AnsysWorkbench划分网格

AnsysWorkbench划分网格
AnsysWorkbench划分网格

Ansys Workbench 划分网格

(张栋zd0561@https://www.360docs.net/doc/633016022.html,)

1、对于三维几何体(对于三维几何体(3D 3D 3D))

有几种不同的网格化分方法。如图1下部所示。

图1网格划分的种类

1.1、Automatic(自动划分法)

1.2、Tetrahedron(四面体划分法)

它包括两种划分方法:Patch Conforming(A W 自带功能),Patch Independent(依靠ICEM CFD Tetra Algorithm 软件包来实现)。

步骤:Mesh(右键)——Insert——Method

(操作区上方)Meshcontrl——Method

(左下角)Scope——Geometry

Method——Tetrahedrons(四面体网格)

Algorithm——Patch Conforming

(补充:Patch Independent该算法是基于Icem CFD Tetra的,Tetra部分具有膨胀应用,其对CAD许多面的修补均有用,包括碎面、短边、较差的面参数等。在没有载荷或命名选项的情况下,面和边无需考虑。)

图2四面体网格分两类

图3四面体划分法的参数设置

1.3、Hex Dominant(六面体主导法)

1.4、Sweep(扫掠划分法)

1.5、MultiZone(多区划分法)

2、对于面体或者壳二维几何

对于面体或壳二维(2D),A W有一下:

Quad Dominant(四边形单元主导)

Triangles(三角形单元)

Uniform Quad/Tri(均匀四面体/三角形单元)

Uniform Quad(均匀四边形单元)

3、网格参数设置

下图为缺省设置(Defaults)下的物理环境(Physics Preferance)

图4网格参数设置

图5Mechanical默认网格

上图中的关键数据:物理优先项、关联中心缺省值、平滑度、过渡、跨越角中心、实体单元默认中节点。

图6缺省参数设置

上图中,虽然Relevance Center是在尺寸参数控制选项里设置的,但由于Relevance需要与其配合使用,故在此介绍。

其中Relevance(相关性)是通过拖动滑块来实现细化或粗糙控制的,而

Revevance Center(关联中心)有Coarse、Medium、Fine三个选项进行选择控制。

4、多区网格划分

扫掠法可以实现单个源面对单个目标面的扫掠,可以很好地处理扫掠方向的多个侧面,多区网格化分则是一种自由分解方法,可以实现多个源面对多个目标面的网格化分。

图7多区网格划分

Mapped Mesh Type(映射网格类型):有Hexa(六面体)、Hexa/Prism(六面体/棱柱)

Free Mesh Type(自由网格类型):有Not Allowed(不允许)、Tetra(四面体)、Hexa Dorminant(六面体-支配)、Hexa Core(六面体-核心)

Src/trg selection(源面/目标面选择):有Automatic(自动的)、Manual Source(手动源面)

5、网格划分控制案例

图8单位的设置

图9导入文件

图10在DesignModeler中的显示

图11右侧Meshing Options的选择

图12Mesh的界面

(包括网格粗糙度和网格统计)

图14按照默认的设置划分网格

图15CFD网格划分显示

在参数设置列表中将Physics Preference改为CFD,Soler Preference改

为Fluent,检验高级尺寸选项设置为Curvature。

图16调整后的试图效果

图17用标准工具栏剖切视图按钮将图形剖开

图18如此设置为网格划分算法添加更好的处理临近部位的网格

图19参数设置

在section planes列表中单击复选框将剖切截面关闭,按上图进行设置,

min size中输入0(设为默认值)

图20使用面尺寸

按照上图的步骤进行设置,然后网格化分。其中第二步为single select(点

选),如此生成所选面的网格要比邻近面的网格要细。

图21效果图

图22在模型中插入一个坐标系

图23参数设置列表

图抑制面尺寸

图24面尺寸被抑制

图影响球尺寸的最后设置1

图25影响球尺寸的最后设置2

图26最后的效果

希望大家通过这个word文档的学习,初步掌握AW网格划分

的方法与技巧。

ABAQUS常用技巧归纳(图文并茂).

ABAQUS学习总结 1.ABAQUS中常用的单位制。-(有用到密度的时候要特别注意) 单位制错误会造成分析结果错误,甚至不收敛。 2.ABAQUS中的时间 对于静力分析,时间没有实际意义(静力分析是长期累积的结果)。对于动力分析,时间是有意义的,跟作用的时间相关。 3.更改工作路径 4.对于ABAQUS/Standard分析,增大内存磁盘空间会大大缩短计算 时间;对于ABAQUS/Explicit分析,生成的临时数据大部分是存储在内存中的关键数据,不写入磁盘,加快分析速度的主要方法是提高CPU的速度。 临时文件一般存储在磁盘比较大的盘符下

提高虚拟内存

5.壳单元被赋予厚度后,如何查看是否正确。 梁单元被赋予截面属性后,如休查看是否正确。 可以在VIEW的DISPLAY OPTION里面查看。 6.参考点 对于离散刚体和解析刚体部件,参考点必须在PART模块里面定义。而对于刚体约束,显示休约束,耦合约束可以在PART ,ASSEMBLY,INTERRACTION,LOAD等定义参考点. PART模块里面只能定义一个参考点,而其它的模块里面可以定义很多个参考点。

