人教版数学初二几何辅助线添加方法及答案(精品)

人教版数学初二几何辅助线添加方法及答案(精品)
人教版数学初二几何辅助线添加方法及答案(精品)

初二数学辅助线添加方法

1. 三角形问题添加辅助线方法

方法1:有关三角形中线的题目,常将中线加倍。含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。

方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。

方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。

方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。

2. 平行四边形中常用辅助线的添法

平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:

(1)连对角线或平移对角线:

(2)过顶点作对边的垂线构造直角三角形

(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线

(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。

(5)过顶点作对角线的垂线,构成线段平行或三角形全等.

3. 梯形中常用辅助线的添法

梯形是一种特殊的四边形。它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:(1)在梯形内部平移一腰。

(2)梯形外平移一腰

(3)梯形内平移两腰

(4)延长两腰

(5)过梯形上底的两端点向下底作高

(6)平移对角线

(7)连接梯形一顶点及一腰的中点。

(8)过一腰的中点作另一腰的平行线。

(9)作中位线

当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。

作辅助线的方法一:中点、中位线,延线,平行线。如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。

二:垂线、分角线,翻转全等连。如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180 度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。

三:边边若相等,旋转做实验。

如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。

四: 造角、平、相似,和、差、积、商见。

如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。” 五:面积找底高,多边变三边。

如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。

如遇多边形,想法割补成三角形;反之,亦成立。

另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补” 有二百多种,大多数为“面积找底高,多边变三边” 。

三角形

图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线三角形中有中线,延长中线等中线。

四边形

平行四边形出现,对称中心等分点。梯形问题巧转换,变为△和□。平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。上述方法不奏效,过腰中点全等造。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。

三角形中作辅助线的常用方法举例

一.倍长中线

1:已知△ ABC,AD是BC边上的中线,分别以AB边、AC边为直角边各向形外

作等腰直角三角形,如图5-2 ,求证EF=2AD。

BD C 图5 2

二、截长补短法作辅助线。

在△ ABC中,AD平分∠ BAC,∠ ACB=2∠B,求证:AB=AC+CD。A

12

C

BD

E

、延长已知边构造三角形:例如:如图7-1 :已知AC=BD,AD⊥AC于A ,BC⊥BD于B,求证:AD=BC

与△ BOC,△ABD与△ BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。

证明:分别延长DA,CB,它们的延长交于E点,

∵AD⊥AC BC ⊥BD (已知)∴∠ CAE=∠ DBE =90°

(垂直的定义)在△ DBE与△ CAE中

E E(公共角)

DBE CAE(已证)

∵BD AC(已知)

∴△ DBE≌△ CAE (AAS)

∴ED=EC EB=EA (全等三角形对应边相等)

∴ED-EA=EC-EB

即:AD=BC。

当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。)

四、连接四边形的对角线,把四边形的问题转化成为三角形来解决。例如:如图8-1 :AB∥CD,AD∥BC 求证:AB=CD。分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决。证明:连接AC(或BD)

∵ AB∥CD AD∥BC (已知)

∴∠ 1=∠ 2,∠ 3=∠ 4 (两直线平行,内错角相等)

在△ ABC与△ CDA中

1 2(已证)

AC CA(公共边)

∵ 3 4(已证)

∴ △ABC≌△ CDA (ASA)

∴AB=CD(全等三角形对应边相等)

五、有和角平分线垂直的线段时,通常把这条线段延长。

例如:如图9-1:在Rt△ ABC中,AB=AC,∠ BAC=90°,∠ 1=∠ 2,CE⊥ BD的延长于E 。求证:BD=2CE

分析:要证BD=2CE,想到要构造线段2CE,同时CE与∠ ABC的平分线垂直,想到要将其延长。证明:分别延长BA,CE交于点F。

∵ BE⊥CF (已知)

∴∠ BEF=∠ BEC=90° (垂直的定义)

F

在△ BEF与△ BEC中,AE

1 2(已知)D

BE BE(公共边)1D

∵BEF BEC(已证)2

B C

∴△BEF≌△BEC(ASA)图9 1 1

∴CE=FE=2 CF (全等三角形对应边相等)

∵∠ BAC=90° BE ⊥CF (已知)

∴∠ BAC=∠CAF=90° ∠1+∠ BDA=90°∠1+∠ BFC=90

∴∠ BDA=∠ BFC

在△ ABD与△ ACF中

BAC CAF (已证)

BDA BFC (已证)

AB=AC (已知)

∴△ ABD≌△ ACF (AAS)

∴BD=CF (全等三角形对应边相等)

