电子线路 单级阻容耦合放大器 实验报告

电子线路  单级阻容耦合放大器 实验报告
电子线路  单级阻容耦合放大器 实验报告

单级阻容耦合放大器

1.实验目的

了解单级共射放大电路的原理,联系设计放大器电路,掌握放大器的放大倍数的测量方法。

2.实验器材

“单级共射放大电路”电路模板,直流稳压电源,信号发生器、模拟示波器,导线若干。

3.实验原理

3.1三极管

半导体三极管也称为晶体三极管,它最主要的功能是电流放大和开关作用。三极管具有三个电极,二极管是由一个PN 结构成的,而三极管由两个PN 结构成,共用的一个电极成为三极管的基极(用字母b 表示)。其他的两个电极成为集电极(用字母c 表示)和发射极(用字母e 表示)。由于不同的组合方式,形成了一种是NPN 型的三极管,另一种是PNP 型的三极管。 三极管的电路符号有两种:有一个箭头的电极是发射极,箭头朝外的是NPN 型三极管,而箭头朝内的是PNP 型。

图表 1PN 结

三极管3个电极的电流I E 、I B 、I C 之间的关系为:

C B E I I I += 公式 1

三极管的结构使I C 远大于I B ,令: B

C

I I =

β 公式 2 Β称为三极管的直流电流放大倍数,当三极管的基极上加一个微小的电流时,在集电极上可以得到一个是注入电流β倍的电流,即集电极电流。集电极电流随基

极电流的变化而变化,并且基极电流很小的变化可以引起集电极电流很大的变化,这就是三极管的放大作用。

2.2电路原理

-

+

图表 2实验电路图

(1)如图表2所示,本实验中的共发射极放大电路采用电容耦合方式,电路 中电容的作用是隔离放大器的直流电源对信号源与负载的影响,并将输入的交流信号引入放大器,将输出的交流信号输送到负载上。

输入信号为零时,三极管所处的状态称为放大器的静态工作点,由CE C B I I I 、、可以确定电路的静态工作点,并用符号CEQ CQ BQ I I I 、、来表示电路的静态工作点。根据电容阻直流、通交流的特点和节点电位法,可得放大器静态时输出端的电压为:

c

CQ CC CEQ BQ

BQ b CC

BQ R I V V I I R V I -==-=β7.0 公式 3

根据叠加原理可得放大器输入端的信号为:

i BEQ BE V υυ+= 公式 4

即在静态工作点电压上叠加输入的交流信号。

集电极电阻R C 的作用是用集电极电流的变化,实现对直流电源V CC 能量转化的控制,达到用输入电压V i 的变化来控制输出电压V 0变化的目的,实现小信号输入、大信号输出的电压放大作用。

(2)当放大器接有负载R L 时,R L 和R C 是并联的关系,并联后总电阻为:

L

C L

C L R R R R R +=

'

公式 5

并联后电阻将小于R C ,则输出信号的幅度比不带负载时要小。 (3)定义?

?

?

=

i

O

v V V A 为电压放大倍数,则通过测量输入的交流电压和输出电压即

可得到电压放大倍数。

4.实验内容

按照图表2连接电路,用模拟示波器测量输出电压。电路参数为:E C =6V ,信号发生器及交流电源设置为V i =0.5mv/Rms ,f v =1000H z ,负载R L =100Ω。 (1)设置I C =1.2mA ,改变R C 的值,测量电压放大倍数。

表格 1 Rc 的变化与输出电压测量值

从实验数据可以看出,随着R C 电阻的增大,电压放大倍数随之增大。 (2)设置R C =2K Ω,改变I C 的值,测量电压放大倍数。

由实验中可得到,当电流超过2.0mA 后,产生波形失真。这种失真是由于工作点取得太高,输入正半周信号时,三极管进入饱和区而产生的失真,称为饱和失真。

将所加电流与输出电压进行线性拟合如下:

图表3 输出电压随Rc的变化

图表4输出电压随Ic的变化

从拟合情况可以看出,输出电压与I C成正相关。

5.实验总结

实验中利用单级阻容耦合放大器学习、验证了三极管的放大特性,得到了输出电压在加负载和不加负载条件下随R C或I C的变化的测量值,可以看出电压放大倍数在加负载后变小,并随R C或I C的增大而增大。

实验1 阻容耦合放大器的设计与调测 5

第三部分 模拟电子技术基础实验 实验1 阻容耦合放大器的设计与调测 3.1.1实验目的 1.能根据一定的技术指标要求设计出单级放大电路。 2.研究单级低频小信号放大器静态工作点的意义。 3.掌握放大器主要性能指标的测试方法。 4.掌握用射随器提高放大器负载能力的方法。 3.1.2实验原理与设计方法 在晶体管放大器的三种组态中,由于共射极放大器既有电流放大,又有电压放大,所以在以信号放大为目的时,一般用共射放大器。分压式电流负反馈偏置是共射放器广为采用的偏置形式,如图 3.1.1.所示。它的分析计算方法,调整技术和性能的测试方法等,都带有普遍意义,并适用多级放大器。 R u 图 3.1.1单组阻容耦合放大器 电路中Rc 为晶体管的直流负载,其交流负载由Rc 与外接负载R L 组成。由R b1、R b2及R C 组成电流反馈式偏置电路,发射极交流旁路电容C e 是用来消除R e 对信号增益的影响,隔直电容C l 、C 2是将前一级输出的直流电压隔断,以免影响后一级的工作状态,同时将前一级输出的交流信号耦合到后一级。 1.静态工作点 放大器的静态工作点是指当放大器没有信号输入时,晶体管各极的直流电流和直流电压在特性曲线上所决定的点。 静态工作点选择是否合理,将直接影响放大特性的好坏,为使信号得到不失真的放大,放大器的工作点一般选在线性区的中点。但在小信号放大器中,由于输入信号小,运用范围也小,工作点可选低一些,以减少直流功耗。 通常,为了使工作点稳定,应先稳定I CQ ,而I CQ ≈I EQ ,因此,只要稳定了I EQ 也就稳定了I CQ ,如能满足I 1≥I BQ ,V B ≥V BE ,则2 12 b b b CC B R R R V V +=几乎与晶体管的参数无关,可近似值看成 是恒定的。

