所示。 图单位脉冲函数 单位脉冲函数的数学表达式为 其拉氏变换式为 此处因为时,,故积分限变为。 5.单位速度函数的拉氏变换 单位速度函数,又称单位斜坡函数,其数学表达式为 见图所示。 图单位速度函数 单位速度函数的拉氏变换式为 利用分部积分法 令 则

拉氏变换常用公式

常用拉普拉斯变换总结 1、指数函数 00)(≥

? ? ∞ -∞ -∞ ----==0 d d ][t s e s e t t te t L st st st 2 01d 1s t e s st == ?∞- 6、正弦函数 0sin 0 )(≥

拉氏变换定义及性质

拉氏变换与反变换 机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。 2.5.1 拉普拉斯变换的定义 如果有一个以时间t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,,那么()t f 的的拉普拉斯变换定义为 ()()()0 e d st F s L f t f t t ∞ -=?????? s 是复变数, ωσj +=s (σ、ω均为实数), ?∞ -0 e st 称为拉普拉斯积分; )(s F 是 函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 式()表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 1.单位阶跃函数 )(1t 的拉氏变换 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为 ?? ?≥s ,则 0 e lim →-∞ →st t 。

(完整版)拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1 1 n 1 n n n 1 1 m 1 m m m a s a s a s a b s b s b s b )s (A )s (B )s (F ++++++++==----ΛΛ (m n >) 式中系数n 1 n 1 a ,a ,...,a ,a -,m 1 m 1 b ,b ,b ,b -Λ都是实常数;n m ,是正整数。按 代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑ =-=-++-++-+-=n 1 i i i n n i i 2 2 1 1 s s c s s c s s c s s c s s c )s (F ΛΛ 式中,Sn 2S 1S ,,,Λ是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )s (F )s s (lim c i s s i i -=→ 或 i s s i ) s (A ) s (B c ='= 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []t s n 1 i i n 1i i i 11i e c s s c L )s (F L )t (f -==--∑∑=??????-== ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为

拉氏变换定义及性质

2.5 拉氏变换与反变换 机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。 2.5.1 拉普拉斯变换的定义 如果有一个以时间t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,,那么()t f 的的拉普拉斯变换定义为 ()()()0 e d st F s L f t f t t ∞ -=?????? (2.10) s 是复变数, ωσj +=s (σ、ω均为实数), ?∞ -0e st 称为拉普拉斯积分; )(s F 是函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 式(2.10)表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 1.单位阶跃函数 )(1t 的拉氏变换 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能 的标准输入,这一函数定义为 ?? ?≥s ,则 0 e lim →-∞ →st t 。 所以:

拉普拉斯变换表

附录A拉普拉斯变换及反变换 419

420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 10111) ()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++== ---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑ =-= -+ +-+ +-+ -= n i i i n n i i s s c s s c s s c s s c s s c s F 1 2 21 1)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= ) ()( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []?? ????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ())()()() (11n r r s s s s s s s B s F ---=+ =n n i i r r r r r r s s c s s c s s c s s c s s c s s c -+ +-+ +-+ -+ +-+ -++-- 1 1111111) () () ( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉氏变换定义、计算、公式及常用拉氏变换反变换

****拉普拉斯变换及反变换**** 定义:如果定义: ? 是一个关于的函数,使得当时候, ; ? 是一个复变量; ? 是一个运算符号,它代表对其对象进行拉普拉斯积分;是 的拉普拉斯变换结果。 则的拉普拉斯变换由下列式子给出:

2.表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1)

式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []? ?????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ )]()([lim 111 s F s s ds d c r s s r -=→- )()(lim !11)() (1s F s s ds d j c r j j s s j r -=→- (F-5) )()(lim )!1(11)1() 1(11s F s s ds d r c r r r s s --=--→

拉氏变换表(包含计算公式)

