旋转机械的振动故障检测与诊断

旋转机械的振动故障检测与诊断
旋转机械的振动故障检测与诊断

旋转机械的振动故障检测与诊断

旋转机械是指主要功能是由于旋转而完成的机械。如电动机,,离心风机,离心式水泵,汽轮机,发电机等都属于发电机的范围。

从力学的角度分析,转子系统分为刚性和柔性转子。转动频率低于转子一阶横向固有频率的转子为刚性转子。转动频率高于转子一阶横向固有频率的转子为柔性转子,如燃气轮机。

在工程学上对应转子一阶横向固有频率的转速成为临界转速。在我们分析时候经常会遇到在各种各样的问题,比如在信号的分析上可以按照信号的处理方式的不同可以分为幅域分析,时域分析以及频域分析。信号的早期分析只是在波形的幅值上进行,如计算波形的最大值,最小值,平均值,有效值等,后而进行波形的幅值的概率分布。在幅值上的各种处理通常称为幅域分析,信号波形是某种物理量随时间变化的关系。研究信号在时域内时域的变化或分布称为时域分析。频域分析是确定信号的频域结构,即信号中包含哪些频率成分,分析的结果是以频率为自变量的各种物理量的谱线或是曲线。不同的分析的方法是从不同的角度观察,分析信号,使信号的处理的结果更加丰富。

从某种意义上讲,振动故障的分析诊断的任务就是读谱图,把频谱上的每个频谱分量与监测的机器的零部件对照联系,给每条频谱以物理解释。主要的内容包括:

1 振动频谱中存在哪些频谱分量?

2 每条频谱分量的幅值多大?

3 这些频谱分量彼此之间存在什么关系?

4 如果存在明显高幅值的频谱分量,它的准确的来源?它与机器的零部件对应关系如何?

5如果测量相位,应该检查相位是否稳定?、

工频成分突出,往往是不平衡所致。2X频为主往往是平行不对中以及转子存在裂纹。1/2分频过大,显示涡轮涡轮失稳。0.5X~0.8X是流体旋转脱离。特低频是喘振。整数倍频是叶片流道振动。啮合成分高是齿轮表面接触不良。谐波丰富是松动。边频是调制。分频是流体激荡,摩擦等。

大型旋转机械常见的故障原因分类如下:

1 设计原因;设计不当,运行时发生强迫振动或是自激振动;结构不合理,应力集中;设计工作转速接近或是落入临界转速区;热膨胀量计算不准,导致热态对中不良。

2 制造原因:零部件加工制造不良,精度不够;零件材质不良,强度不够,制造缺陷;转子动平衡不符合技术要求。

3 安装,维修;机械安装不当,机械安装不当,零部件错位,预负荷大;机器几何参数调整不当,未按规程维修,破坏了机器原有的配合性质和精度。

4 操作运行;工艺参数偏离设计值,机器运行工况不正常;运行点接近或落入临界转速区,润滑或冷却不良。

转子不平衡

旋转机械的转子由于受材料的分布,加工的误差,装配因素以及运行中的冲蚀和沉积等因素的影响,致使质量中心和旋转中心存在一定程度的偏心距。偏心距较大时,静态下部,其偏心距小于摩擦阻力距的区域内,称之为不平衡。偏心距较小时,不能表现出静不平衡的特征,但是在转子旋转时,表现出一个与转动频率的离心力矢量,离心力F=M e㎡,从而激发转子的振动。这种表现称之为动不平衡。静不平衡的转子,由于偏心距e较大,表现出强烈的动不平衡振动。

在此时要明白一个问题就是动平衡满足这静平衡就满足,静平衡满足动平衡则不一定满足。

转子轴颈在滑动轴承内作高速旋转运动的同时,随着运动契入轴颈与轴承之间的油膜压力若发生周期性变化,迫使转子轴心绕着某个平衡点作椭圆轨迹的公转运动,这个现象为涡动。当涡动的激荡力仅为油膜力时,涡动是稳定的,其涡动角速度是转动角速度的0.43~0.48。所以又称为半涡动。当油膜涡动的频率接近转子轴系中某个自振频率时,引发大幅度的共振现象,称为油膜震荡。

油膜涡动仅发生在完全液体润滑的滑动轴承中,低速及重载的转子建立不起完全液体润滑条件,因而不发生油膜涡动所以消除油膜涡动的方法之一,就是减少接触角,使油膜压力小于载荷比压。此外,降低油的粘度也能减少油膜力,消除油膜涡动或是油膜振荡。

油膜振荡仅在高速柔性转子以接近某个自振频率的2倍转速条件下发生,在发生前的低速状态时,油膜涡动会先期发生,再随着转速的升高发生到油膜振荡。

转子不对中包括轴承不对中和轴系不对中。轴承不对中本身不引起振动,但是他影响轴承的载荷的分布,油膜形态等运行状况。一般情况下,转子不对中是指轴系不对中,故障原因在联轴处。

1 引起轴系不对中的原因

a 安装施工中对中超差

b 冷态对中是没有正确估计各个转子中心线的热态升高量,工作时出现主动转子与从动转子之间产生的动。态对中不良。

c 轴承座热膨胀不均匀。

d 机壳变形或是移位。

e 地基的不均匀下沉。

f 转子弯曲,同时产生不平衡和不对中故障。

转子不平衡是引起电机径向的振动,而弯曲在轴向方面产生较大的振动。

连接松动

振动幅值由激振力和机械阻抗共同决定的,松动使连接的刚度下降,这是松动振动异常的基本原因,支撑系统松动引起的异常振动的机理可从两个侧面加以说明。

1 当轴承与轴承座配合有较大的间隙或是紧固力不足时,轴承受转子离心力作用,沿圆周方向发生周期性变形,改变轴承的几何参数。进而影响油膜的稳定性。

2 当轴承座螺栓紧固不牢时,由于结合面上存在的间隙,使系统发生不连续的移位。

上述两项因素的变化,都属于非线性刚度的改变,变化程度与激振力相联系,因而使松动振动显示出非线性特征,松动的典型特征是产生2×及3×4×5×等高倍频的振动。

松动的特征

轴心的轨迹混乱,重心飘忽

频谱中具有3×5×7×等高阶奇次倍频分量,也有偶次分量。

松动方向的振幅大

高次谐波的振幅值大于转频振幅1/2时,应怀疑有松动故障。

油膜涡动以及振荡

转子轴颈在滑动轴承内作高转速的运动时随着运动契入轴颈与油膜之间的油膜压力发生周期性的变化,迫使转子的轴心绕某个点作椭圆轨迹的公转性运动,这个现象为涡动。当涡动的激励力仅为油膜力时涡动是稳定的其涡动的角速度是转动角速度的0.43~0.48.所以叫做半速涡动。当油膜涡动的频率接近某个转子轴系中某个自振频率的时候引发大规模的共振现象叫做油膜振荡。

