半导体放电管T0-92直插

半导体放电管T0-92直插
半导体放电管T0-92直插

A.General Description 简要概述

半导体放电管器件专门用来防止敏感的电信设备、POS 终端、基站设备、网络视频等设备出现由闪电、电源接触和电源感应引起的过压故障危险。它们具有高电气浪涌抑制能力,有助于防止瞬间故障和断开状态的高阻抗,使系统的正常运行过程变得实际上更加透明。

广泛应用在:网络通迅及消费类电子产品、高速数据传

输设备(T1/E1、XDSL、ISDN、HDSL、CATV、SLIC 等)。

经典应用:电话信号接口防护、RS485、RS232、RS422

等数据接口。产品特点产品特点:: 精确导通电压、快速响应 超强的浪涌处理能力 双向对称,可靠性高 安装简便,器件体积小

分SMA、SMB 贴片型/DO-15、TO-92直插型 符合ROHS 要求

满足通信产品标准要求

T0-92

B.Dimension

产品尺寸

C.Specification电气特性

D.Surge Ratings浪涌额定值

B级2502502501008030500 C级50040040015010050500

E.Product Terminology产品术语

Electrical Parameters电气参数

V DM:Repetitive peak Off-state Voltage最高峰值电压,器件可保持关断状态,也即:不正作峰值电压

VBo:Switching Voltage半导体雪崩或开关切换动作电压

Ipp:Surge Ratings最大额定峰值脉冲电流

I DM:Off-state current在V DM下最大泄漏电流值

I H Min :Minimum Holding current 导通状态最小电流C :O ff-state Capacitance 不工作状态下器件电容值di/dt :Rate of Rise of

Current

电流上升率dv/dt :Rate of Rise of Voltage

电压上升率

F.Thermal Considerations 温度特性考虑

封装形式

Symbol 符号

Parameter 参数

Value 值TO-92

T J Operating Junction Temperature Range 工作温度范围-40~+150℃T S

Storage Temperature Range 贮存温度范围-55~+150℃R ?JA

Thermal Resistance:Junction to Ambient

90℃/W

G.Part Name Information 产品命名信息

H.Packing information 包装信息

10001000CS/Reel CS/Reel

1010000PCS 000PCS /BOX

50,000PCS /Carton

NOTE:ALL DATA AND SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

注意注意::所有的规格、参数更新将不例行通知

SMA半导体放电管规格书

PXXXXAA SERIES Over-voltage Protection Thyristor HIGHFAR PxxxxAA Series Do-214AC are designed to protect baseband equipment such as modems,line cards,CPE and DSL from damaging overvoltage transients. The series provides a surface mount solution that enables equipment to comply with global regulatory standards.Features * Low voltage overshoot * Low on-state voltage * Does net degrade with use * Fails short citcuit when surged in excess of ratings * Low Capacitance Pinout Designation Schematic Symbol Dot Applicable Electrical Parameters Peak Off-state Voltage - maximum voltage that can be applied while Revosion:17-Oct-11 1/4 C O V PP I PP Parameter I DRM I S I T I H V S V T Definition Switching Voltage - maximum voltage prior to switching to on state On-state Voltage - maximum voltage measured at rated on-state current Leakage Current - maximum peak off-state current measured at V DRM V DRM maintaining off state Switching Current - maximum current required to switch to on state On-state Current - maximun rated continuous on-state current Holding Current - minimum current required to maintain on state Off-state Capacitance - typical capactiance measured in off state Peak Pulse Voltage - maximum rated peak impulse voltage Peak Pulse Current - maximum rated peak impulse current

气体放电管

放电管特性及选用 吴清海 放电管的分类 放电管主要分为气体放电管和半导体放电管,其中气体放电管由烧结的材料不同分为玻璃气体放电管和陶瓷气体放电管,玻璃气体放电管和陶瓷气体放电管具有相同的特性。 气体放电管主要有密封的惰性气体组成,由金属引线引出,用陶瓷或是玻璃进行烧结。其工作原理为,当加在气体放电管两端的电压达到气体电离电压时,气体放电管由非自持放电过度到自持放电,放电管呈低阻导通状态,可以瞬间通过较大的电流,气体放电管击穿后的维持电压可以低到30V以内。气体放电管同流量大,但动作电压较难控制。 半导体放电管由故态的四层可控硅结构组成,当浪涌电压超过半导体放电管的转折电压V BO时放电管开始动作,当放电管动作后在返送装置,的作用下放电管两端的电压维持在很低(约20V以下)时就可以维持其在低阻高通状态,起到吸收浪涌保护后级设备的作用。半导体放电管的保护机理和应用方式和气体放电管相同。半导体放电管动作电压控制精确,通流量较小。 放电管动作后只需要很低的电压即可维持其低阻状态,所以放电管属于开关型的SPD。当正常工作时放电管上的漏电流可忽略不计;击穿后的稳定残压低,保护效果较好;耐流能力较大;在使用中应注意放电管的续流作用遮断,在适当场合中应有有效的续流遮断装置。 气体放电管 气体放电管:气体放电管由封装在小玻璃管或陶瓷管中相隔一定距离的两个电极组成;其电气性能主要取决于气体压力,气体种类,电极距离和电极材料;一般密封在放电管中的气体为高纯度的惰性气体。放电管主要由:电极、陶瓷管(玻璃管)、导电带、电子粉、Ag-Cu 焊片和惰性气体组成。 在放电管的两电极上施加电压时,由于电场作用,管内初始电子在电场作用下加速运动,与气体分子发生碰撞,一旦电子达到一定能量时,它与气体分子碰撞时发生电离,即中性气体分子分离成电子和阳离子,电离出来的电子与初始电子在行进过程中还要不断地再次与气体分子碰撞发生电离,从而电子数按几何级数增加,即发生电子雪崩现象,另外,电离出来的阳离子也在电场作用下向阴极运动,与阴极表面发生碰撞,产生二次电子,二次电子也参加电离作用,一旦满足: r(ead-1)=1 时放电管由非自持放电过渡到自持放电,管内气体被击穿,放电管放电,此时放电电压称为击穿电压Vs。其中,r表示一个正离子轰击阴极表面而