∴BD=2CE

六、连接已知点,构造全等三角形例如:已知:如图10-1 ;AC、BD相交于O点,且AB=DC,AC=BD,求证:∠ A=∠ D。

分析:要证∠ A=∠ D,可证它们所在的三角形△ ABO和△ DCO全等,而只有AB=DC和对顶角两个条件,差一个条件,,难以证其全等,只有另寻其它的三角形全等,由AB=DC,AC=BD,若连接BC,

则△ ABC和△ DCB全等,所以,证得∠ A=∠D。证明:连接BC,在△ ABC和△DCB中

AB DC (已知)

AC DB(已知)

∵BC CB(公共边)

∴△ABC≌△ DCB (SSS)

∴∠A=∠ D (全等三角形对应边相等)

图10 1

七、取线段中点构造全等三有形。

例如:如图11-1 :AB=DC,∠ A=∠ D 求证:∠ ABC=∠ DCB。

分析:由AB=DC,∠A=∠D,想到如取AD的中点N,连接NB,NC,再由SAS公理有△ ABN≌△ DCN,

故BN=CN,∠ABN=∠ DCN。下面只需证∠ NBC=∠NCB,再取BC的中点M,连接MN,则由SSS 公理

有△ NBM≌△ NCM,所以∠ NBC=∠ NCB。问题得证。

证明:取AD,BC的中点N、M,连接NB,NM,NC。则AN=D,N BM=C,M

在△ ABN和△ DCN中

AN DN(辅助线的作法) A D(已知)

AB DC(已知)

∴△ ABN≌△DCN (SAS)

∴∠ ABN=∠DCN NB =NC (全等三角形对应边、角相等)在△ NBM与

△ NCM中

NB=NC(已证)

BM=CM (辅助线的作法)

NM=NM(公共边)

∴△NMB≌△NCM,(SSS)

∴∠ NBC=∠ NCB (全等三角形对应角相等)

∴∠ NBC+∠ABN =∠ NCB+∠DCN 即∠ ABC=∠ DCB。

二由角平分线想到的辅助线

口诀:图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。

角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。

①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至

于选取哪种方法,要结合题目图形和已知条件。

与角有关的辅助线

(一)、截取构全等

几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试。下面就几何中常见的定理所涉及到的辅助线作以介绍。

如图1-1 ,∠ AOC∠= BOC,如取OE=O,F并连接DE、DF,则有△ OED≌△OFD,从而为我们证明线段、角相等创造了条件。

图11 1

图1-1 B

图1-2

如图 1-2 ,AB//CD , BE 平分∠ BCD ,CE 平分∠ BCD ,点 E 在 AD 上,求证: BC=AB+C 。D

分析 :此题中就涉及到角平分线, 可以利用角平分线来构造全等三角形, 即利用解平分线来构造轴 对称图形, 同时此题也是证明线段的和差倍分问题, 在证明线段的和差倍分问题中常用到的方法是 延长法或截取法来证明, 延长短的线段或在长的线段长截取一部分使之等于短的线段。 但无论延长 还是截取都要证明线段的相等, 延长要证明延长后的线段与某条线段相等, 截取要证明截取后剩下 的线段与某条线段相等,进而达到所证明的目的。

简证 :在此题中可在长线段 BC 上截取 BF=AB ,再证明 CF=CD ,从而达到证明的目的。这里面用到了 角平分线来构造全等三角形。 另外一个全等自已证明。 此题的证明也可以延长 BE 与 CD 的延长线交 于一点来证明。自已试一试。

(二)、角分线上点向角两边作垂线构全等

过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。 1、如图 2-1 ,已知 AB>AD, ∠BAC=∠FAC,CD=B 。C 求证:∠ ADC+∠B=180

分析 :可由 C 向∠ BAD 的两边作垂线。近而证∠ ADC 与∠B 之和为平角。

(三):作角平分线的垂线构造等腰三角形

从角的一边上的一点作角平分线的垂线, 使之与角的两边相交, 则截得一个等腰三角形, 垂足为底 边上的中点, 该角平分线又成为底边上的中线和高, 以利用中位线的性质与等腰三角形的三线合一 的性质。(如果题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交) 已知:如图 3-1,∠BAD=∠DAC ,AB>AC,C ⊥DAD 于 D ,H 是BC 中点。

1

求证: DH=2 (AB-AC ) 分析:延长 CD 交AB 于点 E ,则可得全等三角形。问题可证

(四)、以角分线上一点做角的另一边的平行线

有角平分线时, 常过角平分线上的一点作角的一边的平行线, 从而构造等腰三角形。 或通过一边上 的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形。如图 4-1 和图 4-2 所示。

