煤直接液化工艺条件对液化反应的影响

煤直接液化工艺条件对液化反应的影响
煤直接液化工艺条件对液化反应的影响

煤直接液化工艺条件对液化反应的影响

煤直接液化的技术从诞生到应用至今已经有100多年的历史了,随着科学技术的发展,煤直接液化的工艺技术也在不断的进步。本文对煤直接液化的反应原理以及煤直接液化的工艺流程等进行了相应的介绍,针对工艺条件对于煤直接液化反应的影响进行了研究,采用定性定量相结合的方式对温度、压力、干煤空速以及气液比对于煤直接液化的影响进行了分析,得到了这些条件对于煤直接液化的影响,为煤直接液化工艺的提升提供了理论基础。

标签:煤直接液化工艺条件液化反应原理影响

引言

早在1913年德国人就发明了煤直接液化的技术,在二战期间该技术就得到的实际的应用和推广。在二次世界大战结束之后,由于中东地区大量廉价的石油涌入市场,煤直接液化企业在其面前没有丝毫的抵御能力纷纷倒闭了。大约在20世纪70年代的时候,在世界范围内出现了经济的危机,煤炭的直接液化技术又开始被重新重视起来。尤其是美国、日本以及德国等国家在煤直接液化的技术的基础上对其进行了工艺方面的极大的改良,这些工作的目的只有一个那就是尽可能的降低煤直接液化的反应的苛刻的条件,进而在最大程度上降低煤直接液化所耗费电的成本。目前世界上比较有代表性的煤直接液化的技术流派主要分为三种分别为美国、德国以及日本的技术。这些煤液化的新技术中所具有的共性就是,反应的条件和原来相比已经不是那么苛刻。神华集团的液化工艺是具有完全自主知识产权的煤直接液化的技术,该技术不论是从反应条件或者是反应的出油上和其他技术相比都具有相当的优势。

一、煤直接液化反应的原理以及相应的工艺流程

1.煤直接液化的反应机理

将煤炭处于高温、高压以及氢气的环境下,通过催化剂的反应的催化作用,会发生煤炭和氢气之间的反应,然后对反应后的产品进行液化蒸馏将其分成轻重两个部分。通过大量的理论研究与实践证明,煤炭在高温、高压以及氢气的环境下和氢气发生反应液化的过程大致可以分为三个步骤。首先煤炭所处的温度在300摄氏度以上的时候,煤炭就是开始受热分解,在煤炭中大分子结构的较弱的连接键开始断裂,这使得煤炭的分子结构产生了相应的变化,通过煤炭的这种分解产生了较大数量的单元分子结构的自由基,自由基的分子的数量在数百左右(虽然其不带电但是有自身所带电子的碎片)。接着在供氢溶剂比较充足并且氢气的压力较大的环境下,自由基通过和氢气进行结合形成较为稳定的结构,最终成为沥青烯及液化油的分子。氢气分子本身并不能与相应的自由基结合,能够和自由基相结合的是氢气的自由基,也就是氢气的原子,或者是经过活化的氢气分子,氢原子或者是活化的氢气分子的来源是煤炭中的氢、以及供氢溶剂碳氢键断裂产生的氢自由基、氢气中的氢气分子被催化激活、或者是化学反应放出的氢等。

煤化学课后习题

第一章煤的种类,特征和生成 1 按成煤植物的不同,煤可以划分几大类,其主要特征有何不同? 2 按煤化程度,可以将腐殖煤划分为几大类,请两两比较其区分标志。 3 主要的成煤期及其代表性植物是什么? 4 低等植物与高等植物的族组成有何区别? 5 植物的族组成在成煤过程中发生了什么变化? 6 成煤的地质年龄与煤的变质程度是否一致,为什么? 7 腐殖煤的成煤过程主要分哪两个阶段,各阶段发生的主要变化是什么? 8 泥炭化阶段发生的主要生物化学变化有哪几种类型? 9 在泥炭化阶段,为什么氧化分解一般不会进行到底? 10 煤的变质因素有哪些?对煤的变质程度有何影响? 11 煤化度与变质程度有何异同? 12 煤的变质类型对成煤有什么意义? 13 泥炭的堆积环境对煤质有什么影响? 14 何谓煤的还原程度,强还原妹有什么特征? 15 凝胶化与丝炭化对煤中显微组分的形成有什么作用? 16 什么是中国煤的多阶段变质演化,它对中国煤质分布有什么影响? 17 什么是煤化作用跃变,分哪几个阶段? 18 煤化作用跃变对煤质有什么影响? 19 影响成煤期有哪些主要因素? 20 中国有哪几个主要的聚煤期,列举各主要的聚煤期的5个著名煤田。 第二章煤的工业分析和元素分析 1 试述煤的工业分析的基本思想 2 煤的元素分析的基本思想 3 煤中水分存在的形态分哪几种,他们与水分脱除的难易程度有什么关系? 4 最高内在水分MHC与煤的煤化度有什么关系? 5 煤中矿物质有哪几种来源,洗选脱除的难易程度有什么不同,矿物质的来源与煤中灰分的种类有什么关系? 6 煤中矿物质的化合物类型有哪几种?请写出其代表性化合物的名称与分子式 7 选煤有哪几种工业生产方式,一般选煤工艺有哪些产品和副产品 8 灰分的组成与灰熔点有什么关系,这种关系有何工业意义? 9 煤中常量元素与微量元素是如何分类的,各有哪些主要的元素 10 煤中有哪些主要的有害微量元素,按危害程度应如何分类 11 煤中碳和氢的测定的原理,并说明试验中可能产生的误差及减小误差的方法 12 煤中的氮完全以有机氮的形式存在,对否?理由 13 没中毒额硫有哪几种存在形态,煤中的硫分队煤的应用有什么影响? 14 没种的硫或磷过多时,通过焦炭与高炉冶炼进入钢铁后,对产品质量有什么影响 15 什么是基准,煤的分析数据为何要用基准表示? 16 基准的常用形式因利用场合不同而异,请写出各种基准的适用场合 17 画出基准关系图,并说明换基计算的基本思想和适用场合 18 第三章煤的物理性质和物理化学性质 1 为什么说煤的所有宏观性质均在一定程度上与煤的密度有关 2 煤的密度有哪几种表示方法,与煤的空隙率有何关系