1 拉氏变换及反变换公式 1. 拉氏变换的基本性质 1 线性定理 齐次性 )()]([s aF t af L = 叠加性 )()()]()([2121s F s F t f t f L ±=± 2 微分定理 一般形式 = -=][ '- -=-=----=-∑ 1 1 ) 1() 1(1 2 2 2 ) ()() 0()() (0)0()(]) ([) 0()(])([k k k k n k k n n n n dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L ) ( 初始条件为0时 )(]) ([ s F s dt t f d L n n n = 3 积分定理 一般形式 ∑ ???????????==+-===+=+ + = + = n k t n n k n n n n t t t dt t f s s s F dt t f L s dt t f s dt t f s s F dt t f L s dt t f s s F dt t f L 1 1 2 2 2 2 ]))(([1)(])()([]))(([])([)(]))(([])([)(])([个 共个 共 初始条件为0时 n n n s s F dt t f L )(]))(([=??个 共 4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts -=-- 5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=- 6 终值定理 )(lim )(lim 0 s sF t f s t →∞ →= 7 初值定理 )(lim )(lim 0 s sF t f s t ∞ →→= 8 卷积定理 )()(])()([])()([210 210 21s F s F d t f t f L d f t f L t t =-=-??τττττ

拉氏变换常用公式

附录A 拉普拉斯变换及反变换表A-1 拉氏变换的基本性质

表A-2 常用函数的拉氏变换和z变换表

用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设 )(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 1 1 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + =n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉氏变换和傅里叶变换的关系

拉氏变换和傅里叶变换的关系 一、拉氏变换 1、拉氏变换的定义: 如果有一个以时间t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,,那么()t f 的的拉普拉斯变换定义为 ()()()0e d st F s L f t f t t ∞ -=?????? s 是复变数, ωσj +=s (σ、ω均为实数), ?∞ -0e st 称为拉普拉斯积分; )(s F 是函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 s 式()表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 2、拉氏变换的意义 工程数学中常用的一种积分变换。它是为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。 在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s 域)上来表示;在线性系统,控制自动化上都有广泛的应用 二、傅里叶变换 1、傅里叶变换的定义:

f(t)是t的函数,如果t满足狄里赫莱条件:具有有限个间断点;具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ① 傅里叶变换 ② 傅里叶逆变换 2、傅里叶变换的意义 傅里叶变换简单通俗理解就是把看似杂乱无章的信号考虑成由一定振幅、相位、频率的基本正弦(余弦)信号组合而成,傅里叶变换的目的就是找出这些基本正弦(余弦)信号中振幅较大(能量较高)信号对应的频率,从而找出杂乱无章的信号中的主要振动频率特点。如减速机故障时,通过傅里叶变换做频谱分析,根据各级齿轮转速、齿数与杂音频谱中振幅大的对比,可以快速判断哪级齿轮损伤。 二、拉氏变换和傅里叶变换的关系 傅里叶变换:的物理意义非常清晰:将通常在时域表示的信号,分解为多个正弦信号的叠加。每个正弦信号用幅度、频率、相位就可以完全表征。傅里叶变换之后的信号通常称为频谱,频谱包括幅度谱和相位谱,分别表示幅度随频率的分布及相位随频率的分布。对一个信号来说,就包含的信息量来讲,时域信号及其相应的傅里叶变换之后的信号是完全一样的。那傅里叶变换有什么作用呢因为有的信号主要在时域表现其特性,如电容充放电的过程;而有的信号则主要在频域表现其特性,如机械的振动,人类的语音等。若信号的特征主要在频域表