GDT气体放电管2RXXXL-5.5×6参数

2RXXXL-5.5×6 Series Features ●Size:5.5mm*6mm ●Stable breakdown voltage. ●High insulation resistance. ●Low capacitance (≤1pF) ●High holdover voltage ●Storage and operational temperature: -40℃~ +90℃●UL Certificate Number:E511538Applications ●Transient Voltage Surge Suppression(TVSS) ●Cable Telephone Product ●Modems/Cable Modems ●Broadband/CATV/Coaxial Protectors ●Communication Lines ●Power Supplies Specification Status:Draft (mm) Electrical Characteristics (TA = 25 °C unless otherwise noted) Part Number DC Breakdown Voltage Tolerance Impulse Spark-over Voltage Impulse Discharge Current 10hits(5hits each polarity) AC Discharge Current 5 hits Insulation Resistance* Capacitance 100V/s of Vs 1kv/μs8/20μs50Hz GΩ1MHz 2R075L-5.5×6 75V ±20% ≤600V 5KA 5A ≥10 ≤1pF 2R090L-5.5×6 90V ±20% ≤600V 5KA 5A ≥10 ≤1pF 2R150L-5.5×6 150V ±20% ≤600V 5KA 5A ≥10 ≤1pF 2R200L-5.5×6 200V ±20% ≤700V 5KA 5A ≥10 ≤1pF 2R230L-5.5×6 230V ±20% ≤700V 5KA 5A ≥10 ≤1pF 2R300L-5.5×6 300V ±20% ≤900V 5KA 5A ≥10 ≤1pF 2R350L-5.5×6 350V ±20% ≤1000V 5KA 5A ≥10 ≤1pF 2R400L-5.5×6 400V ±20% ≤1000V 5KA 5A ≥10 ≤1pF 2R470L-5.5×6 470V ±20% ≤1200V 5KA 5A ≥10 ≤1pF 2R600L-5.5×6 600V ±20% ≤1400V 5KA 5A ≥10 ≤1pF 2R1000L-5.5×6 1000V ±20% ≤2000V 3KA 3A ≥1 ≤1pF 2R2000L-5.5×6 2000V ±20% ≤2700V 2KA 2A ≥1 ≤1pF 1)At delivery AQL 0.65 leave ⅡMilitary Standard 105 E. 2)In ionized mode 3)Test according to ITU-T Rec.k.12 1

半导体放电管检测及测试方法

半导体放电管检测要求及测试方法 1 本要求遵循的依据 1.1YD/T940—1999《通信设备过电压保护用半导体管》 1.2YD/T694—1999《总配线架》 1.3GB/T2828.1—2003/ISO 2859—1:1999《计数抽样检验程序》 2 测试前准备及测试环境条件 2.1对测试设备进行校验,检查是否正常,正常后才能使用。 2.2在标准大气条件下进行试验 2.2.1温度:15~35℃ 2.2.2相对湿度:45%~75% 2.2.3大气压力:86~106Kpa 所有的电测量以及测量之后的恢复应在以下大气条件下进行: 温度:25±5℃ 相对湿度:45%~75% 大气压力:86~106Kpa 在进行测量前应使半导体管温度与测量环境温度达到平衡,测量过程的环境温度应记录在试验报告中。 2.3按GB/T2828.1—2003《计数抽样检验程序》的规定。按一定抽样正常方案,一般检查水平Ⅱ,抽取一定数量的样本。 3 检测要求和测试方法 3.1外形检查 3.1.1要求放电管两头封口平直无歪斜,外形整洁,无污染、腐蚀和其他多余物,封装无破损、裂纹、伤痕、引出线不短裂、不松动。 3.1.2金属镀层不起皮、不脱离、不生锈、不变色。 3.1.3外形尺寸公差符合SJ1782—81中4级公差,即公称尺寸>3—6,其公差为±0.1,公称尺寸>6—10,其中公差为±0.12,合格率要达到≥97.5%。 3.1.4产品标志应清晰耐久 3.1.5包装箱应标记生产厂家、产品名称、型号、标准号、重量及生产日期或批号,且包装材料应保持干燥、整洁、对产品无腐蚀作用 3.2直流击穿电压测试 3.2.1用XJ4810半导体管特性图示仪对经过上一项目测试合格的放电管进行初始检测,用正极性测试后进行反极性测试,正、反极性各测2次,每次测试间隔时间为1~2min。 3.2.1半导体管的最高限制电压应不大于表1给出的极限值,试验电流应在1A~10A之间试验是加在半导体管上的电流变化率应≤30A/μs。 3.2.3试验所用的电压发生器必须保持表1所示的开路电压上升速率,上升速率应在一定的范围之内。试验电路如图1、图2所示。 图 1 电压上升速率的范围 a) 电压上升速率为100KV/S 注:为了得到足够的试验电流以使样品击穿,图(a)中的电阻R和图(b)中的电阻R4可能需要进行调整,一般取为50Ω。