煤液化技术

《近代化学》课程作业 煤液化技术的研究现状 The research status of coal liquefaction technology 姓名: 专业: 时间:

煤液化技术的研究现状 能源安全关系到一个国家的长期稳定发展,我国的煤炭资源相对于其他形式的资源而言较为丰富,但是长期以来,我国的煤炭资源一直处于低利用率水平,造成了大量的资源浪费以及环境污染等问题,随着资源的日益减少,如何提高资源利用率成为需要研究的关键问题。 煤炭液化技术可以分为直接、间接两种,所谓煤炭直接液化技术是指将粉状煤炭与循环溶剂制备成的混合油煤浆在定温、定压以及催化剂条件下,进行加氢化学反应,最终生成所需要的液态和气态烃类化合物,同时要对所生成的物体进行脱硫、脱氮处理等有害物质处理;煤炭的间接液化技术先进行的是气化处理,将煤气化后并在催化剂的作用下,通过F-T费托过程,得到相应的烃类化合物。相对于煤炭间接液化而言,直接液化在同样原料的基础上,所能够生产出的油品率更高一些。 1煤直接液化 煤的直接液化是指在适当的温度(400~500℃)和压力(20~30MPa)下,催化加氢裂化(热裂、溶剂、萃取、非催化裂化等)成液体烃类,生成少量气体烃,脱出煤中氮、氧和硫等杂原子的深度转化过程[1]。理论上讲,煤加氢液化分为轻度加氢和深度加氢。通过加氢,煤结构中某些键断开,将固态煤转变成液体产物和气态产物。 1.1煤直接液化的技术的进展 煤直接液化技术主要包括[2]:①煤浆配制、输送和预热过程的煤浆制备单元; ②煤在高温、高压条件下进行加氢反应,生成液体产物的反应单元;③将反应生成的残渣、液化油和气态产物分离的分离单元④稳定加氢提质单元。具体流程图如图1所示: 图1:煤直接液化工艺流程简图 自从1913年德国科学家F.Bergiu发明了煤炭直接液化技术后,美国、日本、英国、俄国也都独自研发出了拥有自主知识产权的液化技术。以下简单介绍几种最具代表性的煤炭直接液化工艺,如德国IGOR工艺[3]、美国H TI工艺[4]、日本NEDOL工艺[5]等。 1.1.1德国IGOR工艺 德国矿冶技术及检测公司在20世纪90年代初改进了原DT工艺,形成了先进的IGOR工艺。该工艺是将循环溶剂和加氢液化油提质加工与煤的直接液化结合成一体的新工艺技术。 该工艺与原工艺相比有如下优点:①液化残渣的固液分离改为减压蒸馏,其

神华煤直接液化工艺技术特点和优势

神华煤直接液化工艺技术特点和优势 神华煤直接液化示范工程采用的煤直接液化工 艺技术是在充分消化吸收国外现有煤直接液化工艺 的基础上,利用先进工程技术,经过工艺开发创新,依靠自身技术力量,形成了具有自主知识产权的神 华煤直接液化工艺 神华煤直接液化工艺技术特点 1) 采用超细水合氧化铁(FeOOH)作为液化催 化剂。以Fe 2 + 为原料,以部分液化原料煤为载体,制成的超细水合氧化铁,粒径小、催化活性高。 2) 过程溶剂采用催化预加氢的供氢溶剂。煤 液化过程溶剂采用催化预加氢,可以制备45% ~50%流动性好的高浓度油煤浆;较强供氢性能的过 程溶剂防止煤浆在预热器加热过程中结焦,供氢溶 剂还可以提高煤液化过程的转化率和油收率。 3)强制循环悬浮床反应器。该类型反应器使 得煤液化反应器轴向温度分布均匀,反应温度控制 容易;由于强制循环悬浮床反应器气体滞留系数低, 反应器液相利用率高;煤液化物料在反应器中有较 高的液速,可以有效阻止煤中矿物质和外加催化剂4)减压蒸馏固液分离。减压蒸馏是一种成熟 有效的脱除沥青和固体的分离方法,减压蒸馏的馏 出物中几乎不含沥青,是循环溶剂的催化加氢的合 格原料,减压蒸馏的残渣含固体50%左右。 5) 循环溶剂和煤液化初级产品采用强制循环 悬浮床加氢。悬浮床反应器较灵活地催化,延长了 稳定加氢的操作周期,避免了固定床反应由于催化 剂积炭压差增大的风险;经稳定加氢的煤液化初级 产品性质稳定,便于加工;与固定床相比,悬浮床操作性更加稳定、操作周期更长、原料适应性更广。神华示范装置运行结果表明,神华煤直接液化 工艺技术先进,是唯一经过工业化规模和长周期运 行验证的煤直接液化工艺。 神华煤直接液化工艺技术优势 1)单系列处理量大。由于采用高效煤液化催 化剂、全部供氢性循环溶剂以及强制循环的悬浮床 反应器,神华煤直接液化工艺单系列处理液化煤量 为6000 t/d。国外大部分煤直接液化采用鼓泡床反 应器的煤直接液化工艺,单系列最大处理液化煤量 为每天2500 ~3000 t。 2)油收率高。神华煤直接液化工艺由于采用