7.刚体部件(离散刚体和解析刚体),刚体约束,显示体约束 离散刚体:可以是任意的形状,无需定义材料属性,要定义参考点,要划分网格。 解析刚体:只能是简单形状,无需定义材料属性,要定义参考点,不需要划分网格。 刚体约束的部件:要定义材料属性,要定义参考点,要划分网格。显示体约束的部件:要定义材料属性,要定义参考点,不需要要划分网格(ABAQUS/CAE会自动为其要划分网格)。 刚体与变形体比较:刚体最大的优点是计算效率高,因为它在分析作业过程中不参与所在基于单元的计算,此外,在接触分析,如果主面是刚体的话,分析更容易收敛。 刚体约束和显示体约束与刚体部件的比较:刚体约束和显示体约束的优点是去除约束后,就可以立即变为变形体。 刚体约束与显示体约束的比较:刚体约束的部件会参与计算,而显示约束的部件不会参与计算,只是用于显示作用。 8.一般分析步与线性摄动分析步 一般分析步:每个分析步的开始状态都是前一个分析步结束时刻的模型状态; 如果不做修改的话,前一个分析步所施加的载荷,边界条件,约束都会延续到当前的分析步中;所定义的载荷,边界条件以及得到的分析结果都是总量。

ansysworkbenchmeshing网格划分总结

Base point and delta创建出的点重合时看不到 大部分可划分为四面体网格,但六面体网格仍是首选,四面体网格是最后的选择,使用复杂结构。 六面体(梯形)在中心质量差,四面体在边界层处质量差,边界层处用棱柱网格prism。 棱锥为四面体和六面体之间的过渡 棱柱由四面体网格被拉伸时生成 3D Sweep扫掠网格划:只有单一的源面和目标面,膨胀层可生成纯六面体或棱柱网格 Multizone多域扫掠网格:对象是多个简单的规则体组成时(六面体)——mapped mesh type映射网格类型:包括hexa、hexa/prism ——free mesh type自由网格类型:包括not allowed、tetra、hexa dominant、hexa core(六面体核心) ——src/trg selection源面/目标面选择,包括automatic、manual source手动源面选择 patch conforming:考虑一些小细节(四面体),包括CFD的膨胀层或边界层识别 patch independent:忽略一些小细节,如倒角,小孔等(四面体),包括CFD 的膨胀层或边界层识别 ——max element size 最大网格尺寸 ——approx number of elements大约网格数量 mesh based defeaturing 清除网格特征 ——defeaturing tolerance 设置某一数值时,程序会根据大小和角度过滤掉几何边 Use advanced size function 高级尺寸功能 ——curvature['k??v?t??]曲率:有曲率变化的地方网格自动加密,如螺钉孔,作用于边和面。 ——proximity[pr?k's?m?t?]邻近:窄薄处、狭长的几何体处网格自动加密,如薄壁,但花费时间较多,网格数量增加较多,配合min size使用。控制面网格尺寸可起到相同细化效果。 hex dominant六面体主导:先生成四边形主导的网格,然后再得到六面体再按需要填充棱锥和四面体单元。 ——此方法对于不可扫掠的体,要得到六面体网格时推荐 ——对内部容积大的体有用 ——对体积和表面积比小的薄复杂体无用 ——对于CFD无边界层识别 ——主要对FEA分析有用 Automatic自动网格:在四面体网格(patch conforming考虑细节)和扫掠网格(sweep)之间自动切换。 2D Quadrilateral dominant [,kwɑdr?'l?t?r?l]四边形主导 triangles['tra???g(?)l]三角形

ANSYS 13.0 Workbench 网格划分及操作案例

第 3章 ANSYS 13.0 Workbench网格划分及操作案例 网格是计算机辅助工程(CAE)模拟过程中不可分割的一部分。网格直接影响到求解精 度、求解收敛性和求解速度。此外,建立网格模型所花费的时间往往是取得 CAE 解决方案所 耗费时间中的一个重要部分。因此,一个越好的自动化网格工具,越能得到好的解决方案。 3.1 ANSYS 13.0 Workbench 网格划分概述 ANSYS 13.0 提供了强大的自动化能力,通过实用智能的默认设置简化一个新几何体的网 格初始化,从而使得网格在第一次使用时就能生成。此外,变化参数可以得到即时更新的网 格。ANSYS 13.0 的网格技术提供了生成网格的灵活性,可以把正确的网格用于正确的地方, 并确保在物理模型上进行精确有效的数值模拟。 网格的节点和单元参与有限元求解,ANSYS 13.0在求解开始时会自动生成默认的网格。 可以通过预览网格,检查有限元模型是否满足要求,细化网格可以使结果更精确,但是会增 加 CPU 计算时间和需要更大的存储空间,因此需要权衡计算成本和细化网格之间的矛盾。在 理想情况下,我们所需要的网格密度是结果随着网格细化而收敛,但要注意:细化网格不能 弥补不准确的假设和错误的输入条件。 ANSYS 13.0 的网格技术通过 ANSYS Workbench的【Mesh】组件实现。作为下一代网格 划分平台, ANSYS 13.0 的网格技术集成 ANSYS 强大的前处理功能, 集成 ICEM CFD、 TGRID、 CFX-MESH、GAMBIT网格划分功能,并计划在 ANSYS 15.0 中完全整合。【Mesh】中可以根 据不同的物理场和求解器生成网格,物理场有流场、结构场和电磁场,流场求解可采用 【Fluent】、【CFX】、【POLYFLOW】,结构场求解可以采用显式动力算法和隐式算法。不同的 物理场对网格的要求不一样,通常流场的网格比结构场要细密得多,因此选择不同的物理场, 也会有不同的网格划分。【Mesh】组件在项目流程图中直接与其他 Workbench分析系统集成。 3.2 ANSYS 13.0 Workbench 网格划分 ANSYS 网格划分不能单独启动,只能在 Workbench 中调用分析系统或【Mesh】组件启 动,如图 3-1 所示。 图3-1 调入分析系统及网格划分组件

ansys_网格网格划分教程

血管模型网格划分 网格划分即将所用的模型划分为有限体积或单元,这里我们使用Ansys自身的网格划分器对提取出来的血管模型(STL格式的三维模型)进行网格划分。具体步骤为: 一、软件启动 单击开始---所有程序--Ansys14.0---Meshing---ICEM CFD 14.0。 二、模型导入 1、单击主菜单栏中的File---Import Geometry---STL,如下图: 主菜单烂