拉氏变换

拉普拉斯变换 拉氏变换的物理意义 拉氏变换是将时间函数f(t)变换为复变函数F(s),或作相反变换。 时域(t)变量t 是实数,复频域F(s)变量s 是复数。变量s 又称“复频率”。 拉氏变换建立了时域与复频域(s 域)之间的联系。 s=jw ,当中的j 是复数单位,所以使用的是复频域。通俗的解释方法是,因为系统中有电感X=jwL 、电容X=1/jwC ,物理意义是,系统H(s)对不同的频率分量有不同的衰减,即这种衰减是发生在频域的,所以为了与时域区别,引入复数的运算。但是在复频域计算的形式仍然满足欧姆定理、KCL 、KVL 、叠加法 Laplace 变换是工程数学里的重要变换,主要是实现微分积分电路的代数运算,建议参看《积分变换》这书.在一阶和高阶电路中,有一些问题在频域中分析比在时域中分析要方便的多,而拉氏变换就是一个很好的分析工具。它将时域中的信号输入,变换成S 域中的信频输入,再由S 域的输出,转换成时频的输出,很简洁明了,又可以分析出信号的多种变化.工程数学或者积分变换都可以解决你所提的问题. 拉普拉斯变换简称拉氏变换。它是一种函数的变换,经变换后,可将时域的微分方程变换成复数域的代数方程。并且在变换的同时,即将初始条件引入,避免了经典解法中求积分常数的麻烦,可使解题过程大为简化。因此,对于那些以时间t 为自变量的定常线性微分方程来说,拉氏变换求解法是非常有用的。 在经典自动控制理论中,自动控制的数学模型是建立在传递函数基础之上的,而传递函数的概念又是建立在拉氏变换的基础上,因此,拉氏变换是经典控制理论的重要数学基础,是分析研究线性动态系统的有力数学工具。本章着重介绍拉氏变换的定义,一些常用时间函数的拉氏变换,拉氏变换的性质以及拉氏反变换的方法。最后,介绍用拉氏变换解微分方程的方法。在学习中应注重该数学方法的应用,为后续章节的学习奠定基础。 2.1拉氏变换 2.1.1拉氏变换的定义 若()f t 为实变量时间t 的函数,且0t <时,函数()0f t =,则函数()f t 的拉氏变换记作 [()]f t L 或)(s F ,并定义为: [()]()()e d L st f t F s f t t +∞-==? (2.1) 式中s j σω=+为复变量,()F s 称为()f t 的象函数,称()f t 为()F s 的原函数。原函数是实变量t 的函数,象函数是复变量s 的函数。所以拉氏变换是将原来的实变量函数() f t

Laplace拉氏变换公式表

拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质 2.表A-2 常用函数的拉氏变换和z变换表 1

2

3 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将 )(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:

拉氏变换定义及性质

2.5拉氏变换与反变换 机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。 2.5.1拉普拉斯变换的定义 如果有一个以时间t为自变量的实变函数 f t,它的定义域是t 0 ,,那么ft 的的拉普拉斯变换定义为 F s L f t f :t e st dt (2.10) S是复变数,s j(C、3均为实数), st o 0称为拉普拉斯积分;F(s)是 函数f(t)的拉普拉斯变换,它是一个复变函数,通常也称F(s)为f(t)的象函数,而称f(t)为F(s)的原函数;L是表示进行拉普拉斯变换的符号。 式(2.10 )表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实 变函数变换为一个在复数域内与之等价的复变函数F(s)。 1.单位阶跃函数1(t) 的拉氏变换 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为 (t 0) (t 0) 单位阶跃函数如图2.7所示,它表示在t 0时刻突然作用于系统一个幅值为1的不变量。 单位阶跃函数的拉氏变换式为 F(s) L[1(t)] 01(t)e st dt 所以: 当Re(s) 0,则lim e st

(2.13 ) 4. 单位脉冲函数 S (t)的拉氏变换 单位脉冲函数是在持续时间7 期间幅值为」的矩形波。其幅值和作用时间 1 , 的乘积等于1,即丁 二如图2.8所示。 单位脉冲函数的数学表达式为 L1(t) !e st s (2.11 ) 2.指数函数-1 :_, 的拉氏变换 指数函数 也是控制理论中经常用到的函数,其中 -<■是常 数。 F(s) = i[e^] = £严严曲=「严⑷也 令._ 则与求单位阶跃函数同理,就可求得 1 1 F(s) = 'i 1 ' (2.12 ) 3.正弦函数与余弦函数的拉氏变换 设齐(。=酝驱,人⑴二ex 加,则 乌(E ) = z[sin GS ]= J sin 就严 曲 由欧拉公式,有 sin 血= --------- 所以 F i (s) 1 j t st j t st 1 一 e j e dt e j e dt 一 e 2j 0 0 2j 0 (S j )t dt e (sj )t e st dt 1 1 e (s j )t 2j s j 1 e (s j s j )t 同理込(匚)=匸CO£ tut (2.14