小信号阻容耦合放大电路设计

郑州科技学院 电子仿真实验报告 题目小信号阻容耦合放大电路设计学生姓名 专业班级 10级电科四班 学号201031099 院(系)电气工程学院 指导教师刘林荫 完成时间 2013年 9 月 15 日

目录 1 设计要求 (1) 2 设计说明 (1) (1)选定电路形式 (1) (2)选用三极管 (1) 3 设置静态工作点并计算元件参数 (1) 4 仿真设计 (2) (1)搭建实验电路 (2) (2)仿真分析 (2) 5.分析研究 (5) (1)问题分析 (5) (2)问题解决: (5)

1 设计要求 试设计一个工作点稳定的小信号单元放大电路。要求:|A v|>40,R i>1kΩR o<3kΩ, F L<100Hz,f H>100kHz,电路的V cc=+12V,R L=3kΩ,V i=10mV,R s=600Ω。 2 设计说明 (1)选定电路形式 选用如图5.1.1所示的基极分压式工作点稳定的小信号共射放大单元路。 图5.1.1 共射放大电路 (2)选用三极管 因设计要求f H>100kHz,f H的指标要求较高。一般来说,三极管的f T越大C b’e、C b‘c越小,f H越高。故选定三极管为9013,其I CM=500mA,V(BR)CEO20V,P CM=625mW, f T 150MHz,I CEO 0.1uA,h FE (β)为60200。对于小信号电压放大电路,工程上通常要 求β的数值应大于A v的数值,故取β=60。 3 设置静态工作点并计算元件参数 ICQ<26β/(Ri-rbb’)=1.95mA,取ICQ=1.5mA, Re=(VBQ-VBEQ)/ICQ=(3-0.6)/1.5kΩ=1.6kΩ,Re=1.6kΩ Rb2=βVBQ/(510)I1=(1224) kΩ,取Rb2=20kΩ Rb1=Rb2(Vcc-VBQ)/VBQ=20(12-3)/3=60kΩ,取Rb1=56kΩ. Rbe=rbb’+26β/ICQ=1240Ω RL’=|Av|rbe/β=0.827kΩ. Rc=RLRL’/(RL-RL’)=1.14kΩ,取Rc=1.2kΩ. Cb2=Cb1>(310)/ ω(Rs+rbe)=(2.68.6) μF。取Cb2=Cb1=10μF。

实验一小信号调谐(单调谐)放大器实验指导

实验一高频小信号单调谐放大器实验 一、实验目的 1.掌握小信号单调谐放大器的基本工作原理; 2.熟悉放大器静态工作点的测量方法; 3.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 4.了解高频单调谐小信号放大器幅频特性曲线的测试方法。 二、实验原理 小信号单谐振放大器是通信接收机的前端电路,主要用于高频小信号的线性放大。其实验原理电路如图1-1所示。该电路由晶体管BG、选频回路(LC并联谐振回路)二部分组成。它不仅对高频小信号进行放大,而且还有一定的选频作用。 1.单调谐回路谐振放大器原理 单调谐回路谐振放大器原理电路如图1-1所示。图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。C E是R E的旁路电容,C B、C C 是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。为了减轻负载对回路Q值的影响,输出端采用了部分接入方式。 2.单调谐回路谐振放大器实验电路 单调谐回路谐振放大器实验电路如图1-2所示。其基本部分与图1-1相同。图中,C3用来调谐,K1、K2、K3用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。K4、K5、K6用以改变射极偏置电阻,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。

图1-2 单调谐回路谐振放大器实验电路 高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A u0,放大器的通频带BW 0.7及选择性(通常用矩形系数K 0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1所示电路(也是以下各项指标所对应电路),f 0的表达式为 ∑=LC f π21 式中,L 为调谐回路电感线圈的电感量; ∑C 为调谐回路的总电容,∑C 的表达式为 21oe C C n C ∑=+ 式中, C oe 为晶体管的输出电容; n 1(注:此图中n 1=1)为初级线圈抽头系数;n 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,测出电路的幅频特性曲线,微调C3,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A u0称为调谐放大器的电压放大倍数。A u0的表达式为

实验一 单级阻容耦合放大电路设计

实验一单级阻容耦合放大电路设计 一、设计任务及目的 设计任务:设计一个分压式偏置的单级的小信号放大器,输入和输出分别用电容和负载隔直流,设计静态工作点,计算电路元件参数,拟定测试方案; (1)在面包板或万能板上安装电路,测量并调试静态工作点。 (2)测量设计好的偏置电压和电流。 (3)测量所设计电路的实际电压放大倍数。 (4)测量所设计电路的实际输入、输出电阻。 设计目的: (1)学习晶体管放大器的实计方法。 (2)研究静态工作点对输出波形影响及静态工作点的调整方法。 (3)掌握静态工作、电压放大倍数、输入电阻、输出电阻的测试方法。 二、设计要求和指标 已知条件:VCC=+12V,信号源Us=10Mv(P-P),内阻Rs=600Ω,负载RL=2KΩ 1、主要技术指标:输入内阻Ri>2kΩ,输出电压Uo≥0.3V,输出电阻Ro<5K. 2、频率响应20Hz-500KHz 3、I CQ=(0.5-2)mA,V BQ=(3~5)V(理论),U BQ>> U BE I CQ=(5-10)I BQ。 三、放大电路的基本原理 下图为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2 组 成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入 端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输 出信号u ,从而实现了电压放大。 在上图电路中,当流过偏置电阻R B1和R B2的电流远大于晶体管T 的基极电流I B时(一般5~10倍),则它的静态工作点可用下式估算:

1. 理论值设计 根据Ic=Ie,Rbe=Rbb+(1+B )*26/Ie 若取Ic=0.9mA, UBQ=4V ,Rbb=300Ω,放大倍数为100,CC B2 B1B1B U R R R U +≈ 可得RE=4K Ω,RB1=10K Ω,RB2=20K Ω U CE =U CC -I C (R C +R E )=5.7 电压放大倍数: be L C V r R R βA // -= =-38 输入电阻: R i =R B1 // R B2 // r be =3.5K Ω 输出电阻: R O ≈R C 2. (1)、静态工作点的测量 所谓静态工作点的测量,就是用合适的直流毫安表和直流电压表测量晶管的集电极电流Ie 和管压降Vce 。 (2)动态分析 (a )测量电压放大倍数 接入负载2K ,在输入端B 加f=1KHz 正弦波交流信号,调节输入信号幅度,使输出端在示波器频幕上得到一个最大不失真波形,同时测量V o 值 注:vi 是设计要求为10mv ,这个信号时从函数信号发生器生产生的。 (b )输入、输出电阻的测量 为了测量放大器的输入、出电阻,按图2电路在被测放大器的输入端与信号

阻容耦合两级放大电路

模拟电子技术综合实验报告姓名: 学号: 班级: 课程设计名称:阻容耦合两级放大电路 实验室(中心): 电子电工实验室 指导教师 : 设计完成时间: 年月日

级电路) 2、给电路引入电压串联负反馈 (二)要求 1、在multisim 中设计仿真一个阻容耦合两级放大电路,要求信号频 率10kHZ(有效值1mv),电压放大倍数100。(可以用单管放大电路构成两级电路,也可以用运放构成两级电路) 2、给电路引入电压串联负反馈: (1)测量负反馈接入前后电路放大倍数、输入输出电阻与频率特性; (2)改变输入信号幅度,观察负反馈对电路非线性失真的影响。 二、设计任务 1、在multisim 中设计仿真一个阻容耦合两级放大电路,要求信号源频率10kHZ(有效值1mv),电压放大倍数100。(可以用单管放大电路构成两级电路,也可以用运放构成两级电路) 2、给电路引入电压串联负反馈: (1)测量负反馈接入前后电路放大倍数、输入输出电阻与频率特性; (2)改变输入信号幅度,观察负反馈对电路非线性失真的影响。 要求得到的数据: (1)静态工作点; (2)接入负反馈前后电路放大倍数、输入输出电阻; (3)验证F f 1 A ; (4)测试接入负反馈前后两级放大电路的频率特性; (5)测试接入负反馈前后,电路输出开始失真时对应的输入信号幅度。 三、设计方案分析 1.概述 放大电路的前级输出端通过电容接到后级输入端,成为阻容耦合方式。由于电容对滞留的阻抗为无穷大,因而阻容耦合放大电路各极之间的直流通路各不相痛,各级的

静态工作点相互独立,求解或实际调试Q点时可以按单级处理,所以电路的分析,实际与调试简单易行,而且,只要输入信号频率较高,耦合电容容量较大,前级的输出信号就可以几乎没有衰减地传递到后级的输入端,因此,在分立元件电路中阻容耦合方式的到非常广泛的应用。其优点就是由于电容的隔直作用,各级放大器的静态工作点相互独立,独立估算;电路的分析、设计与调试方便;电容对交流信号几乎不衰减;缺点就是低频特性变差;大电容不易集成。同时,负反馈在电子线路中有着非常广泛的应用,采用负反馈就是以降低放大倍数为代价的,目的就是为了改善放大电路的工作性能,如稳定放大倍数、改变输入与输出电阻、减少非线性失真、扩展通频带等,所以在实用放大器中几乎都引入负反馈。 2.两级阻容耦合及负反馈放大电路系统设计 (1)原理分析: 阻容耦合放大器(图1)就是一种最常见多级放大器其电路。 图1两级阻容耦合及负反馈放大电路 图1就是一个曲型的两级阻容耦合放大电路,有两个共射放大电路组成。对于交流信号,各级之间有着密切的联系,前级的输出电压就就是后级的输入信号,两级放大器的总电压放大倍数等于各级放大倍数的乘积。 四、设计仿真与调试 测量静态工作点 第一级:

实验一_高频小信号调谐放大器实验报告

本科生实验报告 实验课程高频电路实验 学院名称信科院 专业名称物联网工程 学生姓名刘鑫 学生学号201313060108 指导教师陈川 实验地点6C1001 实验成绩 二〇年月二〇年月

高频小信号调谐放大器实验 一、实验目的 1.掌握小信号调谐放大器的基本工作原理; 2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 3.了解高频小信号放大器动态范围的测试方法; 二、实验仪器与设备 高频电子线路综合实验箱; 扫频仪; 高频信号发生器; 双踪示波器 三、实验原理 (一)单调谐放大器 小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。其实验单元电路如图1-1所示。该电路由晶体管Q1、选频回路T1二部分组成。它不仅对高频小信号放大,而且还有一定的选频作用。本实验中输入信号的频率f S=12MHz。基极偏置电阻R A1、R4和射极电阻R5决定晶体管的静态工作点。可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。 表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A v0,放大器的通频带BW及选择性(通常用矩形系数K r0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f0的表达式为