煤炭直接液化技术总结

煤炭直接液化技术总结 洁净煤技术——直接液化技术 —、德国IGOR工艺 1981 年,德国鲁尔煤矿公司和费巴石油公司对最早开发的煤加氢裂解为液体燃料的柏吉斯法进行了改进,建成日处理煤200 吨的半工业试验装置,操作压力由原来的70 兆帕降至30兆帕,反应温度450?480摄氏度;固液分离改过滤、离心为真空闪蒸方法,将难以加氢的沥青烯留在残渣中气化制氢,轻油和中油产率可达50%。 原理图: IGOR 直接液化法工艺流程 工艺流程:煤与循环溶剂、催化剂、氢气依次进入煤浆预热器和煤浆反应器,反应后的物料进入高温分流器,由高温分流器下部减压阀排出的重质物料经减压闪蒸,分出残渣和闪蒸油,闪蒸油又通过高压泵打入系统,与高温分离器分出的气体及清油一起进入第一固定床反应器,在此进一步加氢后进入分离器。中温分离器分出的重质油作为循环溶剂,气体和轻质油气进入第二固定床反应器再次加氢,通过低温分离器分离出提质后的轻质油品,气体经循环氢压机压缩后循环使用。为了使循环气体中的氢气浓度保持在所需的水平,要补充一定数量的新鲜氢气。 液化油经两步催化加氢,已完成提质加工过程。油中的氮和硫含量可降低到10-5 数量级。此产品经直接蒸馏可得到直馏汽油和柴油,再经重整就可获得高辛烷值汽油。柴油只需加少量添加剂即可得到合格产品。与其他煤的直接液化工艺相比,IGOR工艺的煤处理能力最大,煤液化反应器的空速为0. 36?0. 50 t /( m3 ? h)。在反应器相同的条件下,IGOR 工艺的生产能力可比其他煤液化工艺高出50%?100%由于煤液化粗油的提质加工与 煤的液化集为一体,IGOR煤液化工艺产出的煤液化油不仅收率高,而且油品质量好。 工艺特点:把循环溶剂加氢和液化油提质加工与煤的直接液化串联在一套高压系统中,避免了分立流程物料降温降压又升温升压带来的能量损失,并在固定床催化剂上使二氧化碳和一氧化碳甲烷化,使碳的损失量降到最小。投资可节约20%左右,并提高了能量效率。反应条件苛刻(温度470C,压力30MPa);催化剂使用铝工业的废渣(赤泥);液化反应和加氢精制在高压下进行,可一次得到杂原子含量极低的液化精制油;循环溶剂是加氢油,供 氢性能好,液化转化率高。 优点:(1)煤液化粗油的提质加工与煤的液化集为一体,IGOR煤液化工艺产出的煤 液化油不仅收率高,而且油品质量好。 (2)供氢性能好,液化转化率高 (3) 结构简单,投资少,克服了反应尺寸、能力、压力等诸多方面的局限 (4) 传热效果好,反应温度易控制.

煤炭液化技术

煤炭液化技术 [编辑本段] 煤炭液化技术 煤炭液化是把固体煤炭通过化学加工过程,使其转化成为液体燃料、化工原料和产品的先进洁净煤技术。根据不同的加工路线,煤炭液化可分为直接液化和间接液化两大类: 一、直接液化 直接液化是在高温(400℃以上)、高压(10MPa以上),在催化剂和溶剂作用下使煤的分子进行裂解加氢,直接转化成液体燃料,再进一步加工精制成汽油、柴油等燃料油,又称加氢液化。 1、发展历史 煤直接液化技术是由德国人于1913年发现的,并于二战期间在德国实现了工业化生产。德国先后有12套煤炭直接液化装置建成投产,到1944年,德国煤炭直接液化工厂的油品生产能力已达到423万吨/年。二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。 70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。日本、德国、美国等工业发达国家,在原有基础上相继研究开发出一批煤炭直接液化新工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。目前世界上有代表性的直接液化工艺是日本的NEDOL工艺、德国的IGOR 工艺和美国的HTI工艺。这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有较大幅度提高,降低了生产成本。到目前为止,上述国家均已完成了新工艺技术的处理煤100t/ d级以上大型中间试验,具备了建设大规模液化厂的技术能力。煤炭直接液化作为曾经工业化的生产技术,在技术上是可行的。目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。 2、工艺原理 煤的分子结构很复杂,一些学者提出了煤的复合结构模型,认为煤的有机质可以设想由以下四个部分复合而成。 第一部分,是以化学共价键结合为主的三维交联的大分子,形成不溶性的刚性网络结构,它的主要前身物来自维管植物中以芳族结构为基础的木质素。 第二部分,包括相对分子质量一千至数千,相当于沥青质和前沥青质的大型和中型分子,这些分子中包含较多的极性官能团,它们以各种物理力为主,或相互缔合,或与第一部分大分子中的极性基团相缔合,成为三维网络结构的一部分。