H 图示

3-1

图 2-1

图4-1

三由线段和差想到的辅助线

口诀:线段和差及倍半,延长缩短可试验。线段和差不等式,移到同一三角去。遇到求证一条线段等于另两条线段之和时,一般方法是截长补短法:

1、截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;

2、补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段。对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法放在一个三角形中证明。

在利用三角形三边关系证明线段不等关系时,如直接证不出来,可连接两点或廷长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:

四由中点想到的辅助线

口诀:三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。在三角形中,如果已知一点是三角形某一边上的中点,那么首先应该联想到三角形的中线、中位线、加倍延长中线及其相关性质(直角三角形斜边中线性质、等腰三角形底边中线性质),然后通过探索,找到解决问题的方法。

(一)、中线把原三角形分成两个面积相等的小三角形

即如图1,AD是Δ ABC的中线,则SΔABD=SΔACD= SΔABC(因为Δ ABD与ΔACD是等底同高的)。

例1.如图2,Δ ABC中,AD是中线,延长AD到E,使DE=AD,DF是Δ DCE的中线。已知Δ ABC 的面积为2,求:Δ CDF的面积。

解:因为AD是Δ ABC的中线,所以SΔACD= SΔABC= ×2=1,又因CD是Δ ACE的中线,故SΔCDE=SΔACD=1,因DF是Δ CDE的中线,所以SΔ CDF= SΔ CDE= × 1=

∴Δ CDF的面积为

二)、由中点应想到利用三角形的中位线

初中数学几何辅助线技巧

几何常见辅助线口诀三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。 三角形中两中点,连接则成中位线。 三角形中有中线,倍长中线得全等。 四边形 平行四边形出现,对称中心等分点。 梯形问题巧转换,变为三角或平四。 平移腰,移对角,两腰延长作出高。 如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆形

半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径联。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。 内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。 由角平分线想到的辅助线 一、截取构全等: 如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于一点来证明。自己试一试。 二、角分线上点向两边作垂线构全等: 如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180 分析:可由C向∠BAD的两边作垂线。近而证∠ADC与∠B之和为平角。 三、三线合一构造等腰三角形: 如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。四、角平分线+平行线: 如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。

初中几何辅助线技巧大全

初中几何辅助线技巧大全 一初中几何常见辅助线口诀 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 四边形 平行四边形出现,对称中心等分点。梯形问题巧转换,变为△和□。 平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆形 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。 注意点 辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。 二 由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地 去猜想,按一定的规律去尝试。下面就几何中常见的定理所涉及到的辅助线作以介绍。 如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。 例1. 如图1-2,AB//CD ,BE 平分∠BCD ,CE 平分∠BCD ,点E 在AD 上,求证:BC=AB+CD 。 图1-1 B D B C

最新初中-数学几何图形的辅助线添加方法大全

最新初中-数学几何图形的辅助线添加方法 大全 作辅助线的基本方法 一:中点、中位线,延长线,平行线。 如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。 二:垂线、分角线,翻转全等连。 如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。 三:边边若相等,旋转做实验。 如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。 四:造角、平、相似,和、差、积、商见。 如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有

两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。” 托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表) 五:两圆若相交,连心公共弦。 如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。六:两圆相切、离,连心,公切线。 如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。 七:切线连直径,直角与半圆。 如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。即切线与直径互为辅助线。 如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。即直角与半圆互为辅助线。 八:弧、弦、弦心距;平行、等距、弦。 如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。 如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦

立体几何中添加辅助线的策略

立体几何中添加辅助线的主要策略:一是把定义或者定理中缺少的线、面、体补完整;二是要把已知量和未知量统一在一个图形中,如统一在一个三角形中,这样可以用解三角形的方法求得一些未知量,再如也可以统一在平行四边形或其他几何体中。下面加以说明。 一、添加垂线策略。 因为立体几何的许多定义或定理是与垂线有关的,如线面角、二面角的定义,点到平面、线到平面、平面到平面距离的定义,三垂线定理,线面垂直、面面垂直的判定及性质定理,正棱柱、正棱锥的性质,球的性质等,所以运用这些定义或定理,就需要把没有的垂线补上。尤其要注意平面的垂线,因为有了平面的垂线,才能建立空间直角坐标系,才能使用三垂线定理或其逆定理。 例1.在三棱锥ABC O-中,三条棱OA、OB、OC两两互相垂直,且OA=OB=OC,M是AB 边的中点,则OM与平面ABC所成的角的大小是________(用反三角函数表示)。 图1 解:如图1,由题意可设a OA=,则3 ABC O a 6 1 V ,a2 CA BC AB= = = = - ,O点在底面的射影D为底面ABC ?的中心,a 3 3 S 3 1 V OD ABC ABC O= = ? -。又a 6 3 MC 3 1 DM= =,OM与平面 ABC所成角的正切值是2 a 6 6 a 3 3 tan= = θ,所以二面角大小是2 arctan。 点评:本题添加面ABC的垂线OD,正是三棱锥的性质所要求的,一方面它构造出了正三棱锥里面的ODM Rt?,ODC Rt?,另一方面也构造出了OM与平面ABC所成的角。 二、添加平行线策略。 其目的是把不在一起的线,集中在一个图形中,构造出三角形、平行四边形、矩形、菱形,这样就可以通过解三角形等,求得要求的量,或者利用三角形、梯形的中位线来作出所需要的平行线。 例2.如图2,在正方体 1 1 1 1 D C B A ABCD-中, 4 B A F D E B1 1 1 1 1 = =,则 1 BE与DF所成角的余弦值是() A. 17 15 B. 2 1 C. 17 8 D. 2 3

初中平面几何常见添加辅助线的方法(完整资料).doc

此文档下载后即可编辑 初中几何辅助线做法 辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。 平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。 辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 一、见中点引中位线,见中线延长一倍 在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。 二、在比例线段证明中,常作平行线。 作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。 三、对于梯形问题,常用的添加辅助线的方法有 1、过上底的两端点向下底作垂线 2、过上底的一个端点作一腰的平行线 3、过上底的一个端点作一对角线的平行线 4、过一腰的中点作另一腰的平行线 5、过上底一端点和一腰中点的直线与下底的延长线相交 6、作梯形的中位线 7、延长两腰使之相交 四、在解决圆的问题中 1、两圆相交连公共弦。 2、两圆相切,过切点引公切线。 3、见直径想直角 4、遇切线问题,连结过切点的半径是常用辅助线 5、解决有关弦的问题时,常常作弦心距。

(完整版)初中数学_巧添辅助线__解证几何题

巧添辅助线 解证几何题 [引出问题] 在几何证明或计算问题中,经常需要添加必要的辅助线,它的目的可以 归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解题;三是把新问题转化为已经解决过的旧问题加以解决。值得注意的是辅助线的添加目的与已知条件和所求结论有关。 一、倍角问题 研究∠α=2∠β或∠β=1 2 ∠α问题通称为倍角问题。倍角问题分两种情形: 1、∠α与∠β在两个三角形中,常作∠α的平分线,得∠1=1 2 ∠α,然后证明∠1=∠β;或把 ∠β翻折,得∠2=2∠β,然后证明∠2=∠α(如图一) 2、 ∠α与∠β在同一个三角形中,这样的三角形常称为倍角三角形。倍角三角形问题常用构 造等腰三角形的方法添加辅助线(如图二) [例题解析] 例1:如图1,在△ABC 中,AB=AC,BD ⊥AC 于D 。 求证:∠DBC= 1 2 ∠BAC. 分析:∠DBC 、∠BAC 所在的两个三角形有公共角∠C ,可利用 三角形内角和来沟通∠DBC 、∠BAC 和∠C 的关系。 证法一:∵在△ABC 中,AB=AC , ∴∠ABC=∠C=12(180°-∠BAC )=90°-12 ∠BAC 。 ∵BD ⊥AC 于D ∴∠BDC=90 ° ∴∠DBC=90° -∠C=90° -(90° - 12∠BAC)= 1 2 ∠BAC 即∠DBC= 1 2 ∠BAC 分析二:∠DBC 、∠BAC 分别在直角三角形和等腰三角形中,由所证的结论“∠DBC= ?∠BAC ”中含有角的倍、半关系,因此,可以做∠A 的平分线,利用等腰三角形三线合一的性质,把?∠ A 放在直角三角形中求解;也可以把∠DBC 沿BD 翻折构造2∠DBC 求解。 证法二:如图2,作AE ⊥BC 于E ,则∠EAC+∠C=90°