∑ = LC f π210 式中,L 为调谐回路电感线圈的电感量; ∑ C 为调谐回路的总电容,∑ C 的表达式为 ie oe C P C P C C 2221++=∑ 式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,用扫频仪测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。A V0的表达式为 G g p g p y p p g y p p v v A ie oe fe fe i V ++-=-=- =∑2 22 1212100 式中,g Σ为谐振回路谐振时的总电导。要注意的是y fe 本身也是一个复数,所以谐振时输出电压V 0与输入电压V i 相位差不是180o 而是为(180o + Φfe )。 A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1中R L 两端的电压V 0及输入信号V i 的大小,则电压放大倍数A V0由下式计算: A V0 = V 0 / V i 或 A V0 = 20 lg (V 0 /V i ) d B 3.通频带 由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW ,其表达式为 BW = 2△f 0.7 = fo/Q L 式中,Q L 为谐振回路的有载品质因数。 分析表明,放大器的谐振电压放大倍数A V0与通频带BW 的关系为 ∑ = ?C y BW A fe V π20

阻容耦合两级放大电路

模拟电子技术综合实验报告 姓名: 学号: 班级: 课程设计名称:阻容耦合两级放大电路 实验室(中心):电子电工实验室 指导教师: 设计完成时间:年月日

一、设计目的 一、设计目的与要求 (一)目的 1、在multisim中设计仿真一个阻容耦合两级放大电路,要求信号源频率10kHZ(有效值1mv),电压放大倍数100。(可以用单管放大电路构成两级电路,也可以用运放构成两级电路) 2、给电路引入电压串联负反馈 (二)要求 1、在multisim中设计仿真一个阻容耦合两级放大电路,要求信号频率10kHZ (有效值1mv),电压放大倍数100。(可以用单管放大电路构成两级电路,也可以用运放构成两级电路) 2、给电路引入电压串联负反馈: (1)测量负反馈接入前后电路放大倍数、输入输出电阻和频率特性; (2)改变输入信号幅度,观察负反馈对电路非线性失真的影响。 二、设计任务

1、在multisim 中设计仿真一个阻容耦合两级放大电路,要求信号源频率10kHZ (有效值1mv ),电压放大倍数100。(可以用单管放大电路构成两级电路,也可以用运放构成两级电路) 2、给电路引入电压串联负反馈: (1)测量负反馈接入前后电路放大倍数、输入输出电阻和频率特性; (2)改变输入信号幅度,观察负反馈对电路非线性失真的影响。 要求得到的数据: (1)静态工作点; (2)接入负反馈前后电路放大倍数、输入输出电阻; (3)验证 F f 1 A ; (4)测试接入负反馈前后两级放大电路的频率特性; (5)测试接入负反馈前后,电路输出开始失真时对应的输入信号幅度。 三、设计方案分析 1.概述 放大电路的前级输出端通过电容接到后级输入端,成为阻容耦合方式。由于电容对滞留的阻抗为无穷大,因而阻容耦合放大电路各极之间的直流通路各不相痛,各级的静态工作点相互独立,求解或实际调试Q 点时可以按单级处理,所以电路的分析,实际和调试简单易行,而且,只要输入信号频率较高,耦合电容容量较大,前级的输出信号就可以几乎没有衰减地传递到后级的输入端,因此,在分立元件电路中阻容耦合方式的到非常广泛的应用。 其优点是由于电容的隔直作用,各级放大器的静态工作点相互独立,独立估算;电路的分析、设计和调试方便;电容对交流信号几乎不衰减;缺点是低频特性变差;大电容不易集成。 同时,负反馈在电子线路中有着非常广泛的应用,采用负反馈是以降低放大倍数为代价的,目的是为了改善放大电路的工作性能,如稳定放大倍数、改变输入和输出电阻、减少非线性失真、扩展通频带等,所以在实用放大器中几乎都引入负反馈。 2.两级阻容耦合及负反馈放大电路系统设计 (1)原理分析: 阻容耦合放大器(图1)是一种最常见多级放大器其电路。

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验 实验一高频小信号放大器 1.1 实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 1.2 实验内容 1.2.1 单调谐高频小信号放大器仿真 图1.1 单调谐高频小信号放大器 1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz 2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。

下图中绿色为输入波形,蓝色为输出波形 Avo=Vo/Vi=1.06/0.252=4.206 3、利用软件中的波特图仪观察通频带,并计算矩形系数。 通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz 矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)= (14.278GHz-9.359KHz)/7.092MHz=2013.254 4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出

电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。 Fo(KHz ) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV ) 0.66 9 0.76 5 1 1.05 1.06 1.06 0.97 7 0.81 6 0.74 9 0.65 3 0.574 0.511 Av 2.65 5 3.03 6 3.96 8 4.16 7 4.20 6 4.20 6 3.87 7 3.23 8 2.97 2 2.59 1 2.278 2.028 5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。 2次谐波 4次谐波