油膜涡动仅发生在完全液体润滑的滑动轴承之中的低速及其重载的转子是建立不起

完全液体润滑条件的因而不能发生油膜涡动所以消除油膜涡动的方法之一就是减少接触角,使油膜压力小于载荷比压。此外,降低油的粘度也能减少油膜力,消除油膜涡动以及振荡。

油膜振荡仅是在高速柔性转子接近某个自振频率的2倍转速条件下运转时发生的,在发生前的低速状态下油膜涡动会先期发生,在随着转速的升高发展到油膜振荡。

碰磨

动静件之间的轻微的摩擦,开始的症状可能不是那么的明显,特别是滑动轴承的轻微的磨碰,由于润滑油的缓冲作用,总振值的变化是很微弱的,主要是靠油液的分析发现这种早期的隐患有经验的诊断人员,由轴心轨迹就能做出相对准确的判断。动静摩擦发展到一定的程度以后机组将发生大面积摩擦碰磨的特征就转变为主要的症状。

动静摩擦与部件的松动有些类似特点。动静碰磨是当间隙过小时发生的动静件接触再弹开,改变构建我的动态刚度,松动是紧固不牢靠,受交变力(不平衡力,对中不良激励等),作用,周期性地脱离再接触,同样改变构件的动态刚度。不同点就是前者个动态的摩擦力,使转子产生涡动。转子的强迫振动,磨碰自由振动和摩擦涡动运动叠加到一起,产生出复杂的,特有的振动响应频率。由于碰磨产生的摩擦力是不稳定的接触正压力,在时间上和空间上位置上都是变化的,因而摩擦力具有明显的非线性特征(一般表现为丰富的超谐波)。因此,动静摩擦与松动相比,振动成分的周期形性相对较弱,而非线性更为突出。

机械振动分为三类:

1 自由振动和固有频率

自由振动是物体受到初始激励(通常是一个脉冲力)所引发的振动,在现场一般不考虑这种振动

2 强迫振动和共振物体

在持续周期变化的外力作用下产生的振动叫做强迫振动,如不平衡,不对中所引起的振动

3 自激振动

自激振动是在没有外力的作用下,由于系统自身原因所产生的激励而引起的振动,如油膜振荡,喘振等。这种振动是一种比较危险的振动,设备一但发生中自激振动,会使时设备失去稳定性。

在我们常见的的平衡计算中的静平衡是比较好计算的,根据平面力系的交汇可以很容易计算出其不平衡量,如力的交汇,力的平移等等。

我们经常会遇到两极电机的振动问题,而振动问题其实是很复杂的,其实电机分为滚动轴承和滑动轴承,各有各的复杂性,而电机最常见的问题就是振动,它的处理一般是做动平衡,处理各种尺寸,轴承的内径是过盈配合,而外径是间隙配合,而滑动轴承不要以为把瓦刮研好了就是最重要的了,其实不然,应该把其看做一个整体,瓦座和瓦的配合也是很重要的,我们一般是研球形轴承的滑道,因为轴承经常换而瓦座却不经常更换。

基于振动频谱分析的电机故障诊断

振动动的信号是由一系列的简谐振动分量、其他分量和随机噪声叠加而成。频谱分析的目的,是将信号中所有的这些成分都分解开来,变成各种振幅、频率和相位的简谐振动,振动信号中原有的简谐振动分量,经过分解自然还是简谐振动,振动信号中的其他成分,也可以分解为简谐振动的分量的组合。

常用的频谱是幅值谱,幅值谱的表示对应与频率的简谐振动分量所具有的振幅。对于转子来说,振动信号中的很多频谱分量都与转子的转速有关系而且是关系密切,往往是转速频率的整数或分数倍,所以,应用振幅谱更直观。振幅谱上的谱线的高度就是转子振动中该频率分量的幅值大小。

在转子的振动频谱上,不同的频率分布往往是对应着不同的振动原因。如果知道了振动信号中包含的频率分量,就比较容易找到引起振动的原因。例如,转子不平衡会产生转速频率的振动分量,对中不良会导致2倍频的振动分量等等。一般的来说,频谱分量与振动原因之间的关系是很复杂的,仅靠振幅谱有时还很难以确诊,还要综合考虑其他因素,如机械负载变化的情况、历史故障情况等,不能机械的套用别人的实验或现场结论。但将幅值值谱分析清楚却是对故障进行诊断的必要条件。

异步电动机典型故障分析

1、转子条断裂或是松动等故障

转子条或是短路环断裂,转子条与端环接触不良以及转子的铁心短路均产生1倍频的振动及其两侧的极通过频率边带。此外,这些故障常产生转频的二、三、四、五阶。谐波两侧的极通过频率及其通过频率边带。转子条通过频率及其谐波频率两侧的2FL边带说明转子条存在松动或脱开的情况。转子条松动与端环间引起的电弧常显示出很高幅值的2RBPF且伴随2FL边带,但是1RBPF频率的振动幅值不增大。

2、定子绕组故障

3、轴承故障诊断频谱

4、转子偏心故障诊断方法

5、转子不平衡

6、其他故障

定子偏心、铁芯短路或是松动等故障均产生2FL(FL为电源频率)下的振动,若切断电动机的电源,2FL频率下的振动立即消失。

定子铁芯和定子线圈松动,将使定子电磁振动和电磁噪声加大,在这种情况下,振动频谱图谱中,电磁振动除了2FL的基本成分之外,还可能出现4FL,6FL,8FL的谐波成分

立式电机的振动

我们常见的立式电机一般都是四极的,以希望绿野的最为常见,以及吉兰泰的,以有推力瓦的最为复杂,主要的难点是在安装推力头和推力瓦,推力瓦要研磨好,安装时要加上猪油以防止在电机启动时发生烧瓦事件,拆卸和安装时应该小心油冷却器。

因为电机的放置方法的问题,往往会出现下面振动小而上面的振动大的现象,首先要处理的是法兰的表面,检测是否有锈蚀和磕碰,打磨干净,再上试验台,这时再看其振动的状态,要是不好的话就该做个在线平衡。

新能能源的电机安装较为复杂,因为里面的垫比较多容易弄错,而且保持一些特定的技术参数不容易达到,比如说轴头的轴头的圆跳动不超过0.04MM,法兰的圆跳动不超过0.06MM等。在振动上只要是安装正确一般不会发生振动问题,因为其是低压两极电机。