初一数学-几何题辅助线技巧详解

巧添辅助线 解证几何题 在几何证明或计算问题中,经常需要添加必要的辅助线,它的目的可以归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解题;三是把新问题转化为已经解决过的旧问题加以解决。值得注意的是辅助线的添加目的与已知条件和所求结论有关。下面我们分别举例加以说明。 [例题解析] 一、倍角问题 例1:如图1,在△ABC 中,AB=AC,BD ⊥AC 于D 。 求证:∠DBC=1 2 ∠BAC. 分析:∠DBC 、∠BAC 所在的两个三角形有公共角∠C ,可利用 三角形内角和来沟通∠DBC 、∠BAC 和∠C 的关系。 证法一:∵在△ABC 中,AB=AC , ∴∠ABC=∠C= 12(180°-∠BAC )=90°-12 ∠BAC 。 ∵BD ⊥AC 于D ∴∠BDC=90 ° ∴∠DBC=90° -∠C=90° -(90° - 12∠BAC)= 1 2 ∠BAC 即∠DBC= 1 2 ∠BAC 分析二:∠DBC 、∠BAC 分别在直角三角形和等腰三角形中,由所证的结论“∠DBC= ?∠BAC ”中含有角的倍、半关系,因此,可以做∠A 的平分线,利用等腰三角形三线合一的性质,把?∠A 放在直 角三角形中求解;也可以把∠DBC 沿BD 翻折构造2∠DBC 求解。 证法二:如图2,作AE ⊥BC 于E ,则∠EAC+∠C=90° ∵AB=AC ∴∠EAG= 1 2 ∠BAC ∵BD ⊥AC 于D ∴∠DBC+∠C=90 ° ∴∠EAC=∠DBC (同角的余角相等) 即∠DBC= 1 2 ∠BAC 。 证法三:如图3,在AD 上取一点E ,使DE=CD 连接BE ∵BD ⊥AC ∴BD 是线段CE 的垂直平分线 ∴BC=BE ∴∠BEC=∠C ∴∠EBC=2∠DBC=180° -2∠C ∵AB=AC ∴∠ABC=∠C ∴∠BAC=180° -2∠C ∴∠EBC=∠BAC ∴∠DBC= 1 2 ∠BAC 说明:例1也可以取BC 中点为E ,连接DE ,利用直角三角形斜边的中线等于斜边的一半和等腰

几何中常见的辅助线添加方法

几何专题——辅助线 平面几何是初中教学的重要组成部分,它的基础知识在生产实践和科学研究中有着广泛的应用,又是继续学习数学和其他学科的基础,但许多初中生对几何证实题感到困难,尤其是对需要添加辅助线的证实题,往往束手无策。 一、辅助线的定义: 为了证实的需要,在原来图形上添画的线叫做辅助线。 二、几种常用的辅助线:连结、作平行线、作垂线、延长等 注意:1)添加辅助线是手段,而不是目的,它是沟通已知和未知的桥梁,不能见到题目,就无目的地添加辅助线。一则没用、二则辅助线越多,图形越乱,反而妨碍思考问题。 2)添加辅助线时,一条辅助线只能提供一个条件 三、正确添加辅助线歌 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。

直接证实有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证实是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆假如碰到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证实题目少困难。 辅助线,是虚线,画图注重勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时把握要熟练。解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。几何证题难不难,关键常在辅助线; 知中点、作中线,中线处长加倍看;底角倍半角分线,有时也作处长线; 线段和差及倍分,延长截取证全等;公共角、公共边,隐含条件须挖掘; 全等图形多变换,旋转平移加折叠;中位线、常相连,出现平行就好办; 四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线; 两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便; 非凡角、非凡边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙; 圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,碰到直径周角连; 切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦; 切割线,连结弦,两圆三圆连心线;基本图形要熟练,复杂图形多分解;以上规律属一般,灵活应用才方便。

初中数学几何辅助线常用方法

第一章 中点模型的构造 当已知条件中出现一个中点时,你首先想到的辅助线的解题方法是什么?如果已知两个中点呢? 介绍以下方法: 1) 倍长中线或类中线(与中点有关的线段)构造全等三角形; 2) 三角形中位线定理; 3) 已知直角三角形斜边中点,可以考虑构造斜边中线; 4) 已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”。 例1 在△ABC 中,AB=5,AC=3,BC 边上的中线AD=2,求BC 的长. 例2 已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,连接BE 并延长交AC 于点F ,AF=EF ,求证:AC=BE. 变式: 如图,在△ABC 中,AD 交BC 于点D ,点E 是BC 中点,EF//AD 交CA 的延长线于点F ,交AB 于点G ,若AD 为△ABC 的角平分线,求证:BG=CF. B C A D D B C D E B C

例3 在Rt △ABC 中,∠BAC=90°,点D 为BC 的中点,点E 、F 分别为AB 、AC 上的点,且ED ⊥FD. 以线段BE 、EF 、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形,还是直角三角形,或者是钝角三角形? 例4 已知在△ABC 中,BE 、CF 分别为边AC 、AB 上的高,D 为BC 的中点,DM ⊥EF 于点M. 求证:FM=EM. 例5 已知:△ABD 和△ACE 都是直角三角形,且∠ABD=∠ACE=90°. 如图,连接DE ,设M 为DE 的中点,连接MB 、MC. 求证:MB=MC. D B A D B A B D