煤炭液化技术

煤炭液化技术[编辑本段] 煤炭液化技术 煤炭液化是把固体煤炭通过化学加工过程产品的先进洁净煤技术。根据不同的加工 ,使其转化成为液体燃 料路线,煤炭液化可分为直 接 、化工原料 和液化和间接液 化 两大类: 一、直接液化 直接液化是在高温(400℃以上)、高压(10MPa以上),在催化剂和溶剂作用下使 煤的分子进行裂解加氢,直接转化成液体燃料,再进一步加工精制成汽油、柴油等燃料油,又称加氢液化。 1、发展历史 煤直接液化技术是由德国人 于1913 年发现的,并于二战期间在德国实现了工业 化生产。德国先后有12套煤炭直接液化装置建成投产, 到1944年,德国煤炭直接 液化工厂的油品生产能力已达到423万吨/年。二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。 70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。日 本、德国、美国等工业发达国家,在原有基础上相继研究开发出一 批煤炭直接液化新 工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。目前世界上有代表性的直接液化工艺是日本的NEDOL 工艺、德国的IGOR工艺和美国的HTI工艺。这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有 较大幅度提高,降低了生产成本。到目前为止,上述国家均已完成 了新工艺技术的处 理煤100t/d 级以上大型中间试 验,具备了建设大规模液化厂的技术能力。煤炭直接 液化作为曾经工业化的生产技术,在技术上是可行的。目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。 2、工 艺原理 煤的分 子结构很复杂,一些学者提出了煤的复合结构模型,认为煤的有机质可以 设想由以下四个部分复合而成。 第一部 分,是以化学共价键结合为主的三维交联的大分子,形成不溶性的刚性网 络结构,它的主要前身物来自维管植物中以 芳族结构为基础的木质素。 第二部 分,包括相对分子质量一千至数千,相当于沥青质和前沥青质的大型和中

煤液化技术的重要性

煤液化技术的重要性 1.1 中国的能源现状 随着我国经济的快速发展,能源消费急剧增加,20世纪90年代我国已成为石油净进口国。2003年,我国已是全球仅次于美国的第二大石油进口国和消耗国,2008年我国石油净进口量超过19985万t,进口原由占国消费比重达53.1%。石油资源匮乏和国石油供应不足已成为中国能源发展的一个严峻现实, 随着国民经济的发展,石油供需矛盾将呈持续性扩大趋势。经济高速增长、石油资源缺乏的中国已经把石油安全置于能源战略的核心位置。 我国“多煤炭、少石油、缺天然气”的能源资源特点决定了我国能源在较长时期以煤为主的格局不会改变,确立我国的能源安全战略,必须从这一基本条件出发。充分利用我国丰富的煤炭资源解决石油短缺问题并保证能源安全供给,是我国能源安全战略的一条有效而又可行的途径。 1.2 煤液化技术在我国应用前景 在替代石油的化石资源中,只有煤炭可以在近中期满足与千万吨数量级的油品缺口相匹配的需要。在这样的背景下,合理利用中国丰富的煤炭资源, 开发“煤制油”技术, 作为石油资源的补充, 解决目前燃油短缺、环境污染两大难题, 对中国具有十分重要的战略意义[1]。 若以目前已查证的煤炭资源量的2 0 %作为直接液化原料,则相当于为中国增加了约4 5 0亿吨的原油资源量。有专家预计,到2 0 2 0 年中国的“煤制油”项目将形成年产5 0 0 0万吨油品的生产能力,加上届时将有年产2 0 0 0万吨的生物质油品投入使用,中国原油对外依赖程度有望从6 0 %以上下降到45%以下。到2030 年,在全球替代能源中非石油替代能源将达到日产1 0 0 0万桶,其中煤制油将占2 9%。就中国来说,煤炭储量丰富,政府有意愿发展这一产业,煤制油工业有着光明的前景。 1.3 煤液化技术在我国中战略地位 中国将长期坚持能源供应基本立足国的方针, 把煤炭作为主体能源, 这是中国能源安全的基石。长期以来, 中国政府坚持能源生产、消费与环境保护并重的方针, 把支持清洁煤技术的开发应用作为一项重要的战略任务。煤炭直接液化是中国能源战略的组成部分, 对充分利用国资源, 解决石油安全具有重要的战略和现实意义。 2 煤液化的发展状况 2.1 煤液化技术简介 煤液化工艺大致可分为两大部分,即在高温高压条件下把粉煤催化加氢生产液化粗油的液化工艺和把液化粗油加氢裂解的提质加工精制工艺。其中煤液化技术又包括直接液化技术和间接液化技术。 2.1.1 煤直接液化技术 煤的直接液化法,就是以煤为原料,在高温高压条件下,通过催化加氢直接

影响煤液化收率因素的分析

影响煤液化收率因素的分析 摘要:煤加氢液化是十分复杂的化学反应,影响加氢液化的因素很多,主要包括原料煤、溶剂、气氛与工艺参数等。本文分析了目前世界上有代表性的直接液化工艺是日本的NEDOL工艺、德国的IGOR工艺和美国的HTI工艺,并对煤液化对未来的影响及其价值进行了展望 根据不同的加工路线,煤的液化方法主要分为煤的直接液化和煤的间接液化两大类。(1)煤直接液化是指煤在氢气和催化剂作用下,通过加氢裂化转变为液体燃料的过程称为直接液化。裂化是一种使烃类分子分裂为几个较小分子的反应过程。因煤直接液化过程主要采用加氢手段,故又称煤的加氢液化法。此方法的主要优势是热效率高,液体产品收率高,但是对煤桨加氢工艺过程的总体操作条件相对苛刻。(2)煤间接液化是指以煤为原料,先气化制成合成气,然后,通过催化剂作用将合成气转化成烃类燃料、醇类燃料和化学品的过程。此方法的优势煤种适应性较宽,操作条件相对温和,但是总效率比直接液化低。目前技术较为成熟的煤的直接液化技术 一、煤直接液化的主要工艺路线 20年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。日本、德国、美国等工业发达国家,在原有基础上相继研究开发出一批煤炭直接液化新工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。目前世界上有代表性的直接液化工艺是日本的NEDOL工艺、德国的IGOR工艺。这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有较大幅度提高,降低了生产成本。到目前为止,上述国家均已完成了新工艺技术的处理煤100t/d级以上大型中间试验,具备了建设大规模液化厂的技术能力。煤炭直接液化作为曾经工业化的生产技术,在技术上是可行的 1日本NEDOL工艺流程图及其工艺特点 日本NEDOL工艺由煤前处理单元、液化反应单元、液化油蒸馏单元及溶剂加氢单元等4个主要单元组成 工艺特点:反应压力较低,只有17兆帕~19兆帕,反应温度为430摄氏度~465摄氏度;催化剂采用合成硫化铁或天然硫铁矿;固液分离采用减压蒸馏的方法;配煤浆用的循环溶剂单独加氢,以提高溶剂的供氢能力;液化油含有较多的杂原子,还须加氢提质才能获得合格产品 2 德国IGOR工艺及其工艺特点 操作压力由原来的70兆帕降至30兆帕,反应温度450~480摄氏度;固液分离改过滤、离心为真空闪蒸方法,将难以加氢的沥青烯留在残渣中气化制氢,