我们常见的电机是振动的原因是特别复杂的,所以说在线动平衡不能解决一切的问题,在我们经验的基础上来判断是否用这个方法。

一般的方法是在振动的0,30-0.50之间一般是能解决的,要是超过这个范围电机就有别的原因了,应该从新检查各种尺寸公差配合,以及各种影响振动的原因,。

旋转机械的常见故障诊断

龙源期刊网 https://www.360docs.net/doc/633389092.html, 旋转机械的常见故障诊断 作者:马昊刘天保刘鸿亮 来源:《科技资讯》2014年第16期 摘要:沈鼓做为一家世界知名的鼓压风机制造企业,旋转机械是我们厂的支柱产品。所以,旋转机械的故障诊断与分析,对于我厂产品的质量的好坏,产品是否能够让用户满意,以至于企业的生存和核心竞争力,都有着致关重要的作用。作为一门独立的学科,依靠振动分析仪对旋转机械的异常故障进行诊断和判别,必须有较高的技术水平。这个诊断和判别与医学上的诊断和判别是一个道理。要能够准确地诊断和判别,要依靠大量的临床实践和临床经验,这必须有医学上的理论基础根据。 关键词:鼓压风旋转机械诊断判别 中图分类号:TH165 文献标识码:A 文章编号:1672-3791(2014)06(a)-0105-01 尽管旋转机械的故障是由机械仪表自行诊断是最终目的,但机械还是机械,它不是万能的,现实的问题不能全部死搬硬套,自动诊断。系统的诊断只能做参考,最终诊断还需要人的大脑。人—机对话,还需要人的大脑。 下面举几个各种类型振动的典型例子,可以认为是固定模式的一类,可以在判断故障时做以参考。 1 不平衡 大家知道,转动部分在转动过程中,一定会产生振动,振动是绝对的,不振动是相对的,不平衡是绝对的,平衡也是相对的。转动部分或多或少会有残余的不平衡量存在。这种不平衡量是由于转子的重心偏移所产生的。由于重心偏移而引起离心力F=W/gεω2(W:转子重量,kg;g:重力加速度,cm/s2;ε:偏心量;ω:回转角速度;F:离心力)。这种情况,机械在转动时会发生振动,明显地表现为1次/转。如是3000 r/min,振动频率为50 Hz。这种由于偏心、不平衡产生的离心力,迫使转子在运转过程中发生振动,其振动频率为转速的一次方成正比,转速高而高,转速低而低,这是判断转子由于偏心而产生振动的不平衡的最简单也是最直观的判断方法。 2 热的不平衡 已在常温下平衡好的转子,当进入工况后,由于热的影响温度的上升,转子转轴导热性的影响,转子可能会产生弯曲。这种振动可随时间的延长而变大。也可能随负荷的变化而改变。 3 找正同轴度的变化,而引起的不平衡振动

机械振动与故障诊断基本知识解析

旋转机械状态监测与故障诊断 讲义 陈国远 深圳市创为实技术发展有限公司 2005年8月

目录 第一章状态监测的基本知识 (4) 一、有关的名词和术语 (4) 1. 振动的基本参量:幅值、周期(频率)和相位 (4) 2. 通频振动、选频振动、工频振动 (6) 3. 径向振动、水平振动、垂直振动、轴向振动 (6) 4. 同步振动、异步振动 (7) 5. 谐波、次谐波、亚异步、超异步 (7) 6. 相对轴振动、绝对轴振动、轴承座振动 (7) 7. 自由振动、受迫振动、自激振动、随机振动 (7) 8. 高点和重点 (8) 9. 刚度、阻尼和临界阻尼 (8) 10. 共振、临界转速、固有频率 (9) 11. 分数谐波共振、高次谐波共振和参数激振 (9) 12. 涡动、正进动和反进动 (9) 13. 同相振动和反相振动 (10) 14. 轴振型和节点 (10) 15. 转子挠曲 (11) 16. 电气偏差、机械偏差、晃度 (11) 17. 偏心和轴心位置 (11) 18. 间隙电压、油膜压力 (11) 二、传感器的基本知识 (12) 1.振动传感器 (12) 2.电涡流振动位移传感器的工作原理 (13) 3. 电动力式振动速度传感器的工作原理 (13) ⒋压电式加速度传感器的工作原理 (14) 第二章状态监测常用图谱 (15) 1.波德图 (15) 2.极坐标图 (16) 3.频谱瀑布图 (16) 4.极联图 (17) 5.轴心位置图 (18) 6.轴心轨迹图 (18) 7.振动趋势图 (19) 8.波形频谱图 (20)

第三章旋转机械的故障诊断 (22) 1. 不平衡 (22) 2. 不对中 (23) 3. 轴弯曲和热弯曲 (26) 4. 油膜涡动和油膜振荡 (27) 5. 蒸汽激振 (30) 6. 机械松动 (33) 7. 转子断叶片与脱落 (33) 8. 摩擦 (38) 9. 轴裂纹 (40) 10. 旋转失速与喘振 (40) 11. 机械偏差和电气偏差 (43)

旋转机械振动的基本特性 (DEMO)

旋转机械振动的基本特性 一、转子的振动基本特性 大多数情况下,旋转机械的转子轴心线是水平的,转子的两个支承点在同一水平线上。设转子上的圆盘位于转子两支点的中央,当转子静止时.由于圆盘的重量使转子轴弯曲变形产生静挠度,即静变形。此时,由于静变形较小,对转子运动的影响不显著,可以忽略不计,即认为圆盘的几何中心O′与轴线AB上O点相重合,如图7—l所示。转子开始转动后,由于离心力的作用,转子产生动挠度。此时,转子有两种运动:一种是转子的自身转,即圆盘绕其轴线AO′B的转动;另一种是弓形转动,即弯曲的轴心线AO′B与轴承联线AOB组成的平面绕AB轴线的转动。 转子的涡动方向与转子的转动角速度ω同向时,称为正进动;与ω反方向时,称为反进动。 二、临界转速及其影响因素 随着机器转动速度的逐步提高,在大量生产实践中人们觉察到,当转子转速达到某一数值后,振动就大得使机组无法继续工作,似乎有一道不可逾越的速度屏障,即所谓临界转速。Jeffcott用—个对

称的单转子模型在理论上分析了这一现象,证明只要在振幅还未上升到危险程度时,迅速提高转速,越过临界转速点后,转子振幅会降下来。换句话说,转子在高速区存在着一个稳定的、振幅较小的、可以工作的区域。从此,旋转机械的设计、运行进入了一个新时期,效率高、重量轻的高速转子日益普遍。需要说明的是,从严格意义上讲,临界转速的值并不等于转子的固有频率,而且在临界转速时发生的剧烈振动与共振是不同的物理现象。 在正常运转的情况下: (1)ω<n ω时, 振幅A>0,O′点和质心G 点在O 点的同一侧,如图7—3(a)所示; (2)ω>n ω时,A<0,但A>e,G 在O 和O′点之间,如图 7—3(c)所示; 当ω≥n ω时,A e -≈或O O′≈-O′G,圆盘的质心G 近似 地落在固定点O,振动小。转动反而比较平稳。这种情况称为“自动对心”。 (3)当ω=n ω时,A ∞→,是共振情况。实际上由于存在阻尼,振幅A 不是无穷大而是较大的有限值,转轴的振动非常剧烈,以致有可 能断裂。n ω称为转轴的“临界角速度” ;与其对应的每分钟的转数则称为“临阶转速”。 如果机器的工作转速小于临界转速,则称为刚性轴;如果工作转速高于临界转速,则称为柔性轴。由上面分析可知,只有柔性轴的旋转机器运转时较为平稳 但在启动过程中,要经过临界转速。如果缓

(完整版)机械振动习题答案

机械振动测验 一、 填空题 1、 所谓振动,广义地讲,指一个物理量在它的①平均值附近不停地经过②极大 值和③极小值而往复变化。 2、 一般来说,任何具有④弹性和⑤惯性的力学系统均可能产生机械振动。 3、 XXXX 在机械振动中,把外界对振动系统的激励或作用,①激励或输入;而 系统对外界影响的反应,称为振动系统的⑦响应或输出。 4、 常见的振动问题可以分成下面几种基本课题:1、振动设计2、系统识别3、 环境预测 5、 按激励情况分类,振动分为:①自由振动和②强迫振动;按响应情况分类, 振动分为:③简谐振动、④周期振动和⑤瞬态振动。 6、 ①惯性元件、②弹性元件和③阻尼元件是离散振动系统三个最基本的元件。 7、 在系统振动过程中惯性元件储存和释放①动能,弹性元件储存和释放②势 能,阻尼元件③耗散振动能量。 8、 如果振动时系统的物理量随时间的变化为简谐函数,称此振动为①简谐振动。 9、 常用的度量振动幅值的参数有:1、峰值2、平均值3、均方值4、均方根值。 10、 系统的固有频率只与系统的①质量和②刚度有关,与系统受到的激励无 关。 二、 试证明:对数衰减率也可以用下式表示,式中n x 是经过n 个循环后的振幅。 1 ln n x x n δ=