2015中考数学几何辅助线画法详解大全

中考数学几何辅助线画法详解大全 线、角、相交线、平行线 规律1.如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共 可以画出1 2 n(n-1)条. 规律2.平面上的n条直线最多可把平面分成〔1 2 n(n+1)+1〕个部分. 规律3.如果一条直线上有n个点,那么在这个图形中共有线段的条数为1 2 n(n-1)条. 规律4.线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半. 例:如图,B在线段AC上,M是AB的中点,N是BC的中点. 求证:MN =1 2 AC 证明:∵M是AB的中点,N是BC的中点 ∴AM = BM =1 2 AB ,BN = CN = 1 2 BC ∴MN = MB+BN =1 2 AB + 1 2 BC = 1 2 (AB + BC) ∴MN =1 2 AC 练习:1.如图,点C是线段AB上的一点,M是线段BC的中点. 求证:AM = 1 2 (AB + BC) 2.如图,点B在线段AC上,M是AB的中点,N是AC的中点. 求证:MN = 1 2 BC 3.如图,点B在线段AC上,N是AC的中点,M是BC的中点. 求证:MN =1 2 AB 规律5.有公共端点的n条射线所构成的交点的个数一共有1 2 n(n-1)个. 规律6.如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n-1)个. 规律7. 如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角. 规律8.平面上若有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出1 6 n(n -1)(n-2)个. 规律9.互为邻补角的两个角平分线所成的角的度数为90o. 规律10.平面上有n条直线相交,最多交点的个数为1 2 n(n-1)个. N M C B A M C B A N M C B A N C B A

(完整)八年级数学上几何证明中的辅助线添加方法

八年级数学(上)几何证明中的辅助线添加方法 数学组 田茂松 八年级数学的几何题,有部分题需要做出辅助线才能完成。有的时候,做不出恰当的辅助线,或者做不出辅助线,就没有办法完成该题的解答。为了能够更好的让学生在做几何题时得心应手,现在将八年级数学中几何题的辅助线添加方法总结如下。 常见辅助线的作法有以下几种: 1.遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2.遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 3.遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 4.过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5.截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目。 6.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。 常见辅助线的作法举例: 例1 如图1,//AB CD ,//AD BC . 求证:AD BC =. 分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决。 证明:连接AC (或BD ) ∵//AB CD , //AD BC (已知) ∴∠1=∠2,∠3=∠4 (两直线平行,内错角相等) 在ABC ?与CDA ?中 ?????∠=∠=∠=∠)(43) ()(21已证公共边已证CA AC ∴ABC ?≌CDA ?(ASA ) ∴AD BC =(全等三角形对应边相等) 例2 如图2,在Rt ABC ?中,AB AC =,90BAC ∠=?,12∠=∠,CE BD ⊥的延长于E .求证:2BD CE =. 分析:要证2BD CE =,想到要构造线段2CE ,同时CE 与ABC ∠的平分线垂直,想到要将其延长。 证明:分别延长BA ,CE 交于点F . ∵BE CF ⊥ (已知) ∴90BEF BEC ∠=∠=?(垂直的定义) 在BEF ?与BEC ?中, ?????∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE A B C D 1234图1 D A E F 12图2

平面几何辅助线添加技法总结与例题详解

平面几何辅助线添加技法总结与例题详解 一.添辅助线有二种情况: 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线 (2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形:

初中数学必须掌握的几何辅助线技巧

初中数学必须掌握的几何辅助线技巧! 几何可以说是初中数学的半壁江山,囊括了无数的重点知识、难点知识、无数的中考考点……学好几何,初中数学就不在话下!! 在几何问题中,添加辅助线可以说是解题的关键!辅助线画得好,解题轻松有快速!辅助线画不对,可能就是解题绕弯又出错!如何快速、添加利于解题的辅助线??诀窍都在下面了! 几何常见辅助线口诀 三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。三角形中有中线,倍长中线得全等。四边形 平行四边形出现,对称中心等分点。梯形问题巧转换,变为三角或平四。平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。

上述方法不奏效,过腰中点全等造。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。圆形 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径联。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。 由角平分线想到的辅助线 o截取构全等

初中数学必须掌握的几何辅助线技巧!