煤直接液化反应机理

煤直接液化反应机理 煤和石油主要都是由C、H、O等元素组成,不同的是:煤的氢含量和H/C 原子比比石油低,氧含量比石油高;煤的分子量大,一般大于5000,而石油约为200,汽油约为110;煤的化学结构复杂,一般认为煤有机质是具有不规则构造的空间聚合体,它的基本结构单元是缩合芳环为主体的带有侧链和官能团的大分子,而石油则为烷烃、环烷烃和芳烃的混合物。煤还含有相当数量的以细分散组分的形式存在的无机矿物质和吸附水,煤也含有数量不定的杂原子(氧、氮、硫)、碱金属和微量元素。要把固体煤转化为液体油,就必须采用增加温度或其他化学方法以打碎煤的分子结构,使大分子物质变成小分子物质,同时外界要供给足够量的氢,提高其H/C原子比。 煤直接液化反应比较复杂,大致可分为热解、氢转移、加氢三个反应步骤, 如果煤在热解过程中外界不提供氢,煤热解产生的自由基碎片只能靠自身的氢再分配,使少量的自由基碎片形成低分子油和气,而大量的自由基碎片则发生缩聚反应生成固体焦。如果煤在热解过程中外界供给氢,而且煤热解产生的自由基碎片与周围的氢结合成稳定的H/C原子比较高的低分子物(油和气),这样就能抑制缩聚反应,使煤全部或绝大部分转化成油和气。一次加氢液化的实质是用高温切断化学结构中的C-C键,在断裂处用氢来饱和,从而使分子量减少和H/C原子比提高。反应温度要控制合适,温度太低,不能打碎煤分子结构或打碎的太少,油产率低。一般液化工艺的温度为400℃~470℃[4]。 与煤自由基碎片结合的氢必须是活化氢。活化氢的来源:(1)煤分子中的氢再分配;(2)供氢溶剂提供;(3)氢气中的氢分子被催化活化;(4)化学反应放出氢,如系统中供给CO+H2O,则发生变换反应(CO+H2O→CO2+H2)放出氢。据研究证明:系统中供CO+H2O或CO+H2的液化效果比单纯供H2的效果好,这主要是CO+H2O的变化反应放出的氢容易与煤的自由基碎片结合。为保证系统中有一定的氢浓度,使氢容易与碎片结合,必须有一定的压力(氢分压)。目前的液化工艺的一般压力为5MPa~30MPa。 对自由基碎片的加氢是液化反应的关键,可用如下方程式表示加氢反应[5] R-CH2-CH2-R’→ RCH2·+R’CH2· RCH2·+R’CH2·+2H·→ RCH3+R’CH3 煤加氢液化过程包括一系列的顺序反应和平行反应,但以顺序反应为主,每一级反应的分子量逐级降低,结构从复杂到简单,杂原子含量逐级减少,H/C原子比逐级上升。在发生顺序反应的同时,又伴随有副反应,即结焦反应的发生。煤加氢液化反应历程如图1-2所示。从沥青烯向油和气的转化是一个相当缓慢的过程,是整个反应的控制步骤。

神华煤直接液化项目的综合评价

摘要 神华煤制油项目是世界上首个建设的工业化项目,工程分为先期和一期,总建设规模为年生产油品500万t,自2004年8月先期工程开工建设,到2009年一期工程第一条生产线基本完成,并计划于2009年5月正式投产。 本文对神华煤直接液化工艺项目进行了综合评价,主要分为3个部分,包括经济分析、技术分析和环境分析。同时,本文还介绍了煤直接液化的工艺流程,重点介绍了煤制油工艺的特殊的单元,例如:煤液化单元,煤制氢单元,T-star工艺单元。 经济分析部分,采用技术经济学的知识,计算了项目的总投资、总成本、项目销售收入和税金以及现金流量。计算出了项目的内部收益率为13.13%,全投资的回收期为7.73年,大于石油化工项目的平均内部收益率10%。从经济方面,神华煤制油项目是有优势的。 技术分析部分,主要从煤直接液化工艺的技术方案,工程放大和项目的建设进行了研究。重点分析了液化工艺核心技术—采用美国的HTI工艺,液化工艺的催化剂制备单元—采用新型高效“863”合成催化剂,液化工艺煤制氢单元—采用Shell粉煤加压气化工艺等先进的技术。神华煤制油项目在产品分离、加氢改质、空分、水处理方面都采用了先进的技术。同时项目的工程放大和项目的建设都保证了神华煤制油项目的有条不紊的建设。 环境分析部分,重点研究了神华项目污水和液化残渣的利用。对这两部分分别提出了建议意见。 最后,本文对神华项目提出了发展建议,提出了神华项目要加大自主技术研究,完善绿化方案,建立水库储备水源,研究煤、电和化工的结合。 关键词:煤制油;直接液化;综合评价

