ASSHTO模型中碰撞几何概率的修正及在长江上的应用

龙源期刊网 https://www.360docs.net/doc/6316425248.html,

ASSHTO模型中碰撞几何概率的修正及在长江上的应用

作者:周立万大斌王辉杨洋

来源:《中国水运》2015年第08期

摘要: AASHTO(美国道路工程师协会)规范模型为目前应用最广泛的船桥碰撞概率计算模型之一,该模型将船桥碰撞几何概率作为正态分布考虑,正态分布的标准差等于设计代表船只的船长,期望为0。通过统计长江上船舶过桥时的船位分布情况得知,受航行规则影响,船舶通过单孔双向通航的桥梁时船位沿桥轴线方向成“双峰”分布,该双峰分布可近似的看成由两个正太分布混合而成,据此对AASHTO模型中碰撞几何概率参数进行了修正,修正后的模型与长江干线实际情况更加适应。

关键词: ASSHTO修正模型长江干线船舶碰撞桥梁概率

近年来国内发生了较多的船舶碰撞桥梁事故造成了巨大的人命财产损失,2006年杭州湾

大桥被一走锚失控船舶撞击,大桥多处局部破损,造成经济损失1000余万元;2007年广东九江大桥被砂石船舶碰撞致倒塌造成8人死亡,损失约1.4亿元人民币;2008年浙江宁波金塘大桥被一艘货轮撞击,桥面箱梁塌落,4人死亡;而在长江干线上,从1957年首个有记载的桥

梁被船碰撞的事故以来,已发生的船舶撞桥事故超过300起,其中武汉长江大桥被撞次数最多,已被撞击100余次,虽未造成桥梁倒塌事故,但每一次撞击都会牵动亿万人民的心。因此,开展船舶碰撞桥梁概率研究,为船舶通航安全、桥梁设计、建设与管理提供技术支撑依据非常有必要。

目前,在桥梁防撞设计中,应用较多的船桥碰撞概率计算模型有AASHTO规范模型、拉森(IABSE)模型、欧洲规范模型、昆兹(Kunz)模型和黄平明直航路模型等,不同的模型各有不同侧重和特点。相比较而言,AASHTO模型虽然是依照美国和欧洲的船舶碰撞资料统计

而设计出来的,但因其思路清晰、方法完善、实用性强,是目前应用最为广泛的船桥碰撞概率模型,该规范将船撞桥事件视为风险事件,根据可接受风险的水平指导桥梁的防撞设计,已经形成了系统的思想。

AASHTO模型在长江上应用存在的问题

在该模型中船舶碰撞几何概率以航道中心线为对称轴,船舶的横向分布用正态分布描述,期望为0,即船舶出现的峰值在桥墩之间航道的中间位置。该模型适用于长江上单孔单向通航的桥梁,但长江干线上90%以上的桥梁实行的是单孔双向通航,且长江干线界石盘以下河段均实行了船舶定线制或船舶分道航行规则,船舶在通过单孔双向通航的桥孔时各自靠一边行驶,其中定线制水域还设有分隔带,因此从理论上分析船舶在航道上的几何分布应成“双峰”或“多

平面几何五种模型之欧阳家百创编

平面几何五种模型 欧阳家百(2021.03.07) 等积,鸟头,蝶形,相似,共边 1、等积模型 等底等高的2个三角形面积相等 2个三角形高相等,面积比=底之比 2个三角形底相等,面积比=高之比 夹在一组平行线之间的等积变形(方方模型) 等积模型是基本应用应是烂熟于心的 都是利用面积公式得到的推定比例 如下: 1等底等高的2个平行四边形面积相等 2三角形面积等于它等底等高的平行四边形面积的一半 3 2个平行四边形高相等,面积比=底之比;2个平行四边形底相等,面积比=高之比 2、鸟头模型(共角定理) 鸟头定理:2个三角形中,有一个角相等或互补,这2个三角形叫做共角三角形。共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比(夹角2边) 鸟头定理的使用要火眼金睛,经常需要自己补一条辅助线同时经过2次以上转换对应才能得到结果。

A B C D E 如图,浅紫色的三角形ADE 跟大三角形ABC 是公用A 角的,等于浅紫色三角形是“嵌入”在大三角形ABC 里面,注意,鸟头定理用的是乘积比!不是单独的线段比~ 记忆上用夹角2边最好记,这里等于 鸟头定理的证明,写出来是因为很多题目的解题过程,都需要补这么一条辅助线来过度连接2个看起来无关的图形。证明的途径其实跟我们日常解题途径重合,所以写出来,仔细看。 经由媒介的?ABE ,联系了?ADE 和大三角形?ABC BE 辅助线很重要!鸟头定理是用等高(等于是用等积推算而得) 第二种的证明方式将对顶角压回来?ABC 内,对顶角性质是相等的,所以压回来的新?跟?ADE 是全等?,再做一条辅助线就能用共角的方式证明出对角的鸟头定理 互补角的鸟头定理证明