三、 求图示振动系统的固有频率和振型。已知12m m m ==,123k k k k ===。

北京理工大学1996年研究生入学考试理论力学(含振动理论基础)试题 自己去查双(二)自由度振动 J,在平面上在弹簧k的限制下作纯滚动,如图所示,四、圆筒质量m。质量惯性矩 o 求其固有频率。

五、物块M质量为m1。滑轮A与滚子B的半径相等,可看作质量均为m2、半径均 为r的匀质圆盘。斜面和弹簧的轴线均与水平面夹角为β,弹簧的刚度系数为k。 又m1 g>m2 g sinβ , 滚子B作纯滚动。试用能量法求:(1)系统的微分方程;(2)系统的振动周期。

旋转机械故障相关诊断技术(标准版)

旋转机械故障相关诊断技术 (标准版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0100

旋转机械故障相关诊断技术(标准版) 一、旋转机械故障的灰色诊断技术 灰色诊断技术就是在故障诊断中应用灰色系统理论,利用信息间存在的关系,充分发挥采集到的振动信息的作用,充分挖掘振动信息的内涵,通过灰色方法加工、分析、处理,使少量的振动信息得到充分的增值和利用,使潜在的故障原因显化。 二、旋转机械故障的模糊诊断技术 模糊诊断技术就是在故障诊断中引入模糊数学方法,将各类故障和征兆视为两类不同的模糊集合,同时用一个模糊关系矩阵来描述二者之间的关系,进而在模糊的环境中对设备故障的原因、部位和程度进行正确、有效地推理、判断。 三、旋转机械故障的神经网络诊断技术 所谓的神经网络就是模仿人类大脑中的神经元与连结方式,以

构成能进行算术和逻辑运算的信息处理系统。神经网络模型由许多类似于神经元的非线性计算单元所组成,这些单元以一种类似于生物神经网络的连结方式彼此相连,以完成所要求的算法。在旋转机械故障的诊断中,引入神经网络技术,以类似于人脑加工信息的方法对收集到的故障信息进行处理,从而对故障的原因、部位和程度进行正确的判断。 XXX图文设计 本文档文字均可以自由修改

机械设备振动标准.(精选)

机械设备振动标准 它是指导我们的状态监测行为的规范 最终目标:我们要建立起自己的每台设备的标准(除了新安装的设备)。 ?监测点选择、图形标注、现场标注。 ?振动监测参数的选择:做一些调整:长度、频率范围 ?状态判断标准和报警的设置 1 设备振动测点的选择与标注 1.1监测点选择 测点最好选在振动能量向弹性基础或系统其他部分进行传递的地方。对包括回转质量的设备来说,建议把测点选在轴承处或机器的安装点处。也可以选择其他的测点,但要能够反映设备的运行状态。在轴承处测量时,一般建议测量三个方向的振动。铅垂方向标注为V,水平方向标注为H,轴线方向标注为A,见图6-1。 图6-1 监测点选择

图 6-2在机器壳体上测量振动时,振动传感器定位的示意图 1.2 振动监测点的标注 (1)卧式机器 这个数字序列从驱动器非驱动侧的轴承座赋予数字001开始,朝着被驱动设备,按数字次序排列,直到第一根轴线的最后一个轴承。在多根轴线的(齿轮传动)机器上,轴承座的次序从驱动器开始,按数字次序继续沿着第二根轴线到被驱动器往下排列,接着再沿着第三根轴线往下排列,直到机组的末端为止。常见的几种标注方法见图6-3~6-5。 图6-3 振动监测点的标注 图6-4 振动监测点的标注

图6-5 振动监测点的标注 (2)立式机器 遵循与卧式机器同样的约定。 1.3 现场机器测点标注方法 机壳振动测点的标注可以用油漆标注,也可以在机壳上粘贴钢盘来标注振动测点,最好采用后一种方法标注。采用钢盘时,机壳要得到很好的处理。钢盘规格为厚度5mm,直径30mm,用强度较好的粘接剂粘接,以保证良好的振动传递特性。 2 设备振动监测周期的确定 振动监测周期设置过长,容易捕捉不到设备开始劣化信息,周期设置过短,又增加了监测的工作量和成本。因此应根据设备的结构特点、传动方式、转速、功率以及故障模式等因素,合理选定振动监测周期。当设备处于稳定运行期时,监测周期可以长一些;当设备出现缺陷和故障时,应缩短监测周期。在确定设备监测周期时,应遵守以下原则; 1)安装设备或大规模维修后的设备运行初期,周期要短(如每天监测一次),待设备进入稳定运行期后,监测周期可以适当延长。 2)检测周期应尽量固定。 3)对点检站专职设备监测,多数设备监测周期一般可定为7至14天;对接近或高于3000转/分的高速旋转设备,应至少每周监测1次。 4)对车间级设备监测,监测周期一般可定为每天1次或每班1次。 5)实测的振动值接近或超过该设备报警标准值时,要缩短监测周期。如果实测振动值接近或超过该设备停机值,应及时停机安排检修。如果因生产原因不能停机时,要加强监测,监测周期可缩短为1天或更短。 3 设备振动监测信息采集 3.1 振动监测参数的选择 对于超低频振动,建议测量振动位移和速度;对于低频振动,建议测量振动

大学 机械振动 课后习题和答案

试举出振动设计、系统识别和环境预测的实例。 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?

设有两个刚度分别为1k ,2k 的线性弹簧如图T —所示,试证明: 1)它们并联时的总刚度eq k 为:21k k k eq += 2)它们串联时的总刚度eq k 满足: 2 1111k k k eq += 解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为: 1122P k x P k x =?? =? 由力的平衡有:1212()P P P k k x =+=+ 故等效刚度为:12eq P k k k x = =+ 2)对系统施加力P ,则两个弹簧的变形为: 11 22P x k P x k ?=??? ?=?? ,弹簧的总变形为:1212 11()x x x P k k =+=+ 故等效刚度为:122112 111 eq k k P k x k k k k ===++

求图所示扭转系统的总刚度。两个串联的轴的扭转刚度分别为1t k ,2t k 。 解:对系统施加扭矩T ,则两轴的转角为: 11 22t t T k T k θθ?=??? ?=?? 系统的总转角为: 1212 11 ( )t t T k k θθθ=+=+, 12111()eq t t k T k k θ==+ 故等效刚度为: 12 111 eq t t k k k =+

两只减振器的粘性阻尼系数分别为1c ,2c ,试计算总粘性阻尼系数eq c 1)在两只减振器并联时, 2)在两只减振器串联时。 解:1)对系统施加力P ,则两个减振器的速度同为x &,受力分别为: 1122 P c x P c x =?? =?&& 由力的平衡有:1212()P P P c c x =+=+& 故等效刚度为:12eq P c c c x = =+& 2)对系统施加力P ,则两个减振器的速度为: 11 22P x c P x c ? =????=?? &&,系统的总速度为:12 12 11()x x x P c c =+=+&&& 故等效刚度为:12 11 eq P c x c c = =+&