两级阻容耦合放大电路

两级阻容耦合放大电路 通常放大电路的输入信号都是很弱的,一般为毫伏或微伏数量级,输入功率常在1mV 以下。为了推动负载工作,因此要求把几个单级放大电路连接起来,使信号逐级得到放大,方可在输出获得必要的电压幅值或足够的功率。由几个单级放大电路连接起来的电路称为多级放大电路。在多级放大电路中,每两个单级放大电路之间的连接方式叫耦合;如耦合电路是采用电阻、电容进行耦合,则叫做“阻容耦合”。 阻容耦合交流放大电路是低频放大电路中应用得最多、最为常见的电路。本实验采用的是两级阻容耦合放大电路,如图3-1所示。 图3-1 两级阻容耦合放大电路 在晶体管V 1的输出特性曲线中直流负载线与横轴的交点U CEQ1=V CC ,与纵轴的交点(U CE =0时)集电极电流为 = 1 CQ I 3 1 1E E C CC R R R V ++ 静态工作点Q 1位于直流负载线的中部附近,由静态时的集电极电流I CQ1和集-射电压U CEQ1确定。当流过上下偏流电阻的电流足够大时,晶体管V 1的基级偏压为 2 1 1 1 R R V R U CC B += 晶体管V 1的静态发射极电流为

3 1 1 3 1 1 1 1 7.0E E B E E E B EQ R R U R R UB U I +-≈+-= 静态集电极电流近似等于发射极电流,即 11 1 1 EQ BQ EQ CQ I I I I ≈-= 晶体管V 1的静态集电极电压为 11 1 C CQ CC CQ R I V U -= 两级阻容耦合放大电路的总电压放大倍数为 21 u u u A A A = 其中,第一级放大电路的电压放大倍数为 1 1 1 1 1 )1(E be L u R r R A +++'- =ββ 晶体管V1的等效负载电阻为 2 1 1 i C L R R R =' 可作为第一级放大电路的外接负载,第二级放大电路的输入电阻为 ])1(//[//2 2 2 4 3 2 E be i R r R R R β++= 晶体管V 1和V 2的输入电阻分别为 1 1 1 26 )1(300EQ be I r β++≈ 2 2 2 26 )1(300EQ be I r β++= 第二级放大电路的电压放大倍数为 2 2 2 2 2 2 )1(E be L u R r R A ββ++' - = 其中,等效交流负载电阻L C L R R R 2 2 ='。

小信号放大器实验报告

实验设计报告 (模拟电子技术基础实践) 学院:电气工程与自动化学院 题目:小信号放大器的设计 专业班级:自动化131班 学号:2420132905 学生姓名:吴亚敏 指导老师:曾璐 2014年10月20日

第一章理论设计 1.设计目标与技术要求 1.1 设计目标:设计一个放大倍数约为10倍的小信号交流放大器 1.2 技术要求: (1)保证电路要有较大的输入电阻,主要是为了增大获取输入信号的能力。 (2)电路要有较小的输出电阻,主要是为了增大信号输出的能力。 (3)设计该放大电路,通过测试相应的参数,理解该放大电路的工作原理,掌握一些参数(输入阻抗、输出阻抗、放大倍数)的测量和计算方法。 2.设计方法(电路、元器件选择与参数计算) 2.1 实验原理图如下:

2.2 元件的选择: 电阻:需要33KΩ、16KΩ、3.9KΩ、2KΩ、1.2KΩ、390Ω的电阻各一个; 电容:需要47uF的4个,0.1uF的一个; 三极管:需要NPN型通用小信号晶体管2SC2458两个; 2.3 参数的计算: (1)基极的直流电位Ve是用R1和R2对电源电压Vcc分压后的电位,则 Vb=(R2/(R1+R2))*Vcc (2)发射机的直流电位Ve,则 Ve=Vb-Vbe (3)发射极上流过的直流电流Ie,则 Ie=Ve/Re=(Vb-Vbe)/Re (4)集电极的直流电压Vc等于电源电压减去Rc的压降而得到的值,则 Vc=Vcc-Ic*Rc (5)由于基极电流很小,我们在计算的时候可以省去, 则 Ic=Ie,Vc=Vcc-Ie*Rc (6)交流电压的放大倍数,则 Av=Rc/Re (7)确定耦合电容C1,C2和C3,C4的阻值 因为C1和C2是将基极或集电极的直流电压截止,仅让交流成分进行输入输出的耦合电容,电路中C1和输入阻抗,C2和连接在输出端的负载电阻分别形成高通滤波器--也就是让高频通过的滤波器,所以C1=C2=10uF,而C3和C4是电源的耦合电容应该是降低电源对GND交流阻抗的电容,如果没有这个电容的话,电路中可能产生振荡。所以要在电源上并联连接好小容量的C3=0.1uF电容器和大容量的C4=10uF电容器,能在宽频范围降低电源对GND的阻抗。 (8)静态工作点: Vbq=5*(R2/(R1+R2))=5*(33/(33+16))=3.44V Ieq=Ve/Re=(Vb-Vbe)/Re=Icq=0.5mA Vceq=Vcc-Ieq*Rc-Icq*Re=2.8V Ibq=Icq/(1+β)=0.05mA (9)动态工作点: Av=Rc/Re=3.9K/(2K//390)=10 Ri=Rb1//Rb2=33K//16K=0.093KΩ Ro=Rc=0Ω

电子专业技术实验报告阻容耦合放大电路

电子技术实验报告阻容耦合放大电路

————————————————————————————————作者:————————————————————————————————日期:

学生实验报告 系别电子工程系课程名称电子技术实验 班级实验名称阻容耦合放大电路 姓名实验时间2011年 3 月16 日 学号指导教师 报告内容 一、实验目的和任务 1.学习放大电路频率特性的测量方法; 2. 观察电路元件参数对放大电路频率特性的影响; 3.进一步熟练掌握和运用放大电路主要性能参数(如静态工作点参数、放大倍数、输入电阻、输出电阻)的测试方法; 4.巩固多级放大电路的有关理论知识。 二、实验原理介绍 本实验采用的电路如图3-1所示。 1.中频段的电压放大倍数 在图3-1电路中的中频段,耦合电容和旁路电容可以当作交流短路,三极管的电容效应可以忽略不计。此时,考虑后级放大电路对前级放大电路所构成的负载效应时,也 R作为前级放大电路的负载,则前级放大电路的电压放就是将后级放大电路的输入电阻 2i