机器学习 —— 概率图模型(推理:决策)

Koller 教授把决策作为一种单独的模块进行讲解,但我认为,决策和推理本质上是一样的,都是在假设已知CPD或者势函数的情况下对模型给出结论。 1、决策==逐利 决策的基本思想很intuitive,并且非常有用。在赌博行为中,最后获得的钱与硬币的正反,赌注的大小有关。硬币的正反显然是随机变量,而赌注的大小却是决策量。显而易见的是,决策的最终目的是使得某个期望最大化。再举一个视觉中的例子,对于双目配准算法而言,左相机对应右相机的像素可以认为是随机变量。但是否将两个像素配在一起却可以认为是一个决策(假设像素一一对应,如果甲配了乙就不能配丙了,希望配准的最终结果是尽可能正确的)。故决策的数学表达为: 其中,P(X|A)表示在给定决策下,随机变量X的概率。U(x,a)表示给定决策下,x发生所获得的收益。简单的决策如图所示:

2、决策的方法 显然从上面的分析可知,我们要做的决策就是使得期望最大化的那个。换一个角度来看,如果每次的决策都是未知的,决策取决于已知信息,决策影响最终结果,如果决策也是随机变量,我们应该把获利最多的那个决策组作为我们所需采取的决策库。换而言之,凡事应有a,b,c三策,不同的策略对应不同的情况。显然,我们所需要采取的策略取决于已知的信息(Action的父节点)。而策略组本身就是一个随机变量。 如图所示,如果变量真实值无法观测,只能通过一个传感器(survey)来进行推测时,决策应该取决于S的值。S的值又和其所有父节点(M)的值相关。MEU表示所选择的策略。

显然,我们需要P(S)deta(F|S)U(F,M),然后P(S)需要对P(M,S)进行边际获得。故表达式如上。带入数据发现

数学建模常用模型方法总结精品

【关键字】设计、方法、条件、动力、增长、计划、问题、系统、网络、理想、要素、工程、项目、重点、检验、分析、规划、管理、优化、中心 数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型 模糊性数学模型

小学奥数平面几何五种面积模型(等积,鸟头,蝶形,相似,共边)

小学奥数平面几何五种模型(等积,鸟头,蝶形,相似,共边) 目标:熟练掌握五大面积模型等积,鸟头,蝶形,相似(含金字塔模型和沙漏模型),共边(含燕尾模型和风筝模型), 掌握五大面积模型的各种变形 知识点拨 一、等积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b = 【 ③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、鸟头定理 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上), 则:():()ABC ADE S S AB AC AD AE =??△△ 》 E D C B A E D C B A 图⑴ 图⑵ 三、蝶形定理 任意四边形中的比例关系(“蝶形定理”): ①1243::S S S S =或者1324S S S S ?=?②()()1243::AO OC S S S S =++ 蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造 b a S 2 S 1 D C B A S 4 S 3 S 2 S 1 O D C B A