2、在下拉菜单对话框中选取血管模型并确定后,血管模型导入完成,如下图; 三、图形参数设置(封闭模型) 1、单击Geometry 工具栏中的Repair Geometry 图标,后单击Build Diagnostic 按钮单击Apply 按钮运行,如下图: 单击此处可调整显示边框与实体 Geometry 工具栏 Repair Geometry 按钮 单击此按钮后单击Apply 按钮 运行后端口显示封闭黄线

2、运行完成后,单击左侧工具栏中的Close Holes图标,然后单击鼠标图形按钮,而后单击模型端口处黄线并单击Apply运行,从而使模型端口封闭,模型有几个端口则反复操作几次,如下图: Close Holes按 钮运行结束 后端口封 闭 四、网格化分参数设置 1、单击Mesh工具栏的Compute Mesh按钮,选取Volume mesh按钮,后单击Compute按钮,而后单击YES按钮,进行初步的电脑网格划分; Mesh工具栏,Compute Mesh 按钮 单击此按钮,而后在下面的Mesh方法中选择,一般选择默 认的方法

运行结束后显示 网格 2、完成上步操作后,单击Mesh工具栏中的Globe mesh setup按钮,一般不更改默认设置,单击Apply按钮运行完成; 3、再次重复单击Compute Mesh按钮,后单击Apply按钮,而后单击YES按钮,进行初步的电脑网格划分,注:(1)可用多种方式进行划分而后单击融合操作,直至满意;(2)若模型有其他漏洞,程序会提示是否修复,一般选择不修复; 五、设置模型边界---共包括:出口端、入口端及墙壁 1、右键单击屏幕左侧控制树中的Part,在下拉菜单中选取Part create,而后在下面的窗口栏中Part部分对端口命名(如:input),然后在Creat Part by Selection部分单击鼠标箭头图形,再在浏览界面中左键单击所需设定的端口(如:输入端),注:只单击一次后进行下步操作,是否选中可能显示不明显,单击Apply运行完成此步操作; 2、依次完成输入端、输出端以及墙的设定。如下图:

本人学习abaqus五年的经验总结-让你比做例子快十倍

第二章 ABAQUS 基本使用方法 [2](pp15)快捷键:Ctrl+Alt+左键来缩放模型;Ctrl+Alt+中键来平移模型;Ctrl+Alt+右键来旋转模型。 ②(pp16)ABAQUS/CAE 不会自动保存模型数据,用户应当每隔一段时间自己保存模型以避免意外丢失。 [3](pp17)平面应力问题的截面属性类型是Solid(实心体)而不是Shell(壳)。 ABAQUS/CAE 推荐的建模方法是把整个数值模型(如材料、边界条件、载荷等)都直接定义在几何模型上。载荷类型Pressure 的含义是单位面积上的力,正值表示压力,负值表示拉力。 [4](pp22)对于应力集中问题,使用二次单元可以提高应力结果的精度。 [5](pp23)Dismiss 和Cancel 按钮的作用都是关闭当前对话框,其区别在于:前者出现在包含只读数 据的对话框中;后者出现在允许作出修改的对话框中,点击Cancel 按钮可关闭对话框,而不保存 所修改的内容。 [6](pp26)每个模型中只能有一个装配件,它是由一个或多个实体组成的,所谓的“实体”(instance) 是部件(part)在装配件中的一种映射,一个部件可以对应多个实体。材料和截面属性定义在部件上,相互作用(interaction)、边界条件、载荷等定义在实体上,网格可以定义在部件上或实体上,对求解过程和输出结果的控制参数定义在整个模型上。 [7](pp26) ABAQUS/CAE 中的部件有两种:几何部件(native part)和网格部件(orphan mesh part)。 创建几何部件有两种方法:(1)使用Part 功能模块中的拉伸、旋转、扫掠、倒角和放样等特征来直 接创建几何部件。(2)导入已有的CAD 模型文件,方法是:点击主菜单File→Import→Part。网格部件不包含特征,只包含节点、单元、面、集合的信息。创建网格部件有三种方法:(1)导入ODB 文件中的网格。(2)导入INP 文件中的网格。(3)把几何部件转化为网格部件,方法是:进入Mesh 功能模块,点击主菜单Mesh→Create Mesh Part。 [8](pp31)初始分析步只有一个,名称是initial,它不能被编辑、重命名、替换、复制或删除。在初始分析步之后,需要创建一个或多个后续分析步,主要有两大类:(1)通用分析步(general analysis step)可以用于线性或非线性分析。常用的通用分析步包含以下类型: —Static, General: ABAQUS/Standard 静力分析 —Dynamics, Implicit: ABAQUS/Standard 隐式动力分析 —Dynamics, Explicit: ABAQUS/ Explicit 显式动态分析 (2)线性摄动分析步(linear perturbation step)只能用来分析线性问题。在ABAQUS/Explicit 中 不能使用线性摄动分析步。在ABAQUS/Standard 中以下分析类型总是采用线性摄动分析步。 —Buckle: 线性特征值屈曲。 —Frequency: 频率提取分析。 —Modal dynamics: 瞬时模态动态分析。 —Random response: 随机响应分析。 —Response spectrum: 反应谱分析。 —Steady-state dynamics: 稳态动态分析。 [9](pp33)在静态分析中,如果模型中不含阻尼或与速率相关的材料性质,“时间”就没有实际的物 理意义。为方便起见,一般都把分析步时间设为默认的 1。每创建一个分析步,ABAQUS/CAE 就会自动生成一个该分析步的输出要求。 [10] (pp34)自适应网格主要用于ABAQUS/Explicit 以及ABAQUS/Standard 中的表面磨损过程 模拟。在一般的ABAQUS/Standard 分析中,尽管也可设定自适应网格,但不会起到明显的作用。 Step 功能模块中,主菜单Other→Adaptive Mesh Domain 和Other→Adaptive Mesh Controls 分别 设置划分区域和参数。 [11](pp37)使用主菜单Field 可以定义场变量(包括初始速度场和温度场变量)。有些场变量与分析步有关,也有些仅仅作用于分析的开始阶段。使用主菜单Load Case 可以定义载荷状况。载荷状况由一系列的载荷和边界条件组成,用于静力摄动分析和稳态动力分析。