旋转机械振动的基本特性

旋转机械振动的基本特性 概述 绝大多数机械都有旋转件,所谓旋转机械是指主要功能由旋转运动来完成的机械,尤其是指主要部件作旋转运动的、转速较高的机械。 旋转机械种类繁多,有汽轮机、燃气轮机、离心式压缩机、发电机、水泵、水轮机、通风机以及电动机等。这类设备的主要部件有转子、轴承系统、定子和机组壳体、联轴器等组成,转速从每分钟几十到几万、几十万转。 故障是指机器的功能失效,即其动态性能劣化,不符合技术要求。例如,机器运行失稳,产生异常振动和噪声,工作转速、输出功率发生变化,以及介质的温度、压力、流量异常等。机器发生故障的原因不同,所反映出的信息也不一样,根据这些特有的信息,可以对故障进行诊断。但是,机器发生故障的原因往往不是单一的因素,一般都是多种因素共同作用的结果,所以对设备进行故障诊断时,必须进行全面的综合分析研究。 由于旋转机械的结构及零部件设计加工、安装调试、维护检修等方面的原因和运行操作方面的失误,使得机器在运行过程中会引起振动,其振动类型可分为径向振动、轴向振动和扭转振动三类,其中过大的径向振动往往是造成机器损坏的主要原因,也是状态监测的主要参数和进行故障诊断的主要依据。 从仿生学的角度来看,诊断设备的故障类似于确定人的病因:医生需要向患者询问病情、病史、切脉(听诊)以及量体温、验血相、测心电图等,根据获得的多种数据,进行综合分析才能得出诊断结果,提出治疗方案。同样,对旋转机械的故障诊断,也应在获取机器的稳态数据、瞬态数据以及过程参数和运行状态等信息的基础上,通过信号分析和数据处理提取机器特有的故障症兆及故障敏感参数等,经过综合分析判断,才能确定故障原因,做出符合实际的诊断结论,提出治理措施。 根据故障原因和造成故障原因的不同阶段,可以将旋转机械的故障原因分为几个方面,见表1。 表1 旋转机械故障原因分类

旋转机械振动故障诊断的图形识别方法研究

旋转机械振动故障诊断的图形识别方法研究 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

旋转机械振动故障诊断的图形识别方法研究我国近年来的旋转机械逐渐发展为大型机械,在这种发展趋势下人们开始重视对振动故障的诊断方法进行研究,在深入研究后探索出了一系列用人工识别图像来实现旋转机械振动故障诊断的方法。本文主要分析了旋转机械振动故障的机理、故障的特点以及几种图形识别方法。经过多种试验证明图形识别方法的科学可行性,值得在今后的实际操作中得到运用和发展。 对于旋转机械在工作状态当中会发生振动,从而由振动产生的各种信号,信号会形成一些参数图形,通过对这些参数图形的研究与分析,我们可以实现对器械运行过程中的日常管理和保护。这也是目前应该采用的设备管理方式。而在实际操作过程中,图形识别技术并没有深入到工作当中。这种手段没有被利用于诊断旋转机械故障的原因是提取出明显的图形特征在技术上具有一定的困难,而且对于图形具体特征的描述也具有很大的挑战,是否能够将图形所呈现出的特征准确地表述出来是图形识别技术在旋转机械振动故障诊断方面的一个限制性因素。诊断旋转机械振动故障的原则 采集诊断依据

被诊断的机械表面所能表现出的所有相关信息都能够作为旋转振动机械故障诊断的有效依据。这些信息在机械运行的过程中能够通过传感器传递给人们。对旋转机械振动故障的诊断是否准确,一个重要的因素就是收集到的有关信息是否真实可靠,依据信息是否准确真实的决定性因素是传感器的品质,传感器质量如何、感应是否灵敏以及工作人员的直观判断都是决定信息准确性的重要衡量标准。 对采集的信息进行处理和研究 从传感器和工作人员两方面收集到的依据信息通常是混乱无序的,不能明显的看出其特点,这就导致了无法准确地对故障进行判断,这就要求我们在成功收集信息之后要及时对大量信息进行筛选和处理,目前普遍采用专业的机器来对这些信息进行分析和研究以及进一步的转换,经过这些处理之后所得到的信息要保证具有至关、价值性强等特点。 对故障进行诊断 对旋转机械振动故障诊断方面对工作人员的要求比较高,要求其具有过硬的理论知识功底以及丰富的实际工作经验。工作人员应该充分了解机械方面的相关知识,熟练掌握机械的维修要点以及安装过程。正确的对机械振动故障进行诊断,并且能够对故障的发展形势进行预想,只有这

05 机械振动 作业及参考答案 2015

一. 选择题: 【 D 】1 (基础训练2) 一劲度系数为k 的轻弹簧截成三等份,取出其中的两根,将它们并联,下面挂一质量为m 的物体,如图13-15 所示。则振动系统的频率为 : (A) m k 32π1. (B) m k 2π1 . (C) m k 32π1. (D) m k 62π1. 提示:劲度系数为k 的轻弹簧截成三等份,每份的劲度系数为变为3k ,取出其中2份并联,系统的劲度系数为6k . 【 C 】 2 (基础训练4) 一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为 (A) T /12. (B) T /8. (C) T /6. (D) T /4. 提示:从从二分之一最大位移处到最大位移处这段路程在旋转矢量图上,矢量转过的角位移为1 3 π,对应的时间为T/6. [ B ] 3、(基础训练8) 图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为 (A) π2 3. (B) π. (C) π2 1. (D) 0. 提示:使用谐振动的矢量图示法,合振动的初始状态为初相位为π [ D ] 4、(自测提高4)质量为m 的物体,由劲度系数为k 1和k 2的两个轻质弹簧串联后连接到固定端,在光滑水平轨道上作微小振动,则振动频率为: (A) m k k v 212+=π. (B) m k k v 2 121 +=π . (C) 212121k mk k k v +=π . (D) ) (21 212 1k k m k k v +=π . 提示:两根劲度系数分别为k1和k2的两个轻质弹簧串联后,可看成一根弹簧,其弹 A/ -图13-15