概率图模型研究进展综述

软件学报ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.360docs.net/doc/6316425248.html, Journal of Software,2013,24(11):2476?2497 [doi: 10.3724/SP.J.1001.2013.04486] https://www.360docs.net/doc/6316425248.html, +86-10-62562563 ?中国科学院软件研究所版权所有. Tel/Fax: ? 概率图模型研究进展综述 张宏毅1,2, 王立威1,2, 陈瑜希1,2 1(机器感知与智能教育部重点实验室(北京大学),北京 100871) 2(北京大学信息科学技术学院智能科学系,北京 100871) 通讯作者: 张宏毅, E-mail: hongyi.zhang.pku@https://www.360docs.net/doc/6316425248.html, 摘要: 概率图模型作为一类有力的工具,能够简洁地表示复杂的概率分布,有效地(近似)计算边缘分布和条件分 布,方便地学习概率模型中的参数和超参数.因此,它作为一种处理不确定性的形式化方法,被广泛应用于需要进行 自动的概率推理的场合,例如计算机视觉、自然语言处理.回顾了有关概率图模型的表示、推理和学习的基本概念 和主要结果,并详细介绍了这些方法在两种重要的概率模型中的应用.还回顾了在加速经典近似推理算法方面的新 进展.最后讨论了相关方向的研究前景. 关键词: 概率图模型;概率推理;机器学习 中图法分类号: TP181文献标识码: A 中文引用格式: 张宏毅,王立威,陈瑜希.概率图模型研究进展综述.软件学报,2013,24(11):2476?2497.https://www.360docs.net/doc/6316425248.html,/ 1000-9825/4486.htm 英文引用格式: Zhang HY, Wang LW, Chen YX. Research progress of probabilistic graphical models: A survey. Ruan Jian Xue Bao/Journal of Software, 2013,24(11):2476?2497 (in Chinese).https://www.360docs.net/doc/6316425248.html,/1000-9825/4486.htm Research Progress of Probabilistic Graphical Models: A Survey ZHANG Hong-Yi1,2, WANG Li-Wei1,2, CHEN Yu-Xi1,2 1(Key Laboratory of Machine Perception (Peking University), Ministry of Education, Beijing 100871, China) 2(Department of Machine Intelligence, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China) Corresponding author: ZHANG Hong-Yi, E-mail: hongyi.zhang.pku@https://www.360docs.net/doc/6316425248.html, Abstract: Probabilistic graphical models are powerful tools for compactly representing complex probability distributions, efficiently computing (approximate) marginal and conditional distributions, and conveniently learning parameters and hyperparameters in probabilistic models. As a result, they have been widely used in applications that require some sort of automated probabilistic reasoning, such as computer vision and natural language processing, as a formal approach to deal with uncertainty. This paper surveys the basic concepts and key results of representation, inference and learning in probabilistic graphical models, and demonstrates their uses in two important probabilistic models. It also reviews some recent advances in speeding up classic approximate inference algorithms, followed by a discussion of promising research directions. Key words: probabilistic graphical model; probabilistic reasoning; machine learning 我们工作和生活中的许多问题都需要通过推理来解决.通过推理,我们综合已有的信息,对我们感兴趣的未 知量做出估计,或者决定采取某种行动.例如,程序员通过观察程序在测试中的输出判断程序是否有错误以及需 要进一步调试的代码位置,医生通过患者的自我报告、患者体征、医学检测结果和流行病爆发的状态判断患者 可能罹患的疾病.一直以来,计算机科学都在努力将推理自动化,例如,编写能够自动对程序进行测试并且诊断 ?基金项目: 国家自然科学基金(61222307, 61075003) 收稿时间:2013-07-17; 修改时间: 2013-08-02; 定稿时间: 2013-08-27

几何五大模型汇总

小学平面几何五大模型 一、 共角定理 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E分别是, AB AC上的点如图⑴(或D在BA的延长线上,E在AC上),则:():() S S AB AC AD AE =?? △△ 证明:由三角形面积公式S=1/2*a*b*sinC可推导出 若△ABC和△ADE中, ∠BAC=∠DAE 或∠BAC+∠DAE=180°, 则 ADE ABC S S ? ? = AE AD AC AB ? ? 二、等积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如下图 12 :: S S a b = ③夹在一组平行线之间的等积变形,如右图 ACD BCD S S= △△ ; 反之,如果 ACD BCD S S = △△ ,则可知直线AB平行于CD. ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. b a S2 S1 D C B A

三、蝶形定理 1、任意四边形中的比例关系(“蝶形定理”): ①1243::S S S S =或者1324S S S S ?=? ②()()1243::AO OC S S S S =++ 速记:上×下=左×右 蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面 可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 2、梯形中比例关系(“梯形蝶形定理”): ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +. 四、相似模型 (一)金字塔模型 (二) 沙漏模型 G F E A B C D A B C D E F G ①AD AE DE AF AB AC BC AG ===; ②22:ADE ABC S S AF AG =△△:. 相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下: ⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; A B C D O b a S 3 S 2 S 1S 4 S 4 S 3 S 2 S 1O D C B A

概率图模型中的推断

概率图模型中的推断 王泉 中国科学院大学网络空间安全学院 2016年11月

?推断问题回顾 ?精确推断:信念传播 –信念传播算法回顾 –信念传播在HMM中的应用?近似推断:吉布斯采样–吉布斯采样算法回顾 –吉布斯采样在LDA中的应用

?推断问题回顾 ?精确推断:信念传播 –信念传播算法回顾 –信念传播在HMM中的应用?近似推断:吉布斯采样–吉布斯采样算法回顾 –吉布斯采样在LDA中的应用

?已知联合概率分布 P x 1,?,x n ,估计 –x Q 问题变量;x E 证据变量;x Q ∪x E =x 1,?,x n P R =1 P R =0 0 P R =1G =1= ? P B =0.001 P E =0.002 P A B ,E =0.95 P A B ,?E =0.94 P A ?B ,E =0.29 P A ?B ,?E =0.001 P J A =0.9 P J ?A =0.05 P M A =0.7 P M ?A =0.01 P B =1E =0,J =1=? P x Q x E =x Q ,x E x E