Abstract Shenhua coal to oil was the first industrialization project on construction in the world, which was divided into two stages,including the early one and the first one.the gross of project is five million tons/year in petroleum product. The early stage started to be constructed since August, 2004, the first stage will be finshed in 2009, and plan to put into production in may. The comprehensive evaluation of the project in direct liquefaction process on shenhua coal was studied in this paper, which mainly was divided into three parts, including the economic analysis, technical analysis and environmental analysis. At the same time, this paper also introduced the process flow in coal liquefaction, major introduced special unit of coal to oil, for example: coal liquefaction unit, hydrogen unit, T-star process unit. Economic analysis, using knowledge of technical economics, the project total investment, total cost, project sales income and tax and cash flow were calculated,then the internal rate of return and investment recoupment period of project were 13.13% and 7.73 years respectively.The internal rate of return was more than the one for petrochemical industry which was 10%. From the economic aspect, the project was profitable. Technical analysis, mainly studied from coal direct liquefaction technical scheme, engineering enlargement and project construction. The core technology liquefaction process - HTI process employing the America technology, catalyst preparation process - using new efficient "863" synthesis catalyst, coal liquefaction process for hydrogen production unit by adding pressurized gasification - employing Shell advanced pressurized gasification technology were emphatically analyzed. Shenhua coal to oil project in product separation unit, hydrogenation modification uint,air

煤液化复习题

一、填空题 1.煤是古代植物残骸经地下高温、高压作用,经过复杂的物理变化和化学变化而形成的有机生物岩。 2.煤炭直接液化对原料煤的一般要求是转化率和油产率要高;煤转化为低分子产物的速度快;氢耗量要少。 3.在煤间接液化过程中,合成气富含氢时,有利于形成烷烃。 4.煤的液化包括直接液化、间接液化和煤的部分液化。 5.F-T合成除了能获得汽油主要产品之外,还能合成一些重要的基本有机化学原料。 6.在煤间接液化工艺中,反应器主要有固定床反应器、气流床反应器和浆态床反应器三种。 7.煤的间接液化制取的合成原料气中有效成分是氢气和二氧化碳。 8.煤的直接液化是在溶剂油存在下,通过高压加氢使煤液化的方法. 9.从煤液化机理可知,在煤液化大致可分为热解抽提和加氢裂解两个过程。 10.改良ADA法属于湿法脱硫;活性炭吸附属于干法脱硫。 11.直接液化反应器是一种气、液、固三相浆态鼓泡床反应器;F-T合成所用的催化反应器有多种,其中目前较为先进是气流床反应器。 12.煤液化时,为了提高H/C原子比,必须向煤中加入足够的氢。 二、判断题 1.根据成煤过程中煤化程度的不同,腐植煤可分为泥炭、褐煤、烟煤、无烟煤。 2.在F-T合成中,含氧化合物虽然是作为副产物,但其含量必须控制在一定的程度。 3.在合成甲醇反应中,接触时间越短,单程转化率越高。 4.甲醇本身可用作发动机燃料,或作为混掺汽油的燃料。 5.甲醇转化成汽油最理想的催化剂是钴钼催化剂。 6.氢与一般气体不同,其溶解度随着温度升高而增加。 7.煤的间接液化是以人工煤气为原料合成液化燃料或化学产品的过程。 8.煤加氢液化中主要是氢分子攻击煤分子而使其裂解。 9.在煤直接液化工艺中,气态产物产率越大,说明反应越完全。 10.煤的间接液化工艺与直接液化工艺的主要区别是有无加氢过程。 11.煤的液化其实指的就是把煤变成煤浆的过程。 12.粗合成气净化时,旋风除尘往往都安排在水洗除尘之后。 三、概念题 1.费托合成 将以合成气为原料,生产各种烃类以及含氧化合物的基本过程称为费托合成,是煤液化的主要方法之一。 2.煤的间接液化 煤气化产生的合成气(CO+H2),再以合成气为原料合成液体燃料或化学产品,此过程称为煤的间接液化。 3.煤的直接液化 是将煤在较高和压力下与氢反应使其降解和加氢,从而转化为液体油类的工艺,故又称加氢液化。 4. CO变换反应的化学方程式为: CO+H2O≒CO2+H2+Q 该反应是一个可逆、催化的放热反应。 5.液化油的提质: 对煤液化粗油采用加氢精制或进行重整加工获得合格的汽油、柴油等产品的过程。 四、简答题 1.在煤加氢液化中为防止发生焦化反应应采取哪些措施?