起重机械金属结构振动与故障诊断分析

起重机械金属结构振动与故障诊断分析 发表时间:2018-12-20T14:09:56.087Z 来源:《防护工程》2018年第27期作者:胡伟忠[导读] 随着我国基础建设的快速发展,使用起重机械工程项目日益增多,工作环境越来越复杂。浙江省特种设备检验研究院浙江杭州 310000 摘要:起重机械属于工业机械范畴内涉及人身、财产安全的大型特种设备,强化其金属结构安全以及维护保养,尤其是长期应用存在金属结构疲劳的起重机械诊断维修至关重要。随着现阶段振动信号测量与分析在检测起重机金属结构振动过程中都得到了有效的应用,检测和分析水平也提升到了一定的提高。但是在对起重机金属结构振动与故障分析的过程中,依旧存在很多的问题,这就需要在发展的过程中不断对其进行研究和分析,从而制定更加完善的解决方案。 关键字:起重机械;金属结构振动;故障诊断 引言: 随着我国基础建设的快速发展,使用起重机械工程项目日益增多,工作环境越来越复杂,在各种不同环境下的频繁高强度作业,起重机械的疲劳问题日益突出。大型起重机械的金属结构正常使用寿命在20年左右,对于起重机械服役后期金属结构出现振动和故障诊断分析一直困扰着技术人员。因此,对于起重机械金属结构的安全监测以及故障问题分析成为解决问题的关键。通过分析不难发现,疲劳与振动之间的关系是密不可分的,因此疲劳和振动都会导致设备在使用寿命期间内发生安全事故,不仅会造成巨大的经济损失,而且会造成人员伤亡。 1起重机械金属结构振动和故障诊断存在的问题 起重机金属结构振动与故障诊断分析的过程中,依旧存在很多的问题,这些问题主要表现在: 1.1振动失效和故障机理研究不够 在当前研究当中,对于因为振动引起的起重机金属构造失效和故障机理探索重视不够充分,由非动态疲劳方面进行分析,构造疲劳破坏问题重点是思考构造设计方面应力和应变布置,由构造疲劳失效和构造振动反映中间内部特点去看,振动疲劳属于导致疲劳失效的因素之一。而导致中机械的核心金属构造和重点零部件在服役阶段。因为腐蚀锈蚀和裂纹以及磨损等一系列的因素,导致金属构造受力情况发生变化。构造内应力分布,原有频率变化,这就导致构造疲劳失效,这和构造振动反映有着紧密的联系。非静态在和激励时常又发模态和荷载振动产生耦合作用,遭受损坏的地方通常是部分振动过程中应变大,并且存在缺陷或者是应力汇聚的地方,破坏的起因是部分振动和应力汇聚这两个因素的一起作用。因为振动疲劳破坏十分复杂,单纯的使用非动态疲劳方式无法满足提升评价成果可靠和稳定方面的要求,在起重机械安全评价过程中,应该使用金属构造振动相关探索。 1.2振动故障诊断方式单一 其中机械金属构造服役安全评价第一点必须要分析设施使用过程中获得的多种信号,之后将信号当中多种有价值的信息提取出来,在当中获得和故障有关的特征,最后通过特征诊断故障,最近几年,运用十分广泛的短时傅立叶变换等均是由内积原理当作基础的特征波形基函数信号分解,主要目的是巧妙的使用和特征波形适合的基函数,对于信号进行良好的处理,提出故障征兆,进而完成故障诊断。对于系统前提的故障和轻微以及符合还有系统这些故障的诊断方式还不是十分完善,合理的诊断方式还不是很多,金属构造在服役时无法避免出现损伤和前期故障,其拥有可能性以及动态响应的微弱性。而符合和系统这两种故障因为多种因素耦合以及传播渠道繁琐,通常造成单一信号处理方式无法真正了解故障的形成因素。 2振动故障诊断分析 2.1专业技术诊断 通过专业系统完成对故障状态的分析与观察,对故障的所在进行推断,并且给出相应的排除故障的有效方法。专业诊断法需要汇集大量的专家知识,可以实现对随机出现的故障的合理诊断。但是,在知识的获取上会面临一定困难,知识库的更新速度相对比较缓慢,不同领域专家的知识存在一定矛盾点,目前在表达能力和处理能力上都存在一定局限性。 2.2模糊诊断法 在模糊诊断法中应适当的引入模糊逻辑,主要作用是克服出现的不精准性、不确定以及因为噪声而带来的影响,因而在对复杂系统进行处理时,会在时变、时滞等方面表现出一定优势。模糊诊断在具体应用过程中的缺点是在诊断复杂系统过程中,需要构建隶属函数和模糊规则,而从实际情况来看,这个过程难度较大,并且会消耗大量的时间。 2.3神经网络诊断 通过神经网络完成对故障的诊断,该诊断的基本思路如下:将故障特征信号作为神经网络的输入点,而神经网络的输出就是最终的诊断结果。第一,对已知的故障征兆和诊断结果进行应用,实现对神经网络的离线训练,通过这种方式使神经网路通过权值记忆故障征兆与诊断结果之间形成对应关系。第二,在神经网络的输入端将获得的故障征兆加入,并获取最终的诊断结果。各个故障的类型需要与输出神经元相对比,否则系统将无法显示新出现的故障类型,对故障的诊断将会造成不良影响。 3起重机金属结构诊断的具体应用 3.1起重机械金属结构振动测试 对于起重机械的整体结构来说,振动研究就包括了测试系统相关动态特性数据,例如固定频率检测和阻尼比检测以及振型检测等各个方面。其中解析、分析的放散和实验分析方案逐渐有效结合的模态分析技术,都融入了模态测试的改善技术和理论与结构强度测试应用案例和经验,需要最先创造结构有限元的模型,之后计算出结构有关有限元的模态数据,依据结构的有限元模态数据达到结构模态实验相关工作的改善工作,以此在一定程度上增强模态试验获取的结构模态参数安全性能和可依靠性以及其精确度,其中包括了完善的结构模态实验的有关悬挂位置和激励方位以及测量方位等相关的工作。依据实验分析的方案,于现场实地勘测获取的模态和解析方案模态实现进行对比,从而更好完成金属结构损伤问题的研究,研究出金属结构中存在的问题,以此依据对比分析可以增强设施问题检测的有效性和完善性,并且获取更为有效的金属振动结果和模态数据信息。

机械振动习题及答案

机械振动 一、选择题 1. 下列4种运动(忽略阻力)中哪一种是简谐运动 ( C ) ()A 小球在地面上作完全弹性的上下运动 ()B 细线悬挂一小球在竖直平面上做大角度的来回摆动 ()C 浮在水里的一均匀矩形木块,把它部分按入水中,然后松开,使木块上下浮动 ()D 浮在水里的一均匀球形木块,把它部分按入水中,然后松开,使木块上下浮动 解析:A 小球不是做往复运动,故A 不是简谐振动。B 做大角度的来回摆动显然错误。D 由于球形是非线性形体,故D 错误。 2.如图1所示,以向右为正方向,用向左的力压缩一弹簧,然后松手任其振动。若从松手时开始计时,则该弹簧振子的初相位应为 图 一 ( D ) ()0A ()2 πB

()2 π-C ()πD 解析: 3.一质量为m 的物体挂在劲度系数为k 的轻质弹簧下面,其振动周期为T 。若将此轻质弹簧分割成3等份,将一质量为2m 的物体挂在分割后的一根弹簧上,则此弹簧振子的周期为 ( B ) ()63T A ()36T B ()T C 2 ()T D 6 解析:有题可知:分割后的弹簧的劲度系数变为k 3,且分割后的物体质量变为m 2。故由公式k m T π2=,可得此弹簧振子的周期为3 6T 4.两相同的轻质弹簧各系一物体(质量分别为21,m m )做简谐运动(振 幅分别为21,A A ),问下列哪一种情况两振动周期不同 ( B ) ()21m m A =,21A A =,一个在光滑水平面上振动,另一个在竖直方向上 振动 ()B 212m m =,212A A =,两个都在光滑的水平面上作水平振动 ()C 21m m =,212A A =,两个都在光滑的水平面上作水平振动 ()D 21m m =,21A A =,一个在地球上作竖直振动,另一个在月球上作 竖直振动