?已知联合概率分布 P x 1,?,x n ,估计 –x Q 问题变量;x E 证据变量;x Q ∪x E =x 1,?,x n P x Q x E =x Q ,x E x E 观测图片 y i 原始图片 x i y ?=argmax P y x 朴素贝叶斯 x ?=argmax P x y 图像去噪

?精确推断:计算P x Q x E的精确值 –变量消去 (variable elimination) –信念传播 (belief propagation) –计算复杂度随着极大团规模的增长呈指数增长,适用范围有限?近似推断:在较低的时间复杂度下获得原问题的近似解–前向采样 (forward sampling) –吉布斯采样 (Gibbs sampling) –通过采样一组服从特定分布的样本,来近似原始分布,适用范围更广,可操作性更强

读懂概率图模型:你需要从基本概念和参数估计开始

读懂概率图模型:你需要从基本概念和参数估计开始 选自statsbot作者:Prasoon Goyal机器之心编译参与:Panda 概率图模型是人工智能领域内一大主要研究方向。近日,Statsbot 团队邀请数据科学家Prasoon Goyal 在其博客上分两部分发表了一篇有关概率图模型的基础性介绍文章。文章从基础的概念开始谈起,并加入了基础的应用示例来帮助初学者理解概率图模型的实用价值。机器之心对该文章进行了编译介绍。 第一部分:基本术语和问题设定 机器学习领域内很多常见问题都涉及到对彼此相互独立的 孤立数据点进行分类。比如:预测给定图像中是否包含汽车或狗,或预测图像中的手写字符是0 到9 中的哪一个。 事实证明,很多问题都不在上述范围内。比如说,给定一个句子「I like machine learning」,然后标注每个词的词性(名词、代词、动词、形容词等)。正如这个简单例子所表现出的那样:我们不能通过单独处理每个词来解决这个任务——「learning」根据上下文的情况既可以是名词,也可以是动词。这个任务对很多关于文本的更为复杂的任务非常重要,比如从一种语言到另一种语言的翻译、文本转语音等。 使用标准的分类模型来处理这些问题并没有什么显而易见

的方法。概率图模型(PGM/probabilistic graphical model)是一种用于学习这些带有依赖(dependency)的模型的强大框架。这篇文章是Statsbot 团队邀请数据科学家Prasoon Goyal 为这一框架编写的一份教程。 在探讨如何将概率图模型用于机器学习问题之前,我们需要先理解PGM 框架。概率图模型(或简称图模型)在形式上是由图结构组成的。图的每个节点(node)都关联了一个随机变量,而图的边(edge)则被用于编码这些随机变量之间的关系。 根据图是有向的还是无向的,我们可以将图的模式分为两大类——贝叶斯网络(?Bayesian network)和马尔可夫网络(Markov networks)。 贝叶斯网络:有向图模型 贝叶斯网络的一个典型案例是所谓的「学生网络(student network)」,它看起来像是这样: 这个图描述了某个学生注册某个大学课程的设定。该图中有5 个随机变量:课程的难度(Difficulty):可取两个值,0 表示低难度,1 表示高难度 学生的智力水平(Intelligence):可取两个值,0 表示不聪明,1 表示聪明 学生的评级(Grade):可取三个值,1 表示差,2 表示中,3 表示优

几何概型案例

《几何概型》教学案例 教学目标 一、知识与技能目标 (1)通过学生对几个几何概型的实验和观察,了解几何概型的两个特点。 (2)能识别实际问题中概率模型是否为几何概型。 (3)会利用几何概型公式对简单的几何概型问题进行计算。 二、过程与方法 让学生通过对几个试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,并在解决问题中,给学生寻找发现、讨论交流、合作分享的机会。 教学重点 几何概型的特点,几何概型的识别,几何概型的概率公式。 教学难点 建立合理的几何模型求解概率。 教学过程 一、创设情境引入新课 师:上节课我们共同学习了概率当中的古典概型,请同学们回想一下其中所包含的主要内容,并依据此举一个生活当中的古典概型的例子。 生甲:掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。 师:请同学们判断这个例子是古典概型吗?你判断的依据是什么? 生乙:是古典概型,因为此试验包含的基本事件的个数是有限个,并且每个基本事件发生的 可能性相等。 师:非常好,下面允许老师也举一个例子,请同学们作以判断。 如图:把一块木板平均分成四部分,小球随机的掉到木板上,求小球掉在阴影区 域内的概率。 生丙:此试验不是古典概型,因为此试验包含的基本事件的个数有无数多个。 师:非常好,此试验不是古典概型,由此我们可以看到,在我们的生活中确实 存在着诸如这样的不是古典概型的实际问题,因此我们有必要对这样的问题作进一步更加深入的学习和研究。今天这节课我们在学习了古典概型的基础上再来学习几何概型。那到底什