ANSYS网格划分技巧

【分享】复杂几何模型的系列网格划分技术 众所周知,对于有限元分析来说,网格划分是其中最关键的一个步骤,网格划分的好坏直接影响到解算的精度和速度。在ANSYS中,大家知道,网格划分有三个步骤:定义单元属性(包括实常数)、在几何模型上定义网格属性、划分网格。在这里,我们仅对网格划分这个步骤所涉及到的一些问题,尤其是与复杂模型相关的一些问题作简要阐述。 一、自由网格划分 自由网格划分是自动化程度最高的网格划分技术之一,它在面上(平面、曲面)可以自动生成三角形或四边形网格,在体上自动生成四面体网格。通常情况下,可利用ANSYS的智能尺寸控制技术(SMARTSIZE命令)来自动控制网格的大小和疏密分布,也可进行人工设置网格的大小(AESIZE、LESIZE、KESIZE、ESIZE等系列命令)并控制疏密分布以及选择分网算法等(MOPT命令)。对于复杂几何模型而言,这种分网方法省时省力,但缺点是单元数量通常会很大,计算效率降低。同时,由于这种方法对于三维复杂模型只能生成四面体单元,为了获得较好的计算精度,建议采用二次四面体单元(92号单元)。如果选用的是六面体单元,则此方法自动将六面体单元退化为阶次一致的四面体单元,因此,最好不要选用线性的六面体单元(没有中间节点,比如45号单元),因为该单元退化后为线性的四面体单元,具有过刚的刚度,计算精度较差;如果选用二

次的六面体单元(比如95号单元),由于其是退化形式,节点数与其六面体原型单元一致,只是有多个节点在同一位置而已,因此,可以利用TCHG命令将模型中的退化形式的四面体单元变化为非退化的四面体单元,减少每个单元的节点数量,提高求解效率。在有些情况下,必须要用六面体单元的退化形式来进行自由网格划分,比如,在进行混合网格划分(后面详述)时,只有用六面体单元才能形成金字塔过渡单元。对于计算流体力学和考虑集肤效应的电磁场分析而言,自由网格划分中的层网格功能(由LESIZE命令的LAYER1和LAYER2域控制)是非常有用的。 二、映射网格划分     映射网格划分是对规整模型的一种规整网格划分方法,其原始概念是:对于面,只能是四边形面,网格划分数需在对边上保持一致,形成的单元全部为四边形;对于体,只能是六面体,对应线和面的网格划分数保持一致;形成的单元全部为六面体。在ANSYS中,这些条件有了很大的放宽,包括: 1 面可以是三角形、四边形、或其它任意多边形。对于四边以上的多边形,必须用LCCAT命令将某些边联成一条边,以使得对于网格划分而言,仍然是三角形或四边形;或者用AMAP命令定义3到4个顶点(程序自动将两个顶点之间的所有线段联成一条)来进行映射划分。 2 面上对边的网格划分数可以不同,但有一些限制条件。

ABAQUS实体单元类型总结

在ABAQUS中,基于应力/位移的实体单元类型最为丰富: (1)在ABAQUS/Sandard中,实体单元包括二维和三维的线性单元和二次单元,均可以采用完全积分或缩减积分,另外还有修正的二次Tri单元(三角形单元)和Tet单元(四面体单元),以及非协调模式单元和杂交单元。 (2)ABAQUS/Explicit中,实体单元包括二维和三维的线性缩减积分单元,以及修正的二次二次Tri单元(三角形单元)和Tet单元(四面体单元),没有二次完全积分实体单元。 ------------------------------------------------------------------------------------------------------------ 按照节点位移插值的阶数,ABAQUS里的实体单元可以分为以下三类: 线性单元(即一阶单元):仅在单元的角点处布置节点,在各个方向都采用线性插值。 二次单元(即二阶单元):在每条边上有中间节点,采用二次插值。 修正的二次单元(只有Tri 或Tet 才有此类型):在每条边上有中间节点,并采用修正的二次插值。 ******************************************************************************* *************** 1、线性完全积分单元:当单元具有规则形状时,所用的高斯积分点的数目足以对单元刚度矩阵中的多项式进行精确积分。 缺点:承受弯曲载荷时,会出现剪切自锁,造成单元过于刚硬,即使划分很细的网格,计算精度仍然很差。 2、二次完全积分单元: 优点: (1)应力计算结果很精确,适合模拟应力集中问题; (2)一般情况下,没有剪切自锁问题(shear locking)。 但使用这种单元时要注意: (1)不能用于接触分析; (2)对于弹塑性分析,如果材料不可压缩(例如金属材料),则容易产生体积自锁(volumetric locking);