大倍数为 ef be i c i O u R r R R U U A )1() //(121 111ββ++-== (3-1) 其中,2i R 是后级放大电路的输入电阻,222212////be B B i r R R R =,后级放大倍数为 be l c O O u r R R U U A )//(2212β-== (3-2) 全电路的电压放大倍数为 211 1u u O O i O i O um A A U U U U U U A === (3-3) 2.低频段和高频段的电压放大倍数 在低频段和高频段,放大电路的电压放大倍数是一个复数,它是频率的函数,其模值与相角都随频率变化。 (1)单级放大电路在低频段和高频段的电压放大倍数 在低频段,三极管的电容效应可以忽略不计,但是耦合电容和旁路电容的容抗较大,它们的交流压降不能忽略。电压放大倍数用下式表示: f f j A L um UL -= ? 1A (3-4) 其中,L f 是放大电路的下限频率。 在高频段,耦合电容和旁路电容的阻抗非常小,它们的交流压降很小,可以忽略,可作交流短路处理,但三极管的电容效应对电路性能的影响则必须考虑。电压放大倍数可用下式表示: H Um UH f f j A += ? 1A (3-5) 其中,H f 是放大电路的上限频率。 (2)多级放大电路在低频段和高频段的电压放大倍数 多级放大电路的电压放大倍数等于各级放大电路电压放大倍数的乘积: ??=? ? ? ? 321u A A A A u u u (3-6)

小信号阻容耦合放大电路设计

郑州科技学院 《Multisim10电子仿真实验与设计》报告 题目小信号阻容耦合放大电路设计 学生姓名杨春城 专业班级 10级电子科学与技术二班 学号201031051 院(系)电气工程学院 指导教师刘林阴 完成时间2013年09月09日

目录 1小信号阻容耦合放大电路设计 (1) 1.1设计目的 (1) 1.2设计要求 (1) 1.3设计说明 (1) 1.4设计静态工作点并计算元件参数 (2) 2 仿真设计 (2) 2.1搭建实验电路 (2) 2.2仿真分析 (3) 3分析研究 (6) 3.1问题分析 (6) 3.2放大电路动态性能指标的检测 (7) 4总结 (9)

1小信号阻容耦合放大电路设计 1.1设计目的 通过小信号阻容耦合放大电路仿真设计来讨论单元电路的一般分析、设计、元器件选取与调试的思路、流程、技巧和方法。 1.2设计要求 试设计一个工作点稳定的小信号单元放大电路。要求: |Av|>40,Ri>1k,Ro>3k?,fL<100Hz,fH>100kHz,电路的 Vcc=+12V,Rl=3k?,Vi=10Mv,Rs=600?. 1.3设计说明 1、选定电路形式 选用如图5.1.1所示的基极分压式工作点稳定的小信号共射放大单元电路。 图5.1.1 共射放大电路

2、选用三极管 因设计要求f H>100kHz,f H的指标要求较高。一般来说,三极管的f T越大C b’e、C b‘c越小,f H越高。故选定三极管为9013,其I CM=500mA,V(BR)CEO20V,P CM=625mW,f T150MHz,I CEO0.1uA,h FE(β)为60200。对于小信号电压放大电路,工程上通常要求β的数值应大于A v的数值,故取β=60。 1.4设计静态工作点并计算元件参数 ICQ<26β/(Ri-rbb’)=1.95mA,取ICQ=1.5mA, Re=(VBQ-VBEQ)/ICQ=(3-0.6)/1.5k ?=1.6k ?,Re=1.6k ? Rb2=βVBQ/(510)I1=(1224) k ?,取Rb2=20k ? Rb1=Rb2(Vcc-VBQ)/VBQ=20(12-3)/3=60k ?,取Rb1=56k ?. Rbe=rbb’+26β/ICQ=1240 ?,RL’=|Av|rbe/β=0.827k ? Rc=RLRL’/(RL-RL’)=1.14k ?,取Rc=1.2k ?. Cb2=Cb1>(310)/ ω(Rs+rbe)=(2.68.6) μF。取Cb2=Cb1=10μF。 Ce>(13)/[ ω(Re//(RS+rbe)/ β)]=(53~159) μF,取Ce=100μF。 2 仿真设计 2.1搭建实验电路 在Multisim 10电路实验窗口,按上述设计参数搭建小信号共射放大电路,如图5.1.2所示。

两级阻容耦合负反馈放大电路 教学设计

两级阻容耦合负反馈放大电路 教学目标 1.掌握放大电路中引入负反馈的方法和负反馈对放大电路各项性能指标 的影响; 2.掌握两级阻容耦合负反馈放大电路的装配(设计、布线、制板、安装、 焊接、调试)技能; 3.熟悉模拟电子技术技能训练中常用电子测量仪器的综合使用技能。 工作任务 掌握两级阻容耦合负反馈放大电路的装配与调试技能。 实训器材 表5-2-2 工具、材料、仪器 工具、仪器材料 双踪示波器一台连接导线若干 函数信号发生器一台焊锡丝若干 指针式万用表或数字式万用表一台元器件见表5-2-1 晶体管毫伏表一台 电烙铁45W、镊子、尖嘴钳各一把 直流稳压电源一台 实践操作 基础知识 基础知识 (一)工作原理 1.反馈的基本概念 图5-2-1 反馈放大电路方框图 负反馈放大器有四种组态,即电压串联,电压并联,电流串联,电流并联。 图5-2-2为两级阻容耦合负反馈放大实训电路