么是几何概型,它和古典概型有联系吗?在数学里又是怎样定义的呢?为此,我们接着来看刚才这个试验。 试验一 师:请同学们根据我们的生活经验回答此试验发生的概率是多少? 生丁:四分之一 师:很好,那你是怎样得到这个答案的呢? 生丁:就是用阴影的面积比上总面积。 师:非常好,下面我们再来看图中的右边这种情形,现在阴影的面积仍是总面积的四分之一,只不过阴影的形状及其位置发生了变化,那么此时小球落在阴影区域内的概率又是多少? 生丁:仍是四分之一,还是用阴影的面积比上总面积。 师:非常好,请坐。我们梳理一下我们刚才的发现。首先此试验所包含的基本事件的个数为无数多个,并且每个基本事件发生的可能性相等,而所求的概率就是用阴影的面积比上总面积,所以此概率仅与阴影的面及有关系,而与阴影的形状和位置并无关系。 试验二 在500ml的水中有一只草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率. 师:首先请同学们观察这个试验跟刚才那个试验有没有共同本质的东西。 生戊:此试验所包含基本事件的个数仍是无限多个,每个基本事件发生的可能行都相等。师:所求的概率是多少?

最大似然估计学习总结(概率论大作业)

最大似然估计学习总结(概率论大作业)

最大似然估计学习总结 航天学院探测制导与控制技术杨若眉1110420123 摘要:最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计的系统发生树重建方法的代表。 关键词:最大似然估计;离散;连续;概率密度最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。这个方法最早是遗传学家以及统计学家罗纳德·费雪爵士在1912年至1922年间开始使用的。 “似然”是对likelihood 的一种较为贴近文言文的翻译,“似然”用现代的中文来说即“可能性”。故而,若称之为“最大可能性估计”则更加通俗易懂。最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计的系统发生树重建方法的代表。该方法在每组序列比对中考虑了每个核苷酸替换的概率。

最大似然法是要解决这样一个问题:给定一组数据和一个参数待定的模型,如何确定模型的参数,使得这个确定参数后的模型在所有模型中产生已知数据的概率最大。通俗一点讲,就是在什么情况下最有可能发生已知的事件。举个例子,假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少? 我想很多人立马有答案:70%。这个答案是正确的。可是为什么呢?(常识嘛!这还要问?!)其实,在很多常识的背后,都有相应的理论支持。在上面的问题中,就有最大似然法的支持例如,转换出现的概率大约是颠换的三倍。在一个三条序列的比对中,如果发现其中有一列为一个C,一个T和一个G,我们有理由认为,C和T所

小学奥数平面几何五大模型

小学奥数平面几何五大定律 一、等积模型 图(1) 图(2) 图(3) 图(4) ① 等底等高的两个三角形面积相等 如图(1):D 为BC 中点,则 如图(4): 平行于 ,则 ② 两个三角形高相等,面积比等于它们的底之比 如图(2): ③ 两个三角形底相等,面积比等于它们的高之比 如图(3):BC=EF ,则 ④ 夹在一组平行线之间的等积变形 如图(4): 平行于 ,则 反之如果 ,则可知直线 平行于 ⑤ 等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平 行四边形) ⑥ 三角形面积等于与它等底等高的平行四边形面积的一半 ⑦ 两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底 相等,面积比等于它们的高之比 二、共角定理(鸟头定理) 两个三角形中有一个角相等或互补(两个角之和=180O ),这两个三角形叫做共角三角形. D C B A A B D C B C F E D B C D