ansysworkbench中划分网格的几种方法

转自宋博士的博客 如何在ANSYS WORKBENCH中划分网格经常有朋友问到这个问题。我整理了一下,先给出第一个入门篇,说明最基本的划分思路。以后再对某些专题问题进行细致阐述。 ANSYS WORKBENCH中提供了对于网格划分的几种方法,为了便于说明问题,我们首先创建一个简单的模型,然后分别使用几种网格划分方法对之划分网格,从而考察各种划分方法的特点。 1. 创建一个网格划分系统。 2. 创建一个变截面轴。 先把一个直径为20mm的圆拉伸30mm成为一个圆柱体 再以上述圆柱体的右端面为基础,创建一个直径为26mm的圆,拉伸30mm得到第二个圆柱体。 对小圆柱的端面倒角2mm。

退出DM. 3.进入网格划分程序,并设定网格划分方法。双击mesh进入到网格划分程序。 下面分别考察各种网格划分方法的特点。(1)用扫掠网格划分。 对整个构件使用sweep方式划分网格。

结果失败。 该方法只能针对规则的形体(只有单一的源面和目标面)进行网格划分。(2)使用多域扫掠型网格划分。 结果如下

可见ANSYS把该构件自动分成了多个规则区域,而对每一个区域使用扫略网格划分,得到了很规则的六面体网格。这是最合适的网格划分方法。 (3)使用四面体网格划分方法。 使用四面体网格划分,且使用patch conforming算法。 可见,该方式得到的网格都是四面体网格。且在倒角处网格比较细密。 其内部单元如下图(这里剖开了一个截面) 使用四面体网格划分,但是使用patch independent算法。忽略细节。

?、网格划分结果如下图 此时得到的仍旧是四面体网格,但是倒角处并没有特别处理。(4)使用自动网格划分方法。 得到的结果如下图

AnsysWorkbench划分网格

Ansys Workbench 划分网格 (张栋zd0561@https://www.360docs.net/doc/633016022.html,) 1、对于三维几何体(对于三维几何体(3D 3D 3D) )有几种不同的网格化分方法。如图1下部所示。 图1网格划分的种类 1.1、Automatic(自动划分法) 1.2、Tetrahedron(四面体划分法) 它包括两种划分方法:Patch Conforming(A W 自带功能),Patch Independent(依靠ICEM CFD Tetra Algorithm 软件包来实现)。

步骤:Mesh(右键)——Insert——Method (操作区上方)Meshcontrl——Method (左下角)Scope——Geometry Method——Tetrahedrons(四面体网格) Algorithm——Patch Conforming (补充:Patch Independent该算法是基于Icem CFD Tetra的,Tetra部分具有膨胀应用,其对CAD许多面的修补均有用,包括碎面、短边、较差的面参数等。在没有载荷或命名选项的情况下,面和边无需考虑。) 图2四面体网格分两类

图3四面体划分法的参数设置 1.3、Hex Dominant(六面体主导法) 1.4、Sweep(扫掠划分法) 1.5、MultiZone(多区划分法) 2、对于面体或者壳二维几何 对于面体或壳二维(2D),A W有一下: Quad Dominant(四边形单元主导) Triangles(三角形单元) Uniform Quad/Tri(均匀四面体/三角形单元) Uniform Quad(均匀四边形单元) 3、网格参数设置 下图为缺省设置(Defaults)下的物理环境(Physics Preferance)

abaqus网格划分

如何使用3D实体单元? 1 如果不需要模拟非常大的应变或进行一个复杂的、改变接触条件的问题,则应采用二次减缩 积分单元(CAX8R,CRE8R,CPS8R.C3D20R等)。 2 如果存在应力集中,则应在局部采用二次完全积分单元(CAX8,CPE8,CPS8,C3D20等)。它 们可在较低费用下对应力梯度提供最好的解决。尽量不要使用线性减缩积分单元。用细化的二次减缩积分单元与二次完全积分单元求解结果相差不大,且前者时间短。 3 对含有非常大的网格扭曲模拟(大应变分析),采用细网格划分的线性减缩积分单元 (CAX4R,CPE4R.CPS4R,C3D8R等)。 4 对接触问题采用线性减缩积分单元或非协调单元(CAX4I,CPE4I,CPS4II,C3D8I等)的细网 格划分。 5 对以弯曲为主的问题,如能保证所关心部位单元扭曲较小,使用非协调单元(如C3D8I), 求解很精确。 6 对于弹塑性分析,不可压缩材料(如金属),不能使用二次完全积分单元,否则易体积自锁, 应使用修正的二次三角形或四面体单元、非协调单元,以及线性减缩积分单元。若使用二次减缩积分单元,当应变超过20%-40%要划分足够密的网格。 7 除平面应力问题之外,如材料完全不可压缩(如橡胶),应使用杂交单元; 在某些情况下,近似不可压缩材料也应使用杂交单元。 8 当几何形状复杂时,万不得已采用楔形和四面体单元。这些单元的线性形式,如C3D6和 C3D4,是较差的单元(若需要时,划分较细的网格以使结果达到合理的精度),这些单元也应远离需要精确求解的区域。 9 如使用了自由网格划分技术,四面体单元应选二次的,其结果对小位移问题应该是合理的, 但花时间多。在ABAQUS/Standard中选C3D10,ABAQUS/Explicit中选修正的(C3D10M)。 如有大的塑性变形,或模型中存在接触,且使用默认的“硬”接触关系,也应选C3D10M。 10 ABAQUS/Explicit模拟冲击或爆炸,应选线性单元。