拉氏变换

2.1 拉氏变换的概念 拉氏变换的定义式为: 条件是式中等号右边的积分存在(收敛)。 由于是一个定积分,将在新函数中消失。因此,只取决于,它是复变数的函数。拉氏变换将原来的实变量函数转化为复变量函数。 拉氏变换是一种单值变换。和之间具有一一对应的关系。通常称为原函 数,为象函数。 【例2-1】求单位阶跃函数(Unit Step Function)1(t)的象函数。 在自动控制原理中,单位阶跃函数是一个突加作用信号,相当一个开关的闭合(或断开)。在求它的象函数前,首先应给出单位阶跃函数的定义式。 则单位阶跃函数1(t)定义为: 所以

在自动控制系统中,单位阶跃函数相当一个突加作用信号。它的拉氏式由定义式有: 【例2-2】求单位脉冲函数( Unit Pulse Fuction )δ(t)的象函数 函数的特点是:

单位脉冲函数定义为: 在时及在时为0,在时,由0→+∞;又由+∞→0。但对时间的积分为1。即 单位脉冲传递函数的拉氏式,由定义式有: 【例2-3】求与1(t)间的关系。 由以上两例可见,在区间(0,ε)里,,而,所以

由上式有: 由上式有: 由式(2-4)和式(2-5)可知:单位阶跃函数对时间的导数即为单位脉冲函数。反之,单位脉冲函数对时间的积分即为单位阶跃函数。 【例2-4】求正弦函数 (Sinusoidal Function) f(t)=sinωt的象函数。 实用上,常把原函数与象函数之间的对应关系列成对照表的形式。通过查表,就能够知道原函数的象函数,或象函数的原函数,十分方便。常用函数的拉氏变换对照表见表2-1。 表2-1 常用函数拉氏变换对照表 序 原函数象函数 号 1 1 2 3 4 5 6 7

用拉氏变换法解线性微分方程

用拉氏变换法解线性微分方程 一 基本定义 若函数f(t),t 为实变量,线积分 ∫ f(t)e -st dt (s 为复变量)存在, 则称其为f(t)的拉氏变换,记为F(s)或£[f(t)],即F(s)=£[f(t)]=∫ f(t)e -st dt 常称:F(s)→f(t)的象函数; f(t) →F(s)的原函数。 二 基本思路 用拉氏变换解线性微分方程,可将经典数学中的微积分运算转化成代数运算 三 典型函数的拉氏变换 1、单位阶跃函数 f(t)=1(t)= 1 t ≧0 t <0 F(s)=£[f(t)]= ∫ f(t)e -st dt =∫ 1 e -st dt =1/s 2、单位斜坡函数 f(t)= t 1(t) = t t ≥0 0 t <0 F(s)=£[f(t)]= ∫ t e -st dt =1/s 2 3、等加速度函数 ∞ 0 ∞ ∞ ∞ 0 ∞

f(t) = 1/2 t 2 t ≥0 0 t <0 F(s) = ∫ 1/2 t 2 e -st dt = 1/s 3 4、指数函数 t ≥0 t <0 F(s)= ∫ 1/2 t 2 e -st dt =1 / (s-α) 5、正弦函数 f(t)= sinwt t ≥0 0 t <0 F(s) =∫sinwt e -st dt = w/(s 2+w 2) 四 拉氏变换的几个法则 对于一些简单原函数,可根据拉氏变换定义求象,但对于较复杂的原函数,必须用到下面几个定理求取其象函数: 1、线性定理 若:£[f 1(t)]=F 1(s) , £[f 2(t)]=F 2(s) (a 、b 为常数) 则 £[a f 1(t) + b f 2(t)] = aF 1(s) + bF 2(s) 2、微分定理 若:£[f(t)]=F(s) 则 £[d ? f(t)/dt ? ]=s ?F(s) - ∑s n-i-1 f (i) (0) 式中f (i) (0)为f(t)及其各阶导数在t=0时的值 ∞ ∞ ∞ n-1 i=0

相关文档
最新文档