图5-2-2 两级阻容耦合负反馈放大电路实训电路图 2.主要性能指标如下: (二)电路元器件明细表 技能训练1.按图5-2-2所示电路在多孔印制电路板上正确插装、焊接各元器件及电路连接线。 2.检查各元器件装配、连线无误后,接通+12V电源。调试、测试电路的静态工作点,测量开环电压放大倍数。 3.测量闭合放大电压放大倍数 4.测试负反馈对电路非线性失真改善效果。 (1)调试、测量两级阻容耦合负反馈放大电路的静态工作点(开环状态) ①按最大不失真输出为依据进行调试: 表5-2-3 电路最大不失真输出时输入、输出波形 输入波形观察记录双踪示波器各挡位、波形参数 时间挡位: 幅度挡位: 峰峰值: 输出波形观察记录双踪示波器各挡位、波形参数

高频实验:小信号调谐放大器实验报告要点

实验一 小信号调谐放大器实验报告 一 实验目的 1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。 2.掌握高频小信号调谐放大器的调试方法。 3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试。 二、实验使用仪器 1.小信号调谐放大器实验板 2.200MH 泰克双踪示波器 3. FLUKE 万用表 4. 模拟扫频仪(安泰信) 5. 高频信号源 三、实验基本原理与电路 1、 小信号调谐放大器的基本原理 所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,放大这种信号的放大器工作在线性范围内。所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC 调谐回路)。这种放大器对谐振频率0f 及附近频率的信号具有最强的放大作用,而对其它远离0f 的频率信号,放大作用很差,如图1-1所示。 图1.1 高频小信号调谐放大器的频率选择特性曲线 小信号调谐放大器技术参数如下: 1 0.707

1.增益:表示高频小信号调谐放大器放大微弱信号的能力 2.通频带和选择性:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。衡量放大器的频率选择性,通常引入参数——矩形系数K0.1。 2.实验电路 原理图分析: In1是高频信号输入端,当信号从In1输入时,需要将跳线TP1的上部连接起来。In2是从天线接收空间中的高频信号输入,电感L1和电容C1,C2组成选频网络,此时,需要将跳线TP1的下部连接起来。电容C3是隔直电容,滑动变阻器RW2和电阻R2,R3是晶体管基极的直流偏置电阻,用来决定晶体管基极的直流电压,电阻R1是射极直流负反馈电阻,决定了晶体管射极的直流电流Ie。晶体管需要设置一个合适的直流工作点,才能保证小信号谐振放大器正常工作,有一定的电压增益。 通常,适当的增加晶体管射极的直流电流Ie可以提高晶体管的交流放大倍数 ,增大小信号谐振放大器的放大倍数。但Ie过大,输出波形容易失真。一般控制Ie在1-4mA之间。 电容C3是射极旁路电路,集电极回路由电容和电感组成,是一个并联的LC 谐振回路,起到选频的作用,其中有一个可变电容可以改变回路总的电容值。电

三种耦合方式下放大电路交流负载线的特性

三种耦合方式下放大电路交流负载线的特性摘要:通过对常见的阻容耦合、变压器耦合及直接耦合方式下共发射极放大电路交流负载线特性的研究,给出了三种耦合方式下放大电路交流负载线的共同形式,以及常见三种耦合方式下共发射极放大电路交流负载线的具体形式,阐述了这三种耦合方式下放大电路交流负载线的相同和不同之处,以及三种耦合方式直流负载线方程与交流负载线方程的关系。 0 引言 图解法在用于放大电路分析时,由于其形象直观而常用于放大电路静态工作点及波形失真问题的分析。 其中,交流负载线则用于估算最大不失真输出电压。但是,目前高等院校电子线路教材并没有给出交流负载线方程的形式及其推导过程,只给出交流负载线的斜率和画法。因此,在一些文献中采用戴维南定理或叠加定理等方法推导和讨论了共射极阻容耦合放大电路或直接耦合放大电路的交流负载线方程,但是对变压器耦合放大电路并未作推导和讨论。 本文对反映放大电路输出特性的阻容耦合、变压器耦合以及直接耦合方式下共发射极接法放大电路的交流负载线进行了分析和研究,给出了这三种耦合方式下共发射极放大电路交流负载线的特性,并对变压器耦合放大电路的交流负载线方程进行了推导。 1 交流负载线及其方程形式 放大电路在交流信号源和直流信号电源共同作用时,晶体管管压降△uce 和集电极电流△i c 通过交流等效负载R'L 所表现出的关系△ic= f ( △uce ) 描述了交流信号输入后动态工作点移动的轨迹,这一直线我们将其称之为交流负载线。 由文献[ 8] 知,阻容耦合、变压器耦合及直接耦合方式共射极放大电路的交流通路输出端均为如图1 所示的形式。其输出端交流电压、电流关系为: 对阻容耦合及直接耦合而言,集电极负载是Rc 和RL 的并联值,即R' L = Rc//RL 。对变压器耦合而言,集电极负载是R'L = n2RL ,n 为变压器变比。 将交流量、直流量和总的瞬时量之间的关系△i c=I c+ i c,△uce= Uce+ uce 代入式( 1) 得: 式( 2) 代表了通过Q 点,斜率为- 1/ R'L 的直线,即为放大电路交流负载线方程。该方程在纵轴上的截距为I c + Uce/ R'L ,在横轴上的截距为Uce + I cR'L 。若设V'= Uce + I cR' L ,则其在纵轴和横轴上的截距也可分别表示为V'/ R'L 及V',这与直流负载线在纵轴和横轴上的截距表现形式完全相同。