煤化学课后习题答案

填空 1 植物是成煤的主要原始物质,因此植物界的发展、演化以及各类植物的兴盛、衰亡必然影响着地史使其成煤特征的演化。P6 2从化学观点来看,植物的有机族组成可以分为四类,即糖类及其衍生物、木质素、蛋白质、和脂类化合物。P8 3 煤由堆积在沼泽中的植物遗体转变而成、植物遗体不是在任何情况下都能顺利的堆积并能转变为泥炭,而是需要一定的条件。P12 4 泥炭的有机组成包括1腐植酸、2沥青质、3未分解或未完全分解的纤维素、半纤维素、果胶质、和木质素。4变化不多的壳质组分,如角质膜、树脂和孢粉。P24 5 煤中低分子化合物可分为两类,即烃类和含氧化合物。P39 6 根据颜色、光泽、硬度、裂隙和断口等,利用肉眼或放大镜可以将煤区分为镜煤、亮煤、暗煤和丝炭四种宏观煤岩成分。P48 7 烟煤的宏观煤岩类型分为(1)光亮煤(2)半亮煤(3)半暗煤(4)暗淡煤P50 8 常见的矿物主要有粘土矿物、硫化物、氧化物及碳酸盐类等四类。P61 9 工业分析可以将煤的组成分为:水分、灰分、挥发分和固定碳。 游离水;外在水分内在水分 水分 化合水;结晶水热解水 外在水分是指煤放置在大气中使水分不断蒸发,当煤中水的蒸气压与大气中水蒸气分压达到平衡时,煤中水分不再变化。这时所失去的水分占煤样质量的百分数就是外在水分,用Mf表示。而残留在煤内部孔隙中没有蒸发出来的水分称为内在水分,用Minh表示。全水分,用Mt或Mar表示。P80 10 煤的灰分:煤样在规定条件下完全燃烧后所得的残渣。该残渣的质量占测定煤样质量的百分数称为灰分产率,简称为灰分。P83 11 煤的灰分不是煤中的固有组成,而是由煤中的矿物质转化而来的。P83 12 在高温条件下,将煤隔绝空气加热一定时间,煤的有机质发生热解反应,形成部分小分子的化合物,在测定条件下呈气态析出,其余有机质则以固体形式残留下来。呈气态析出的小分子化合物称为挥发分,以固体形式残留下来的有机质称为固定碳。实际上,固定碳不能单独存在,它与煤中的灰分一起形成焦渣,从焦渣中扣除灰分就是固定碳了。挥发分用V表示,固定碳用FC表示。P84 13 煤中矿物质种类按矿物质组成分类 1)黏土矿物2)石英3)碳酸盐矿物4)硫化物和硫酸盐矿物P87 14煤灰是煤中矿物质在燃烧后形成的残渣,其中SIO2含量最大,其次是AL2O3 P90 15 大量的研究表明,煤的有机质主要是由碳、氢、氧、氮和硫等五种元素组成的。P94 16 常用的有机溶剂大致可分为; (1)中性溶剂(2)碱性溶剂(3)酸性溶剂(4)混合溶剂P107 17真相对密度的影响因素P115, 成因类型 煤岩组成 矿物质 煤化程度

现代化煤直接液化技术进展(最新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 现代化煤直接液化技术进展(最 新版)

现代化煤直接液化技术进展(最新版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 我国是一个富煤贫油少气的国家,煤炭资源探明剩余可采储量为1842亿t,石油资源探明剩余经济可采储量为20.4亿t,天然气资源探明剩余经济可采储量为23900亿m3,这样的能源结构决定了中国煤炭价格要大大低于油气价格,煤炭价格的上涨速度也大大低于油气价格的上涨速度。近年来,我国石油进口量不断增加,对外依存度已超过40%,已经严重威胁到我国国家的能源安全问题。面对这样的现实,为了缓解我国石油严重短缺的现状,充分利用中国采储量相对较大的煤炭资源,大力推进煤液化产业的成熟与发展,越来越受到了国人的重 视和青睐。 “煤制油”的科学名称为“煤液化”,实施煤液化目是事关国家能源安全的重大战略选择。煤直接液化是国家“十五”期间12个高技术工程项目之一,受到各方关注,国外专家也积极参与[1-3]。所谓煤液化,就是指把固体的煤炭通过化学加工的方法,使其转化为液体燃

煤直接液化法和煤液化的基础知识

煤直接液化 煤直接液化,煤液化方法之一。将煤在氢气和催化剂作用下通过加氢裂化转变为液体燃料的过程。因过程主要采用加氢手段,故又称煤的加氢液化法。 沿革 煤直接液化技术早在19世纪即已开始研究。1869年,M.贝特洛用碘化氢在温度270℃下与煤作用,得到烃类油和沥青状物质。1914年德国化学家F.柏吉斯研究氢压下煤的液化,同年与J.比尔维勒共同取得此项试验的专利权。1926年,德国法本公司研究出高效加氢催化剂,用柏吉斯法建成一座由褐煤高压加氢液化制取液体燃料(汽油、柴油等)的工厂。第二次世界大战前,德国由煤及低温干馏煤焦油生产液体燃料,1938年已达到年产1.5Mt的水平,第二次世界大战后期,总生产能力达到4Mt;1935年,英国卜内门化学工业公司在英国比灵赫姆也建起一座由煤及煤焦油生产液体燃料的加氢厂,年产150kt。此外,日本、法国、加拿大及美国也建过一些实验厂。战后,由于石油价格下降,煤液化产品经济上无法与天然石油竞争,遂相继倒闭,甚至实验装置也都停止试验。至60年代初,特别是1973年石油大幅度提价后,煤直接液化工作又受到重视,并开发了一批新的加工过程,如美国的溶剂精炼煤法、埃克森供氢溶剂法、氢煤法等。 埃克森供氢溶剂法 简称EDS法,为美国埃克森研究和工程公司1976年开发的技术。原理是借助供氢溶剂的作用,在一定温度和压力下将煤加氢液化成液体