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 共角 互补角 图(1) 图(2) 如图(1):在△ABC 中,D 、E 分别是AB 、AC 上的点,△ABC 与△ADE 共∠A 如图(2):D 在BA 的延长线上,E 在AC 上;∠BAC+∠BAC =180O (互补), 则: S △ABC :S △ADE =(AB ×AC):(AD ×AE);或 三、相似模型 数学上,相似指两个图形的形状完全相同,其中一个图形能通过放大、缩小、平移、旋转、镜像等方式变成另一个。 相似比:是指两个相似图形的对应边的比值。 相似符号:“∽” 相似三角形:三角分别相等,三边成比例的两个三角形叫做相似三角形 相似三角形传递性:如果图A 相似于图B ,图B 相似于C ,则 A 相似C 即:图A ∽图B ,图B ∽图C ;则,图A ∽图B ∽图C a 顺时针旋转90度 a 翻转 a 缩小 图(1) 图(2) 图(3) 图(4) c a d b A B C D E 金字塔模型 A D E C B F C B D E C O B D A 沙漏模型

概率计算方法总结3

概率计算方法总结 在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)= 的结果数 随机事件所有可能出现果数 随机事件可能出现的结.其中P(必然事件)=1,P (不可能事 件)=0;0

盘点小升初平面几何常考五大模型

盘点小升初平面几何常考五大模型 (一)等积变换模型性质与应用简介 导读:平面几何问题,是历年小升初的必考题目,也在各大杯赛中占有很大比例,这些题目都是以等积变形为主导思想,结合五大模型的变化应用交织而成的,这一期我们讲解了解一下五大模型第一块——等积变换模型。 等积变换模型例题讲解与课后练习题 (一)例题讲解与分析 ?【例1】:如右图,在△ABC中,BE=3AE,CD=2AD.若△ADE的面积是1平方厘米,那么三角形ABC的面积是多少 【解答】连接BD,S△ABD和S△ AED同高,面积比等于底边比,所以三角形ABD的面积是4, S△ABD和S△ABC同高面积比等于底边比,三角形ABC的面积是ABD的3倍,是12. 【总结】要找准那两个三角形的高相同。 【例2】:如图,四边形ABCD中,AC和BD相交于O点,三角形ADO的面积=5,三角形DOC的面积=4,三角形AOB的面积=15,求三角形BOC的面积是多少

【解答】S△ADO=5,S△DOC=4根据结论2,△ADO与△DOC同高所以面积比等于底的比,即AO/OC=5:4同理S△AOB/S△BOC=AO/OC=5:4,因为S△AOB=15所以S△BOC=12。 【总结】从这个题目我们可以发现,题目的条件和结论都是三角形的面积比,我们在解题过程中借助结论2,先把面积比转化成线段比,再把线段比用结论2转化成面积比,解决了问题。事实上,这2次转化的过程就相当于在条件和结论中搭了一座“桥梁”,请同学们体会 一下。 (二)课后练习题讲解与分析 (二)鸟头定理(共角定理)模型 导语:平面几何问题,是历年小升初的必考题目,也在各大杯赛中占有很大比例,这些题目都是以等积变形为主导思想,结合五大模型的变化应用交织而成的,第二期我们讲解了解一下五大模型第二块——鸟头定理(共角定理)模型。

概率图模型介绍与计算

概率图模型介绍与计算 01 简单介绍 概率图模型是图论和概率论结合的产物,它的开创者是鼎鼎大名的Judea Pearl,我十分喜欢概率图模型这个工具,它是一个很有力的多变量而且变量关系可视化的建模工具,主要包括两个大方向:无向图模型和有向图模型。无向图模型又称马氏网络,它的应用很多,有典型的基于马尔科夫随机场的图像处理,图像分割,立体匹配等,也有和机器学习结合求取模型参数的结构化学习方法。严格的说他们都是在求后验概率:p(y|x),即给定数据判定每种标签y的概率,最后选取最大的后验概率最大的标签作为预测结果。这个过程也称概率推理(probabilistic inference)。而有向图的应用也很广,有向图又称贝叶斯网络(bayes networks),说到贝叶斯就足以可以预见这个模型的应用范围咯,比如医疗诊断,绝大多数的机器学习等。但是它也有一些争议的地方,说到这就回到贝叶斯派和频率派几百年的争议这个大话题上去了,因为贝叶斯派假设了一些先验概率,而频率派认为这个先验有点主观,频率派认为模型的参数是客观存在的,假设先验分布就有点武断,用贝叶斯模型预测的结果就有点“水分”,不适用于比较严格的领域,比如精密制造,法律行业等。好吧,如果不遵循贝叶斯观点,前面讲的所有机器学习模型都可以dismiss咯,我们就通过大量数据统计先验来弥补这点“缺陷”吧。无向图和有向图的例子如(图一)所示: 图一(a)无向图(隐马尔科夫)(b)有向图 概率图模型吸取了图论和概率二者的长处,图论在许多计算领域中扮演着重要角色,比如组合优化,统计物理,经济等。图的每个节点都可看成一个变量,每个变量有N个状态(取值范围),节点之间的边表示变量之间的关系,它除了