ANSYS 网格划分方法总结

(1) 网格划分定义:实体模型是无法直接用来进行有限元计算得,故需对它进行网格划分以生成有限元模型。有限元模型是实际结构和物质的数学表示方法。 在ANSYS中,可以用单元来对实体模型进行划分,以产生有限元模型,这个过程称作实体模型的网格化。本质上对实体模型进行网格划分也就是用一个个单元将实体模型划分成众多子区域。这些子区域(单元),是有属性的,也就是前面设置的单元属性。 另外也可以直接利用单元和节点生成有限元模型。 实体模型进行网格划分就是用一个个单元将实体模型划分成众多子区域(单元)。 (2)为什么我选用plane55这个四边形单元后,仍可以把实体模型划分成三角 形区域集合??? 答案:ansys为面模型的划分只提供三角形单元和四边形单元,为体单元只提供四面体单元和六面体单元。不管你选择的单元是多少个节点,只要是2D单元,肯定构成一个四边形或者是三角形,绝对没有五、六边形等特殊形状。网格划分也就是用所选单元将实体模型划分成众多三角形单元和四边形子区域。 见下面的plane77/78/55都是节点数目大于4的,但都是通过各种插值或者是合并的方式形成一个四边形或者三角形。 所以不管你选择什么单元,只要是对面的划分,meshtool上的划分类型设置就只有tri和quad两种选择。 如果这个单元只构成三角形,例如plane35,则无论你在meshtool上划分设置时tri还是quad,划分出的结果都是三角形。

所以在选用plane55单元,而划分的是采用tri划分时,就会把两个点合并为一个点。如上图的plane55,下面是plane单元的节点组成,可见每一个单元上都有两个节点标号相同,表明两个节点是重合的。 。 同样在采用plane77 单元,进行tri划分时,会有三个节点重合。这里不再一一列出。(3)如何使用在线帮助: 点击对话框中的help,例如你想了解plane35的相关属性,你可以

ANSYS自适应网格划分教程

自适应网格划分 何为网格自适应划分? ANSYS程序提供了近似的技术自动估计特定分析类型中因为网格划分带来的误差。(误差估计在ANSYS Basic Analysis Procedures Guide第五章中讨论。)通过这种误差估计,程序可以确定网格是否足够细。如果不够的话,程序将自动细化网格以减少误差。这一自动估计网格划分误差并细化网格的过程就叫做自适应网格划分,然后通过一系列的求解过程使得误差低于用户指定的数值(或直到用户指定的最大求解次数)。 自适应网格划分的先决条件 ANSYS软件中包含一个预先写好的宏,ADAPT.MAC,完成自适应网格划分的功能。用户的模型在使用这个宏之前必须满足一些特定的条件。(在一些情况下,不满足要求的模型也可以用修正的过程完成自适应网格划分,下面还要讨论。)这些要求包括: 标准的ADAPT过程只适用于单次求解的线性静力结构分析和线性稳态热分析。 模型最好应该使用一种材料类型,因为误差计算是根据平均结点应力进行的,在不同材料过渡位置往往不能进行计算。而且单元的能量误差是 受材料弹性模量影响的。因此,在两个相邻单元应力连续的情况下,其 能量误差也可能由于材料特性不同而不一样。在模型中同样应该避免壳 厚突变,这也可能造成在应力平均是发生问题。 模型必须使用支持误差计算的单元类型。(见表3-1) 模型必须是可以划分网格的:即模型中不能有引起网格划分出错的部分。 表3-1 自适应网格划分可用单元 2-D Structural Solids PLANE2 2-D 6-Node Triangular Solid PLANE25 Axisymmetric Harmonic Solid PLANE42 2-D 4-Node Isoparametric Solid PLANE82 2-D 8-Node Solid PLANE83 Axisymmetric Harmonic 8-Node Solid 3-D Structural Solids SOLID45 3-D 8-Node Isoparametric Solid SOLID64 3-D Anisotropic Solid SOLID73 3-D 8-Node Solid with Rotational DOF SOLID92 3-D 10-Node Tetrahedral Solid SOLID95 3-D 20-Node Isoparametric Solid 3-D Structural Shells

Abaqus划分网格技巧小结

Abaqus中三维几何体生成结构网格的分割方法图1 可以直接生成结构网格的三维几何体图2 不可以直接生成结构网格的三维几何体几何体中有孔圆弧≥900 有不能生成二 维结构网格的面一个项点有三条以上的边共用图3 分割示例无法生成结构网格的问题分割示例 1 几何体中有孔如将孔分割成半圆或者1/4圆从而去除孔 2 圆弧≥900 如将1800圆弧分成两个900圆弧3 有不能生成二维结构网格的面如半圆周面只含有二个边而一个面至少含有三条以上的边界才能生成二维结构网格所以将半圆分半这样每个面便 有三条边 4 一个顶点只能有三条边共用 5 一个区域至少 有四个面如四面体6 如果区域中包含拓朴关系则这个区域只能有六个面。如果多于六个面则如图4所示可以使用virtual topology对面进行合并直至所含的面只有六个面。图4 使用virtual topology对面进行合并直至所含的面只有六个面7 面与面之间的角度最好接近于90°如果面与面角度 ≥1500则需进行分割8 对区域中的每个面则有以下要求8.1如果区域不是立方体cube则其面必须是一个整面单一面不能含有多个面片8 8.2 如果区域是立方体cubea side can be a connected set of faces that are on the same geometric surface. In addition the pattern of the faces must allow rows and columns of hexahedral elements to be created in a regular grid pattern along that entire side when the cube is meshed. For example Figure 5