初中数学必须掌握的几何辅助线技巧! 在几何问题中,添加辅助线可以说是解题的关键!辅助线画得好,解 题轻松又快速!辅助线画不对,可能就是解题绕弯又出错!如何快速、添加利于解题的辅助线?诀窍都在下面了! 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。 三角形中两中点,连接则成中位线。 三角形中有中线,倍长中线得全等。

平行四边形出现,对称中心等分点。 梯形问题巧转换,变为三角或平四。平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。上述方法不奏效,过腰中点全等造。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径联。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。 一、截取构全等如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。 分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于一点来证明。自己试一试。 二、角分线上点向两边作垂线构全等如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180 分析:可由C向∠BAD的两边作垂线。近而证∠ADC与∠B之和为平角。

中考数几何巧画辅助线的技巧

中考数几何巧画辅助线的技巧 中考数学少不了几何问题的考察,而涉及作图题,一般都要做辅助线完成,马上就要中考了,下面给大家带来辅助线的画法秘籍,在中考考场,祝你一臂之力! 基本图形的辅助线的画法 1 三角形问题添加辅助线方法 〔1〕有关三角形中线的题目,常将中线加倍。含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。 〔2〕含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。 〔3〕结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。 2 平行四边形中常用辅助线的添法 平行四边形〔包括矩形、正方形、菱形〕的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有以下几种,举例简解如下: 〔1〕连对角线或平移对角线; 〔2〕过顶点作对边的垂线构造直角三角形; 〔3〕连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线; 〔4〕连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形; 〔5〕过顶点作对角线的垂线,构成线段平行或三角形全等。

3 梯形中常用辅助线的添法 梯形是一种特殊的四边形。它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:〔1〕在梯形内部平移一腰; 〔2〕梯形外平移一腰; 〔3〕梯形内平移两腰; 〔4〕延长两腰; 〔5〕过梯形上底的两端点向下底作高; 〔6〕平移对角线; 〔7〕连接梯形一顶点及一腰的中点; 〔8〕过一腰的中点作另一腰的平行线; 〔9〕作中位线。 当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。 4 圆中常用辅助线的添法 在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此,灵活掌握作辅助线的一般规律和常见方法,对提高学生分析问题和解决问题的能力是大有帮助的。 要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。平时我

数学几何问题添加辅助线方法大全

数学几何问题添加辅助线方法大全 规律1.如果平面上有n(n ≥2)个点,其中任何三点都不在同一直线上,那么每两点画 一条直线,一共可以画出 1 2 n(n -1)条. 规律2.平面上的n 条直线最多可把平面分成〔1 2 n(n+1)+1〕个部分. 规律3.如果一条直线上有n 个点,那么在这个图形中共有线段的条数为 1 2 n(n -1)条. 规律4.线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段 长的一半. 例:如图,B 在线段AC 上,M 是AB 的中点,N 是BC 的中点. 求证:MN = 12 AC 证明:∵M 是AB 的中点,N 是BC 的中点 ∴AM = BM = 12AB ,BN = CN = 12BC ∴MN = MB+BN = 12AB + 12BC = 1 2 (AB + BC) ∴MN = 1 2 AC 练习:1.如图,点C 是线段AB 上的一点,M 是线段BC 的中点. 求证:AM = 1 2 (AB + BC) 2.如图,点B 在线段AC 上,M 是AB 的中点,N 是AC 的中点. 求证:MN = 12 BC 3.如图,点B 在线段AC 上,N 是AC 的中点,M 是BC 的中点. N M C B A M C B A N M C B A

求证:MN = 12 AB 规律5.有公共端点的n 条射线所构成的交点的个数一共有 1 2 n(n -1)个. 规律6.如果平面内有n 条直线都经过同一点,则可构成小于平角的角共有2n (n -1) 个. 规律7. 如果平面内有n 条直线都经过同一点,则可构成n (n -1)对对顶角. 规律8.平面上若有n (n ≥3)个点,任意三个点不在同一直线上,过任意三点作三角 形一共可作出 1 6 n (n -1)(n -2)个. 规律9.互为邻补角的两个角平分线所成的角的度数为90o . 规律10.平面上有n 条直线相交,最多交点的个数为 1 2 n(n -1)个. 规律11.互为补角中较小角的余角等于这两个互为补角的角的差的一半. 规律12.当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行, 同旁内角的角平分线互相垂直. 例:如图,以下三种情况请同学们自己证明. 规律13.已知AB ∥DE,如图⑴~⑹,规律如下: 规律14.成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半. 例:已知,BE 、DE 分别平分∠ABC 和∠ ADC ,若∠A = 45o ,∠C = 55o ,求∠E 的度数. 解:∠A +∠ABE =∠E +∠ADE ① 1()∠ABC+∠BCD+∠CDE=360?E D C B A +=∠CDE ∠ABC ∠BCD 2()E D C B A -=∠CDE ∠ABC ∠BCD 3()E D C B A -=∠CDE ∠AB C ∠BC D 4() E D C B A +=∠CDE ∠AB C ∠BC D 5() E D C B A +=∠CDE ∠ABC ∠BCD 6() E D C B A M B A H G F E D B C A H G F E D B C A H G F E D B C A N M C B A