大型旋转机械故障诊断

湖北汽车工业学院 课程论文大型旋转机械故障诊断 姓名:高俊斌 班级:T1113-5 学号:20110130106 日期:2015.1.11

目录 1.引言 (2) 2.旋转机械故障产生的原因及频率特征 (2) 2.1不平衡故障及其诊断 (2) 2.1.1故障机理 (2) 2.1.2频率特点 (2) 2.2转子不对中故障及其诊断 (3) 2.2.1故障机理 (3) 2.2.2频率特点 (3) 2.3涡动故障及其诊断 (4) 2.3.1故障机理 (4) 2.3.2频率特征 (4) 3.常用的故障诊断方法 (5) 3.1振动检测诊断法 (5) 3.2噪声检测诊断法 (5) 3.3温度检测诊断法 (6) 3.4声发射检测诊断法 (6) 3.5油液分析诊断法 (6) 4.大型旋转机械故障诊断案例 (7) 4.1某厂04年09月27日空压机断叶片故障诊断分析 (7) 4.2某厂04年06月24日主风机断叶片故障诊断分析 (9) 5.结论 (12) 参考文献: (13)

大型旋转机械故障诊断 高俊斌 摘要:文章概述了旋转机械故障产生的原因及频率特征、旋转机械故障诊断的基本方法,然后分析了一些大型旋转机械故障诊断的案例。 关键词:旋转机械;故障诊断 1.引言 旋转机械故障诊断技术是伴随着现代工业生产设备的发展形成的一项专门的设备诊断技术。该技术主要研究机械设备在运行过程中或停机状态下不对设备进行拆卸,掌握设备的运行现状,分析判断设备故障的部位、故障原因以及故障严重程度,并估算出设备可靠性和使用寿命,从而提出解决方法的技术。大型旋转机械如风机、压缩机、汽轮机和燃气轮机等设备,是石油、化工、冶金、航天及电力等现代重要生产部门中的关键生产工具,对这些设备开展性能监测与故障诊断工作,具有重要的意义。 2.旋转机械故障产生的原因及频率特征 2.1不平衡故障及其诊断 2.1.1故障机理 质量不平衡是大型旋转机械最为常见的故障。众所周知,旋转机械的转子由于受材料质量和加工技术等各方面的影响,转子上的质量分布相对于旋转中心线不可能做到“绝对平衡”,这就使得转子旋转时形成周期性的离心力的干扰,在轴承上产生动载荷,使机器发生振动。机组不平衡按发生过程可分为原始不平衡、渐发性不平衡和突发性不平衡等几种情况。其中原始不平衡是由于转子制造误差、装配误差及材质不均匀等原因造成的;渐发性不平衡是由于不均匀积灰造成的;突发性不平衡是由于转子上零件脱落造成的,机组振幅突然增大后稳定在一定水平上。 2.1.2频率特点 转子转动一周,离心力方向改变一次,因此不平衡振动的频率与转速一致。即f= w /60,转速频率也称为工频(即工作频率),这种频率成分很容易在频谱图上观察到。 转子不平衡故障的特征是: ⑴在转子径向测得的频谱图上,频谱能量集中于基频,转速频率成分具有突出的峰值; ⑵转速频率的高次谐波幅值很低,因此反映在时域上的波形很接近于一个正弦波;

机械故障诊断技术 课后答案

机械故障诊断技术 (第二版张建)课后答案 第一章 1、故障诊断的基础是建立在能量耗散的原理上的。 2、机械故障诊断的基本方法课按不同观点来分类,目前流行的分类方法有两种:一是按机械故障诊断方法的难易程度分类,可分为简易诊断法和精密诊断法;二是按机械故障诊断的测试手段来分类,主要分为直接观察法、振动噪声测定法、无损检测法、磨损残余物测定法、机器性能参数测定法。 3、设备运行过程中的盆浴曲线是指什么? 答:指设备维修工程中根据统计得出一般机械设备劣化进程的规律曲线(曲线的形状类似浴盆的剖面线) 4、机械故障诊断包括哪几个方面内容? 答:(1)运行状态的检测根据机械设备在运行时产生的信息判断设备是否运行正常,其目的是为了早期发现设备故障的苗头。 (2)设备运行状态的趋势预报在状态检测的基础上进一步对设备 运行状态的发展趋势进行预测,其目的是为了预知设备劣化的速度,以便生 产安排和维修计划提前做好准备。 (3)故障类型、程度、部位、原因的确定最重要的是设备类型的确定,它是在状态检测的基础上,确定当机器已经处于异常状态时所需进一步解决的问题,其目的是为了最后诊断决策提供依据。 5、请叙述机械设备的故障诊断技术的意义? 答:设备诊断技术是一种了解和掌握设备在使用过程中的状态,确定其整体或局部是正常或异常,早期发现故障及其原因,并能预报故障发展趋势的技术。机械设备的故障诊断可以保证整个企业的生产系统设备的运行,减少经济损失,还可以减少某些关键机床设备因故障存在而导致加工质量降低,保证整个机器产品质量。 6、劣化曲线沿横、纵轴分别分成的三个区间分别是什么,代表什么意义? 答:横轴包括1、磨合期 2、正常使用期 3、耗损期纵轴包括1、绿区(故障率最低,表示机器处于良好状态)2、黄区(故障率有抬高的趋势,表示机器

机械设备振动标准

机械设备振动标准 1 设备振动测点的选择与标注 1.1 监测点选择 测点最好选在振动能量向弹性基础或系统其他部分2进行传递的地方。对包括回转质量的设备来说,建议把测点选在轴承处或机器的安装点处。也可以选择其他的测点,但要能够反映设备的运行状态。在轴承处测量时,一般建议测量三个方向的振动。水平方向标注为H,铅垂方向标注为V ,轴线方向标注为A,见图6-1。 图6-1 监测点选择 图6-2 在机器壳体上测量振动时,振动传感器定位的示意图

1.2 振动监测点的标注(1)卧式机器 这个数字序列从驱动器非驱动侧的轴承座赋予数字001 开始,朝着被驱动设备,按数字次序排列,直到第一根轴线的最后一个轴承。在多根轴线的(齿轮传动)机器上,轴承座的次序从驱动器开始,按数字次序继续沿着第二根轴线到被驱动器往下排列,接着再沿着第三根轴线往下排列,直到机组的末端为止。常见的几种标注方法见图6-3 ~6-5 。 图6-3 振动监测点的标注 图6-4 振动监测点的标注 (2)立式机器遵循与卧式机器同样的约定 1.3 现场机器测点标注方法机壳振动测点的标注可以用油漆标注(最简单的一种方 法),标注大小与传感 器磁座大小相似;也可以在机壳上粘贴钢盘来标注振动测点,最好采用后一种方法标