Ansys15.0workbench网格划分教程(修订)

第3章Workbench网格划分 3.1 网格划分平台 ANSYS Workbench中提供ANSYS Meshing应用程序(网格划分平台)的目标是提供通用的网格划分格局。网格划分工具可以在任何分析类型中使用。 ●FEA仿真:包括结构动力学分析、显示动力学分析(AUTODYN、ANSYS LS/DYNA)、 电磁场分析等。 ●CFD分析:包括ANSYS CFX、ANSYS FLUENT等。 3.1.1 网格划分特点 在ANSYS Workbench中进行网格划分,具有以下特点: ●ANSYS网格划分的应用程序采用的是Divide & Conquer(分解克服)方法。 ●几何体的各部件可以使用不同的网格划分方法,亦即不同部件的体网格可以不匹配 或不一致。 ●所有网格数据需要写入共同的中心数据库。 ●3D和2D几何拥有各种不同的网格划分方法。

ANSYS Workbench 15.0从入门到精通 3.1.2 网格划分方法 ANSYS Workbench中提供的网格划分法可以在几何体的不同部位运用不同的方法。 1.对于三维几何体 对于三维几何体(3D)有如图3-1所示的几种不同的网格划分方法。 图3-1 3D几何体的网格划分法 (1)自动划分法(Automatic) 自动设置四面体或扫掠网格划分,如果体是可扫掠的,则体将被扫掠划分网格,否则将使用Tetrahedrons下的Patch Conforming网格划分器划分网格。同一部件的体具有一致的网格单元。 (2)四面体划分法(Tetrahedrons) 四面体划分法包括Patch Conforming划分法(Workbench自带功能)及Patch Independent划分法(依靠ICEM CFD Tetra Algorithm软件包实现)。四面体划分法的参数设置如图3-2所示。 图3-2 四面体划分法的参数设置 Patch Independent网格划分时可能会忽略面及其边界,若在面上施加了边界条件,便不能忽略。它有两种定义方法:Max Element Size用于控制初始单元划分的大小;Approx number of Elements用于控制模型中期望的单元数目(可以被其他网格划分控制覆盖)。 当Mesh Based Defeaturing设为ON时,在Defeaturing Tolerance选项中设置某一数值时,程序会根据大小和角度过滤掉几何边。 56

学习abaqus五年的经验总结,

第二章ABAQUS基本使用方法 [2](pp15)快捷键:Ctrl+Alt+左键来缩放模型;Ctrl+Alt+中键来平移模型;Ctrl+Alt+右键来旋转模型。 ②(pp16)ABAQUS/CAE不会自动保存模型数据,用户应当每隔一段时间自己保存模型以避免意外丢失。 [3](pp17)平面应力问题的截面属性类型是Solid (实心体)而不是Shell (壳)。 ABAQUS/CAE推荐的建模方法是把整个数值模型(如材料、边界条件、载荷等)都直接定义在几何模型上。载荷类型Pressure 的含义是单位面积上的力,正值表示压力,负值表示拉力。 [4](pp22) 对于应力集中问题,使用二次单元可以提高应力结果的精度。 [5](pp23)Dismiss 和Cancel 按钮的作用都是关闭当前对话框,其区别在于:前者出现在包含只读数 据的对话框中;后者出现在允许作出修改的对话框中,点击Cancel 按钮可关闭对话框,而不保存 所修改的内容。 [6](pp26) 每个模型中只能有一个装配件,它是由一个或多个实体组成的,所谓的“实体”( instance) 是部件(part )在装配件中的一种映射,一个部件可以对应多个实体。材料和截面属性定义在部件上,相互作用 ( interaction )、边界条件、载荷等定义在实体上,网格可以定义在部件上或实体上,对求解过程和输出结果的控制 参数定义在整个模型上。 [7](pp26) ABAQUS/CAE 中的部件有两种:几何部件( native part)和网格部件(orphan mesh part )。 创建几何部件有两种方法: ( 1)使用Part 功能模块中的拉伸、旋转、扫掠、倒角和放样等特征来直 接创建几何部件。(2)导入已有的CAD模型文件,方法是:点击主菜单File宀Import宀Part。网格部件不包含特征,只包含节点、单元、面、集合的信息。创建网格部件有三种方法: (1)导入ODB 文件中的网格。( 2)导入INP 文件中的网格。 (3)把几何部件转化为网格部件,方法是:进入Mesh 功能模块,点击主菜单Mesh T Create Mesh Part。 [8](pp31)初始分析步只有一个,名称是initial,它不能被编辑、重命名、替换、复制或删除。在初始分析步 之后,需要创建一个或多个后续分析步,主要有两大类:(1)通用分析步(general analysis step)可以用于 线性或非线性分析。常用的通用分析步包含以下类型: —Static, General: ABAQUS/Standard 静力分析 —Dynamics, Implicit: ABAQUS/Standard 隐式动力分析 —Dynamics, Explicit: ABAQUS/ Explicit 显式动态分析 (2)线性摄动分析步( linear perturbation step )只能用来分析线性问题。在ABAQUS/Explicit 中不能使用线性摄 动分析步。在ABAQUS/Standard 中以下分析类型总是采用线性摄动分析步。 —Buckle: 线性特征值屈曲。 —Frequency: 频率提取分析。 —Modal dynamics: 瞬时模态动态分析。 —Random response: 随机响应分析。 —Response spectrum: 反应谱分析。 —Steady-state dynamics: 稳态动态分析。 [9]( pp33)在静态分析中,如果模型中不含阻尼或与速率相关的材料性质,“时间”就没有实际的物 理意义。为方便起见,一般都把分析步时间设为默认的 1。每创建一个分析步,ABAQUS/CAE就会自动生成一个该分析步的输出要求。 [10]( pp34)自适应网格主要用于ABAQUS/Explicit以及ABAQUS/Standard中的表面磨损过程 模拟。在一般的ABAQUS/Standard 分析中,尽管也可设定自适应网格,但不会起到明显的作用。 Step 功能模块中,主菜单Other t Adaptive Mesh Domain 和Other t Adaptive Mesh Controls 分别设置划分区域和参数。 [11](pp37)使用主菜单Field可以定义场变量(包括初始速度场和温度场变量) 。有些场变量与分析步有关,也有些仅仅作用于分析的开始阶段。使用主菜单Load Case可以定义载荷状况。载荷状况由一系列的 载荷和边界条件组成,用于静力摄动分析和稳态动力分析。 [12]( pp42)独立实体是对部件的复制,可以直接对独立实体划分网格,而不能对相应的部件划分网格。非独立实体