初中数学几何辅助线技巧

几何常见辅助线口诀 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。三角形中有中线,倍长中线得全等。四边形 平行四边形出现,对称中心等分点。梯形问题巧转换,变为三角或平四。平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。上述方法不奏效,过腰中点全等造。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面 作高线,比例中项一大片。圆形 半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径联。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。 还要作个接圆,角平分线梦圆。

如果遇到相交圆,不要忘作公共弦。 外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。 由角平分线想到的辅助线 一、截取构全等: 如图,AB//CD , BE平分/ ABC , CE平分/ BCD,点E在AD上, 求证:BC=AB+CD。 分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于一点来证明。自己试一试。 二、角分线上点向两边作垂线构全等: 如图,已知AB>AD, / BAC二/ FAC,CD二BC。求证:/ ADC+ / B=

初中数学几何辅助线技巧!

初中数学 140 分以上,必须掌握的几何辅助线技巧! 几何可以说是初中数学的半壁江山,囊括了无数的重点知识、难点知识、无数的中考考点……学好几何,初中数学就不在话下!! 在几何问题中,添加辅助线可以说是解题的关键!辅助线画得好,解题轻松又快速!辅助线画不对,解题可能就会绕弯又出错!如何快速添加利于解题的辅助线??诀窍都在下面了!↓↓ 几何常见辅助线口诀 三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。 三角形中两中点,连接则成中位线。 三角形中有中线,倍长中线得全等。

四边形 平行四边形出现,对称中心等分点。 梯形问题巧转换,变为三角或平四。 平移腰,移对角,两腰延长作出高。 如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆形 半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。 由角平分线想到的辅助线 一、截取构全等 如图, AB//CD ,BE 平分∠ABC,CE 平分∠BCD,点 E 在 AD 上,求证:BC=AB+CD 。 分析:在此题中可在长线段 BC 上截取 BF=AB,再证明 CF=CD,从 而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外 一个全等自已证明。此题的证明也可以延长 BE 与 CD 的延长线交于 一点来证明。自己试一试。 二、角分线上点向两边作垂线构全等 如图,已知 AB>AD,∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180°。分析:可由 C 向∠BAD 的两边作垂线。近而证∠ADC 与∠B 之和为平角。

2018中考数学几何辅助线题

2018中考数学几何辅助线题

中考压轴题专题几何(辅助线) 图中有角平分线,可向两边作垂线。 角平分线平行线,等腰三角形来添。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线加一倍。 梯等式子比例换,寻找相似很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,弦高公式是关键。 计算半径与弦长,弦心距来站中间。 圆上若有一切线,切点圆心半径连。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 要想作个外接圆,各边作出中垂线。 还要作个内切圆,内角平分线梦园。 如果遇到相交圆,不要忘作公共弦。 若是添上连心线,切点肯定在上面。 辅助线,是虚线,画图注意勿改变。 假如图形较分散,对称旋转去实验 切勿盲目乱添线,方法灵活应多变。 精选1.如图,Rt △ABC 中,∠ABC =90°,DE 垂直平分AC ,垂足为O ,AD ∥BC ,且AB =3,BC =4,则AD 的长为 . 精选2.如图,△ABC 中,∠C =60°,∠CAB 与∠CBA 的平分线AE ,BF 相交于点D , 求证:DE =DF . 精选3.已知:如图,⊙O 的直径AB=8cm ,P 是AB 延长线上的一点,过点P 作⊙O 的切线,切点为C ,连接AC . (1) 若∠ACP=120°,求阴影部分的面积; (2)若点P 在AB 的延长线上运动,∠CPA 的平分线交AC 于 D E F

精选6、已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处. (第6题图) (1)如图1,已知折痕与边BC交于点O,连结AP、OP、O A. ①求证:△OCP∽△PDA; ②若△OCP与△PDA的面积比为1:4,求边AB的长; (2)若图1中的点P恰好是CD边的中点,求∠OAB的度数; (3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A 不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度. 精选7、如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF. (1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由; (2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系;(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少?

相关文档
最新文档