燃料。建有日处理250t煤的半工业试验装置。其工艺流程主要包括原料混合、加氢液化和产物分离几个部分(图1)。首先将煤、循环溶剂和供氢溶剂(即加氢后的循环溶剂)制成煤浆,与氢气混合后进入反应器。反应温度425~450℃,压力10~14MPa,停留时间30~100min。反应产物经蒸馏分离后,残油一部分作为溶剂直接进入混合器,另一部分在另一个反应器进行催化加氢以提高供氢能力。溶剂和煤浆分别在两个反应器加氢是EDS法的特点。在上述条件下,气态烃和油品总产率为50%~70%(对原料煤),其余为釜底残油。气态烃和油品中 C1~C4约占22%,石脑油约占37%,中油(180~340℃)约占37%。石脑油可用作催化重整原料,或加氢处理后作为汽油调合组分。中油可作为燃料油使用,用于车用柴油机时需进行加氢处理以减少芳烃含量。减压残油通过加氢裂化可得到中油和轻油。图一: 溶剂精炼煤法

煤化学复习专题

第五章习题 1. 煤质分析中常用的基准和符号。 煤质分析中常用的基准:收到基ar、空气干燥基ad、干燥基d、干燥无灰基daf、干燥无矿物质基dmmf。 煤质分析中常用的符号 2. 什么是煤的工业分析和元素分析? 答:煤的工业分析:M、A、V和FC。煤的元素分析:C、H、O、N、S。 3. 什么是M f、M inh、MHC、M t?M inh随煤化程度有何变化规律,为什么?煤中的水分对煤炭加工利用有何影响? 答:外在水分M f:指附着在煤的颗粒表面的水膜或存在于直径>10-5cm的毛细孔中的水分。 内在水分M inh:指在一定条件下达到空气干燥状态时所保留的水分,即存在于煤粒内部直径<10-5cm的毛细孔中的水分。 最高内在水分MHC:指煤样在30℃,相对湿度达到96%的条件下吸附水分达到饱和时测得的水分。 全水分M t:指刚开采出来、或使用单位刚收到或即将投入使用状态下煤中的全部水分(游离水)。 内在水分与煤化程度的关系: MHC与煤化程度的关系 从褐煤开始,M inh随着煤化程度的增加而降低,到中等煤化程度的肥煤和焦煤阶段,M inh最低,此后,M inh随着煤化程度增加而增大。 这是因为:M inh吸附于煤的孔隙内表面上,内表面积越大,吸附水分的能力就越强,M inh就越高。此外,煤分子结构上极性的含氧官能团的数量越多,煤吸附水分的能力也越强。 低煤化程度的煤内表面发达,分子结构上含氧官能团的数量也多,因此M inh就较高。随着煤化程度的增加,内表面积和含氧官能团减少,因此M inh降低,到无烟煤阶段,煤的内表面积有所增大,因而M inh也有所提高。 煤中的水分对煤炭的加工利用过程通常是有害的或者是无利的。 ⑴运力浪费煤是大宗商品,水分高,则浪费运力。特别是在寒冷地区,水分容易冻结,造成装卸困难,解冻又需要消耗额外的能耗。在煤炭贸易中,水分成为一项重要的计价依据,煤价随着水分含量的增加而降低。

溶剂对煤液化影响的研究

溶剂对煤液化影响的研究 第40卷第11期年11月 燃料化学学报 Journal of Fuel Chemistry and Technology Vol. 40No. 11 Nov. 2019 文章编号:0253? 2409(2019)11? 1295? 05 溶剂对煤液化影响的研究 薛永兵1, 凌开成2 (1. 太原科技大学化学与生物工程学院, 山西太原 030021; 2. 太原理工大学, 山西太原 030024) 摘要:用共振搅拌反应器研究了煤液化过程中溶剂的作用, 结果表明, 用大分子直链脂肪烃二单环苯系列化合物作溶剂, 煤转化率较低三比较不同环数化合物作溶剂对应的煤转化率可得, 单环苯系列带侧链的芳香化合物作溶剂>芳香化合物作溶剂>完全氢化芳香化合物(环烷烃) 作溶剂三气氛对煤转化率的影响与所用溶剂的种类有关, 用十氢萘和甲基萘做溶剂时, 气氛的影响很小, 使用四氢萘时, 气氛的影响很大三关键词:煤液化; 溶剂; 作用 中图分类号:TQ 536 文献标识码:A Effect of solvent on direct coal liquefaction (1. School of Chemical and Biological Engineering , Taiyuan University of Science and Technology , Taiyuan 030021, China ; 2. Taiyuan University of Technology , Taiyuan 030024, China ) XUE Yong?bing 1, LING Kai?cheng 2 Abstract :Using a resonance agitation reactor the effect of solvent on liquefaction of Chinese Yangcun bituminous coal under H 2or N 2under 7. 0MPa (cold ) was studied. The results show that chain hydrocarbon and mono?ring series compounds are not good solvents. For the same series solvents , partly hydrogen aromatic compounds are the best solvents , followed by aromatic compounds with chain and aromatic compounds. Cycloparaffin and phenols are bad solvent. Decalin and methylnaphthalene do not change H 2into active hydrogen because coal conversion is similar under H 2or N 2. Tetralin can change H

现代化煤直接液化技术进展

安全管理编号:LX-FS-A49592 现代化煤直接液化技术进展 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

现代化煤直接液化技术进展 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 我国是一个富煤贫油少气的国家,煤炭资源探明剩余可采储量为1842 亿t,石油资源探明剩余经济可采储量为20.4 亿t,天然气资源探明剩余经济可采储量为23900 亿m3,这样的能源结构决定了中国煤炭价格要大大低于油气价格,煤炭价格的上涨速度也大大低于油气价格的上涨速度。近年来,我国石油进口量不断增加,对外依存度已超过40%,已经严重威胁到我国国家的能源安全问题。面对这样的现实,为了缓解我国石油严重短缺的现状,充分利用中国采储量相对较大的煤炭资源,大力推进煤液化产业的成熟与发展,越来越受到了国人的重

相关文档
最新文档