注。采用钢盘时,机壳要得到很好的处理。钢盘规格为厚度5mm,直径 30mm, 用强度较好的粘接剂粘接,以保证良好的振动传递特性。 2 设备振动监测周期的确定振动监测周期设置过长,容易捕捉不到设备开始劣化信息,周期设置过短,又增加了监测的工作量和成本。因此应根据设备的结构特点、传动方式、转速、功率以及故障模式等因素,合理选定振动监测周期。当设备处于稳定运行期时,监测周期可以长一些;当设备出现缺陷和故障时,应缩短监测周期。在确定设备监测周期时,应遵守以下原则; 1)安装设备或大规模维修后的设备运行初期,周期要短(如每天监测一次),待设备进入稳定运行期后,监测周期可以适当延长。 2)检测周期应尽量固定。 3)对点检站专职设备监测,多数设备监测周期一般可定为7 至14 天;对接 近或高于3000转/ 分的高速旋转设备,应至少每周监测 1 次。 4)对车间级设备监测(指运行人员),监测周期一般可定为每天1 次或每班1 次。 5)实测的振动值接近或超过该设备报警标准值时,要缩短监测周期配件;如果实测振动值接近或超过该设备停机值,应及时停机安排检修;如果因生产原因不能停机时,要加强监测,监测周期可缩短为 1 天或更短。 3 设备振动监测信息采集 3.1 振动监测参数的选择对于超低频振动,建议测量振动位移和速度;对于低频振动, 建议测量振动 速度和加速度;对于中高频振动和高频振动,建议测量振动加速度。说明如下:(1)设备振动按频率分类。根据振动的频率,设备振动可以分为以下几种:1)超低频振动,振动频率在10Hz 以下。 2)低频振动,振动频率在10Hz 至1000Hz。 3)中高频振动,振动频率在1000Hz至10000Hz。 4)高频振动,振动频率在10000Hz以上。 (2)位移为峰峰值;速度为有效值;加速度为有效值;有时根据需要,速度和加速度还要测量峰值。 3.2 振动监测中的几个“同” 为保证测量结果的可比性,在振动监测中要注意做到以下 几个“同” : 1 )测量仪器同; 2 )测量仪器设置同; 3 )测点位置、方向同; 4 )设备工况同; 5 )背景振动同。并尽量由同一个人测量。 3.3 振动数据采集应严格按监测路径和监测周期对设备进行定期监测。采集设备振动数据时,通常还需要记录设备的其他过程参数,如温度、压力和流量等,以便于比较和趋

机械振动学习题解答大全

机械振动习题解答(四)·连续系统的振动 连续系统振动的公式小结: 1 自由振动分析 杆的拉压、轴的扭转、弦的弯曲振动微分方程 22 222y y c t x ??=?? (1) 此式为一维波动方程。式中,对杆,y 为轴向变形,c =;对轴,y 为扭转 角,c ;对弦,y 为弯曲挠度,c 令(,)()i t y x t Y x e ω=,Y (x )为振型函数,代入式(1)得 20, /Y k Y k c ω''+== (2) 式(2)的解为 12()cos sin Y x C kx C kx =+ (3) 将式(3)代入边界条件,可得频率方程,并由此求出各阶固有频率ωn ,及对应 的振型函数Y n (x )。可能的边界条件有 /00, 0/0p EA y x Y Y GI y x ??=??? ?'=?=????=???? 对杆,轴向力固定端自由端对轴,扭矩 (4) 类似地,梁的弯曲振动微分方程 24240y y A EI t x ρ??+=?? (5) 振型函数满足 (4)4420, A Y k Y k EI ρω-== (6) 式(6)的解为 1234()cos sin cosh sinh Y x C kx C kx C kx C kx =+++ (7) 梁的弯曲挠度y (x , t ),转角/y x θ=??,弯矩22/M EI y x =??,剪力 33//Q M x EI y x =??=??。所以梁的可能的边界条件有 000Y Y Y Y Y Y ''''''''======固定端,简支端,自由端 (8) 2 受迫振动 杆、轴、弦的受迫振动微分方程分别为 222222222222(,) (,), (,) p p u u A EA f x t t x J GI f x t J I t x y y T f x t t x ρθθ ρρ??=+????=+=????=+??杆:轴:弦: (9) 下面以弦为例。令1 (,)()()n n n y x t Y x t ?∞==∑,其中振型函数Y n (x )满足式(2)和式(3)。代入式(9)得 1 1 (,)n n n n n n Y T Y f x t ρ??∞ ∞ ==''-=∑∑ (10) 考虑到式(2),式(10)可改写为 21 1 (,)n n n n n n n Y T k Y f x t ρ??∞ ∞ ==+=∑∑ (11) 对式(11)两边乘以Y m ,再对x 沿长度积分,并利用振型函数的正交性,得 2220 (,)l l l n n n n n n Y dx Tk Y dx Y f x t dx ρ??+=???

旋转机械故障相关诊断技术(正式版)

文件编号:TP-AR-L6749 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 旋转机械故障相关诊断 技术(正式版)

旋转机械故障相关诊断技术(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、旋转机械故障的灰色诊断技术 灰色诊断技术就是在故障诊断中应用灰色系统理论,利用信息间存在的关系,充分发挥采集到的振动信息的作用,充分挖掘振动信息的内涵,通过灰色方法加工、分析、处理,使少量的振动信息得到充分的增值和利用,使潜在的故障原因显化。 二、旋转机械故障的模糊诊断技术 模糊诊断技术就是在故障诊断中引入模糊数学方法,将各类故障和征兆视为两类不同的模糊集合,同时用一个模糊关系矩阵来描述二者之间的关系,进而在模糊的环境中对设备故障的原因、部位和程度进行

正确、有效地推理、判断。 三、旋转机械故障的神经网络诊断技术 所谓的神经网络就是模仿人类大脑中的神经元与连结方式,以构成能进行算术和逻辑运算的信息处理系统。神经网络模型由许多类似于神经元的非线性计算单元所组成,这些单元以一种类似于生物神经网络的连结方式彼此相连,以完成所要求的算法。在旋转机械故障的诊断中,引入神经网络技术,以类似于人脑加工信息的方法对收集到的故障信息进行处理,从而对故障的原因、部位和程度进行正确的判断。 此处输入对应的公司或组织名字 Enter The Corresponding Company Or Organization Name Here

旋转机械振动故障诊断的图形识别方法研究(2020版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 旋转机械振动故障诊断的图形识别方法研究(2020版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

旋转机械振动故障诊断的图形识别方法研 究(2020版) 我国近年来的旋转机械逐渐发展为大型机械,在这种发展趋势下人们开始重视对振动故障的诊断方法进行研究,在深入研究后探索出了一系列用人工识别图像来实现旋转机械振动故障诊断的方法。本文主要分析了旋转机械振动故障的机理、故障的特点以及几种图形识别方法。经过多种试验证明图形识别方法的科学可行性,值得在今后的实际操作中得到运用和发展。 对于旋转机械在工作状态当中会发生振动,从而由振动产生的各种信号,信号会形成一些参数图形,通过对这些参数图形的研究与分析,我们可以实现对器械运行过程中的日常管理和保护。这也是目前应该采用的设备管理方式。而在实际操作过程中,图形识别技术并没有深入到工作当中。这种手段没有被利用于诊断旋转机械

故障的原因是提取出明显的图形特征在技术上具有一定的困难,而且对于图形具体特征的描述也具有很大的挑战,是否能够将图形所呈现出的特征准确地表述出来是图形识别技术在旋转机械振动故障诊断方面的一个限制性因素。诊断旋转机械振动故障的原则采集诊断依据 被诊断的机械表面所能表现出的所有相关信息都能够作为旋转振动机械故障诊断的有效依据。这些信息在机械运行的过程中能够通过传感器传递给人们。对旋转机械振动故障的诊断是否准确,一个重要的因素就是收集到的有关信息是否真实可靠,依据信息是否准确真实的决定性因素是传感器的品质,传感器质量如何、感应是否灵敏以及工作人员的直观判断都是决定信息准确性的重要衡量标准。 对采集的信息进行处理和研究 从传感器和工作人员两方面收集到的依据信息通常是混乱无序的,不能明显的看出其特点,这就导致了无法准确地对故障进行判断,这就要求我们在成功收集信息之后要及时对大量信息进行筛选

相关文档
最新文档