ANSYS自适应网格划分

ANSYS自适应网格划分 (1) 何为网格自适应划分? ANS YS程序提供了近似的技术自动估计特定分析类型中因为网格划分带来的误差。(误差估计在ANSYS Basic Analysis Procedures Gui第五章中讨论。)通过这种误差估计,程序可以确定网格是否足够细。如果不够的话,程序将自动细化网格以减少误差。这一自动估计网格划分误差并细化网格的过程就叫做自适应网格划分,然后通过一系列的求解过程使得误差低于用户指定的数值 (或直到用户指定的最大求解次数)。 自适应网格划分的先决条件 ANSYS软件中包含一个预先写好的宏,ADAPT.MAC完成自适应网格划分的功能。 用户的模型在使用这个宏之前必须满足一些特定的条件。(在一些情况下,不满足要求的模型也可以用修正的过程完成自适应网格划分,下面还要讨论。)这些要求包括: 标准的ADAPT过程只适用于单次求解的线性静力结构分析和线性稳态热分析。模型最好应该使用一种材料类型,因为误差计算是根据平均结点应力进行的,在不同材料过渡位置往往不能进行计算。而且单元的能量误差是受材料弹性模量影响的。因此,在两个相邻单元应力连续的情况下,其能量误差也可能由于材料特性不同而不一样。在模型中同样应该避免壳厚突变,这也可能造成在应力平均是发生问题。 模型必须使用支持误差计算的单元类型。 模型必须是可以划分网格的:即模型中不能有引起网格划分出错的部分。 自适应网格划分可用单元 2-D Structural Solids PLANE2 2-D 6-Node Triangular Solid PLANE25 Axisymmetric Harmonic Solid

ansys workbench meshing网格划分总结学习资料

a n s y s w o r k b e n c h m e s h i n g网格划分总 结

Base point and delta创建出的点重合时看不到 大部分可划分为四面体网格,但六面体网格仍是首选,四面体网格是最后的选择,使用复杂结构。 六面体(梯形)在中心质量差,四面体在边界层处质量差,边界层处用棱柱网格prism。 棱锥为四面体和六面体之间的过渡 棱柱由四面体网格被拉伸时生成 3D Sweep扫掠网格划:只有单一的源面和目标面,膨胀层可生成纯六面体或棱柱网格 Multizone多域扫掠网格:对象是多个简单的规则体组成时(六面体)——mapped mesh type映射网格类型:包括hexa、hexa/prism ——free mesh type自由网格类型:包括not allowed、tetra、hexa dominant、hexa core(六面体核心) ——src/trg selection源面/目标面选择,包括automatic、manual source手动源面选择 patch conforming:考虑一些小细节(四面体),包括CFD的膨胀层或边界层识别 patch independent:忽略一些小细节,如倒角,小孔等(四面体),包括CFD 的膨胀层或边界层识别 ——max element size 最大网格尺寸 ——approx number of elements大约网格数量

mesh based defeaturing 清除网格特征 ——defeaturing tolerance 设置某一数值时,程序会根据大小和角度过滤掉几何边 Use advanced size function 高级尺寸功能 ——curvature['k??v?t??]曲率:有曲率变化的地方网格自动加密,如螺钉孔,作用于边和面。 ——proximity[pr?k's?m?t?]邻近:窄薄处、狭长的几何体处网格自动加密,如薄壁,但花费时间较多,网格数量增加较多,配合min size使用。控制面网格尺寸可起到相同细化效果。 hex dominant六面体主导:先生成四边形主导的网格,然后再得到六面体再按需要填充棱锥和四面体单元。 ——此方法对于不可扫掠的体,要得到六面体网格时推荐 ——对内部容积大的体有用 ——对体积和表面积比小的薄复杂体无用 ——对于CFD无边界层识别 ——主要对FEA分析有用 Automatic自动网格:在四面体网格(patch conforming考虑细节)和扫掠网格(sweep)之间自动切换。 2D Quadrilateral dominant [,kwɑdr?'l?t?r?l]四边形主导 triangles['tra???g(?)l]三角形 uniform quad/tri 均匀四边形或三角形 uniform quad 均匀四边形

相关文档
最新文档