人教版高中数学必修三 第三章 概率概率学案3超几何分布

概率学案3 §2.5.3概率综合 ——超几何分布 学习目标 1.根据题意能够识别概率模型。 学习过程 【任务一】分析典型例题,总结解题思路 例:某班共有学生40人,将一次数学考试成绩(单位:分) 绘制成频率分布直方图,如图所示. (Ⅰ)请根据图中所给数据,求出a的值; (Ⅱ)从成绩在[50,70)内的学生中随机选3名学生,求这3 名学生的成绩都在[60,70)内的概率; (Ⅲ)为了了解学生本次考试的失分情况,从成绩在[50,70) 内的学生中随机选取3人的成绩进行分析,用X表示所 选学生成绩在[60,70)内的人数,求X的分布列和数学期望. 小结: 1.模型特点:总数为N的几类元素,其中含某一类元素M个,从中随机选取n个元素,观察这类元素个数情况; 2.解题思路: A.根据题意识别超几何分布模型; B.利用超几何分布概率特点计算问题中描述的某个事件的概率。 【任务二】跟踪练习 甲口袋中有大小相同的白球3个,红球5个;乙口袋中有大小相同的白球4个,黑球8个,从两个口袋中各摸出2个球,求: (1)甲口袋中摸出的2个球都是红球的概率; (2)两个口袋中摸出的4个球中恰有2个白球的概率.

产品数量 【任务三】课后作业 (2010崇文一模文16)为了调查某厂2000名工人生产某种产品的能力,随机抽查了m 位工人某天生产该产品的数量,产品数量的分组区间为[)10,15,[)15,20, [)20,25,[)25,30,[30,35],频率分布直方图如图所示. 已知生产的产品数量在[)20,25之间的工人有6位. (Ⅰ)求m ; (Ⅱ)工厂规定从生产低于20 件产品的工人中随机的选取2工人进行培训,则这2位工人 在同一组的概率是多少?

概率初步知识点总结和题型

概率初步知识点和题型 【知识梳理】 1.生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中, ①必然事件发生的概率为1,即P(必然事件)=1; ②不可能事件发生的概率为0,即P(不可能事件)=0; ③如果A为不确定事件,那么0

3.概率应用: 通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题。 【练习】 随机事件与概率: 一. 选择题 1. 下列事件必然发生的是() A. 一个普通正方体骰子掷三次和为19 B. 一副洗好的扑克牌任抽一张为奇数。 C. 今天下雨。 D. 一个不透明的袋子里装有4个红球,2个白球,从中任取3个球,其中至少有2球同色。 2. 甲袋中装着1个红球9个白球,乙袋中装着9个红球1个白球,两个口袋中的球都已搅匀。想从两个口袋中摸出一个红球,那么选哪一个口袋成功的机会较大?() A. 甲袋 B. 乙袋 C. 两个都一样 D. 两个都不行 3. 下列事件中,属于确定事件的是() A. 发射运载火箭成功 B. 2008年,中国女足取得冠军 C. 闪电、雷声出现时,先看到闪电,后听到雷声 D. 掷骰子时,点数“6”朝上 4. 下列事件中,属于不确定的事件的是() A. 英文字母共28个 B. 某人连续两次购买两张彩票,均中头奖 C. 掷两个正四面体骰子(每面分别标有数字1,2,3,4)接触地面的数字和为9 D. 哈尔滨的冬天会下雪 5. 下列事件中属于不可能的事件是() A. 军训时某同学打靶击中靶心 B. 对于有理数x,∣x∣≤0 C. 一年中有365天 D. 你将来长到4米高 6、一个袋子中放有红球、绿球若干个,黄球5个,如果袋子中任意摸出黄球的概率为0.25, 那么袋子中共有球的个数为() A. 15 B. 18 C. 20 D. 25 用列举法求概率: 填空题:

平面几何五种模型

平面几何五种模型 令狐采学 等积,鸟头,蝶形,相似,共边 1、等积模型 等底等高的2个三角形面积相等 2个三角形高相等,面积比=底之比 2个三角形底相等,面积比=高之比 夹在一组平行线之间的等积变形(方方模型) 等积模型是基本应用应是烂熟于心的 都是利用面积公式得到的推定比例 如下: 1等底等高的2个平行四边形面积相等 2三角形面积等于它等底等高的平行四边形面积的一半 3 2个平行四边形高相等,面积比=底之比;2个平行四边形底相等,面积比=高之比 2、鸟头模型(共角定理) 鸟头定理:2个三角形中,有一个角相等或互补,这2个三角形叫做共角三角形。共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比(夹角2边) 鸟头定理的使用要火眼金睛,经常需要自己补一条辅助线同时经过2次以上转换对应才能得到结果。

A B C D E 如图,浅紫色的三角形ADE 跟大三角形ABC 是公用A 角的,等于浅紫色三角形是“嵌入”在大三角形ABC 里面,注意,鸟头定理用的是乘积比!不是单独的线段比~ 记忆上用夹角2边最好记,这里等于 鸟头定理的证明,写出来是因为很多题目的解题过程,都需要补这么一条辅助线来过度连接2个看起来无关的图形。证明的途径其实跟我们日常解题途径重合,所以写出来,仔细看。 经由媒介的?ABE ,联系了?ADE 和大三角形?ABC BE 辅助线很重要!鸟头定理是用等高(等于是用等积推算而 得) 第二种的证明方式将对顶角压回来?ABC 内,对顶角性质是相等的,所以压回来的新?跟?ADE 是全等?,再做一条辅助线就能用共角的方式证明出对角的鸟头定理 互补角的鸟头定理证明

平面几何五种模型

平面几何五种模型 等积,鸟头,蝶形,相似,共边 1、等积模型 等底等高的2个三角形面积相等 2个三角形高相等,面积比=底之比 2个三角形底相等,面积比=高之比 夹在一组平行线之间的等积变形(方方模型) 等积模型就是基本应用应就是烂熟于心的 都就是利用面积公式得到的推定比例 如下: 1等底等高的2个平行四边形面积相等 2三角形面积等于它等底等高的平行四边形面积的一半 3 2个平行四边形高相等,面积比=底之比;2个平行四边形底相等,面积比=高之比 2、鸟头模型(共角定理) 鸟头定理:2个三角形中,有一个角相等或互补,这2个三角形叫做共角三角形。共角三角形的面积比等于对应角(相等角或互补角)两夹边的 乘积之比(夹角2边) 鸟头定理的使用要火眼金睛,经常需要自己补一条辅助线同时经过2次以上转换对应才能得到结果。

A B C D E 如图,浅紫色的三角形ADE 跟大三角形ABC 就是公用A 角的,等于浅紫色三角形就是“嵌入”在大三角形ABC 里面,注意,鸟头定理用的就是乘积比!不就是单独的线段比~ 记忆上用夹角2边 最好记,这里等于 对顶角A C E D A E D 互补角A B C D E A B E D 鸟头定理的证明,写出来就是因为很多题目的解题过程,都需要补这么一条辅助线来过度连接2个瞧起来无关的图形。证明的途径其实跟我们日常解题途径重合,所以写出来,仔细瞧。

A 等高,面积比=底之比 S△ABE:S△ABC=AE:AC 等高,面积比=底之比 S△ADE:S△ABE=AD:AB A B C A B E B C D E D E 经由媒介的?ABE,联系了?ADE与大三角形?ABC BE辅助线很重要!鸟头定理就是用等高(等于就是用等积推算而得) 第二种的证明方式将对顶角压回来?ABC内,对顶角性质就是相等的,所以压回来的新?跟?ADE就是全等?,再做一条辅助线就能用共角的方式证明出对角的鸟头定理 互补角的鸟头定理证明 S△ADE=S△AD'E,因为同底等高 AD=AD',高相等,所以面积相等 D' A B D E 写了这几个证明,其实说的目的只有一个:连接小三角形与大三角形过度的那条辅助线,特别重

数学建模_四大模型总结

四类基本模型 1 优化模型 1.1 数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2 微分方程组模型 阻滞增长模型、SARS 传播模型。 1.3 图论与网络优化问题 最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。 1.4 概率模型 决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。 1.5 组合优化经典问题 ● 多维背包问题(MKP) 背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。如何将尽可能多的物品装入背包。 多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。如何选取物品装入背包,是背包中物品的总价值最大。 多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于NP 难问题。 ● 二维指派问题(QAP) 工作指派问题:n 个工作可以由n 个工人分别完成。工人i 完成工作j 的时间为ij d 。如何安排使总工作时间最小。 二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。 二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。 ● 旅行商问题(TSP) 旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。 ● 车辆路径问题(VRP) 车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在

相关文档
最新文档