晶体管两级耦合放大电路设计-

2014级《模拟电子技术》课程设计说明书 晶体管放大电路 院、部:电气与信息工程学院 学生姓名: 学号: 指导教师:张松华职称副教授 专业: 班级: 完成时间:

摘要 放大器是能把输入信号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成,在通讯、广播、雷达、电视、自动控制等装置中都离不开放大器。放大器已经在这个高度发达的社会中,成了我们生活中不可缺少的一部分。 通常放大电路的输入信号是很微弱的,一般为毫伏或微伏数量级,因此应用中经常需要把几个单级放大电路连接起来,使信号逐级得到放大,方可在输出获得必要的电压幅值。由几个单级放大电路连接起来的电路称为多级放大电路,多级放大电路中,每两个单级放大电路之间的连接方式叫耦合,如果耦合电路是采用电阻、电容进行耦合,则叫做“阻容耦合”。 课题设计了一个两级放大电路,为了尽可能保证不失真放大并且兼顾放大电路稳定性的要求,两级放大电路采用阻容耦合方式进行了设计,然后采用Multisim软件对所设计的两级阻容耦合放大电路进行了仿真,仿真结果符合设计要求,然后利用AD软件制出PCD图,再完成实物制作和调试,调试结果表明,所设计的两级阻容耦合放大电路负载增益为61.33,空载增益为72.58,基本达到设计要求。 关键词:晶体管;放大电路;阻容耦合;通频带;增益

目录 1 绪论 (1) 1.1 阻容耦合电路介绍 (1) 1.2 设计要求 (1) 2 设计原理及参数设定 (2) 2.1电源设计 (2) 2.1.1电源变压器设计 (2) 2.1.2整流电路设计 (2) 2.1.3滤波电路设计 (3) 2.1.4 稳压电路设计 (4) 2.2 放大电路设计 (5) 2.2.1 第一级放大电路设计 (5) 2.2.2第二级放大电路设计 (7) 3 电路仿真和分析 (9) 3.1空载调试 (9) 3.2 负载调试 (10) 4 电路制作与调试 (11) 4.1 电路制作 (11) 4.2 调试与分析 (11) 4.2.1 直流稳压电源的调试 (11) 4.2.2放大电路的调试 (11) 结束语 (13) 参考文献 (14) 致谢 (15) 附录A 原理图 (16) 附录B PCB图 (17) 附录C 实物图 (18) 附录D 元器件清单 (19)

实验一高频小信号调谐放大器实验报告

高频小信号调谐放大器 一、实验目的 1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。 2.掌握高频小信号调谐放大器的调试方法。 3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试方法。 4.熟练掌握multisim软件的使用方法,并能够通过仿真而了解到电路的一些特性以及各电路原件的作用 二、实验仿真 利用实验室计算机或者自己计算机上安装的Multisim9(10)软件,参照实验电路图,进行仿真 仿真电路图如下:

六、数据处理

()f MHz 7 8 9 9.7 9.8 9.9 10 10.1 10.2 10.3 ()i u mV 15 15 15 15 15 15 15 15 15 15 () o u mV 19 28 55 120 128 138 143 150 140 130 (/) u o i A u u 1.27 1.87 3.67 8.00 8.53 9.20 9.53 10.00 9.33 8.67 ()f MHz 10.4 10.5 10.6 10.7 11 12 13 14 15 16 ()i u mV 15 15 15 15 15 15 15 15 15 15 () o u mV 120 100 90 80 64 39 28 24 20 18 (/) u o i A u u 8.00 6.67 6.00 5.33 4.27 2.60 1.87 1.60 1.33 1.20 78910111213141516 25 50 75 100 125 1 50 f(MHz) 二、实验仿真 利用实验室计算机或者自己计算机上安装的Multisim9(10)软件,参照实验电路图,进行仿真 仿真电路图如下:

阻容耦合电路

电压并联负反馈电路 1.实验电路 2.工作原理 在放大电路中,当输入信号为恒流源或近似恒流源时,若反馈信号取自输出电压O U ,并转换成反馈电流F i ,与输入电流1i 求差后放大,则得到电压并联负反馈放大电路。 3.仿真数据和图形 (蓝线代表输入,黑线代表输出) 测得i U =999.83mv,o U =5.005v 4.实验分析

◆ 电路类型的判别 由电路图可知,输出端与输入端均与反馈点相连,因此为电压并联负反馈。 ◆ 分析计算 电压放大倍数52 1011=-=-==R R u u A F i o uf 2414 .1=i U =1v 50=?=i uf U A U v 由上可知:计算值近似于测量值。 5.电路的特点 若集成运放的od A 与id r 趋于无穷大,则其净输入电压和输入电流均可忽略不计。由此可得 ,0=≈P N u u ,1 F o F R u i - = F i i ≈1 所以 11F o R i u -≈ 由上试表明,一旦1F R 的取值确定,0u 仅仅决定于1i ,故可将电路的输出看成为由电流1i 控制的电压源0u 。在1i 一定的情况下,0u 基本不变,近似为恒压源,因而放大电路的输出电阻趋于零。 6.心得体会 通过本次实验,我更深刻的掌握了负反馈放大电路的基本知识以及集成运放电路的基本原理。理解了负反馈放大电路的反馈类型的判别,而且学会了计算电路中的相关参数。 这次实验我最大的收获是:负反馈放大电路的许多性能之所以会得到一定程度的改善,归根到底是由于放大电路的输出信号部分的或全部的引回到放大电路的输入端,从而可以对输出信号随时加以调整。反馈越深,放大电路性能改善的程度就越明显。

相关文档
最新文档