陶瓷气体放电管及其主要参数

关于陶瓷气体放电管及其主要参数 放大器和光接收机的信号输入、输出接线柱上,通常都和“地”之间接一只陶瓷气体放电管,用以避雷和防止干扰脉冲损坏放大模块、光接收组件。当发生钢绞线和电源线相碰的事故以后,由于陶瓷气体放电管击穿放电持续时间比较长,内部的电极往往融化失效,损坏的比例极高;遭雷击时,也会有较高比例的陶瓷气体放电管损坏。损坏的陶瓷气体放电管有一部分引脚烧断、或短路,比较容易发现和检出,但是有相当一部分从外表上看不出来,也没有短路,维修人员往往以为好的而没有将其更换。 损坏的陶瓷气体放电管在修理时必须更换新管,否则,这些光光接收机和放大器极容易遭雷击和脉冲干扰危害而引起放大模块和光接收组件损坏!许多各地同仁反应,修理过的光接收机和放大器比较容易再次损坏,其中最主要的原因就可能就是损坏的陶瓷气体放电管没有更换! 更换陶瓷气体放电管时必须注意换进原来型号的管子,因为不同型号的陶瓷气体放电管的性能参数是不一样的。 下面简要介绍陶瓷气体放电管的基本结构和基本特性,并附表列出两个厂家的产品参数供同仁参考。 陶瓷气体放电管内部有二个相对的针柱形金属电极,每个电极由支架和敷了钡(容易发射电子)的钨丝所组成,极间距离1.2mm左右(因此是互相绝缘的),放电管内部涂有氧化钠和消气剂,充有80~200毫米汞柱的氖气或氩气。有线电视上用的陶瓷放电管的极间电容通常≤2pf,因此它接在光接收机、放大器的信号输出、输入端子上对信号影响极微;陶瓷放电管的击穿放电时间通常≤2微妙(10-6s级),比雷击电流数十微妙的波头时间要短些,因此能保护器件免遭雷击。但是两者的时间处于同一个数量级,而且差距很小,因此陶瓷放电管一定要直接接在光接收机、放大器的信号输出、输入端子上,中间不可有电感线圈隔着,否则会造成延时,致使雷击电流波头电流到达之前不能导通放电,达不到防雷保护的作用。 另一种防雷器件叫“压敏电阻”,它的击穿放电时间通常达到10-8s级,比陶瓷气体放电管要快二个数量级,因此是很好的防雷器件,广泛用于交流电源电路的防雷保护。但是它不能代替接在光接收机、放大器信号输入、输出接线柱上的陶瓷气体放电管。因为压敏电阻存在几十微安的漏电流,极间电容也大,取代进去会造成信号损失等问题。 陶瓷气体放电管规格型号和参数 主要用于有线电视、长话、市话程控交换设备及各种电子、电器设备的防雷、防过电压保护。

放电管介绍及选型(详解)

放电管介绍及选型(详解)

放电管特性及选用 吴清海 放电管的分类 放电管主要分为气体放电管和半导体放电管,其中气体放电管由烧结的材料不同分为玻璃气体放电管和陶瓷气体放电管,玻璃气体放电管和陶瓷气体放电管具有相同的特性。 气体放电管主要有密封的惰性气体组成,由金属引线引出,用陶瓷或是玻璃进行烧结。其工作原理为,当加在气体放电管两端的电压达到气体电离电压时,气体放电管由非自持放电过度到自持放电,放电管呈低阻导通状态,可以瞬间通过较大的电流,气体放电管击穿后的维持电压可以低到30V以内。气体放电管同流量大,但动作电压较难控制。 半导体放电管由故态的四层可控硅结构组成,当浪涌电压超过半导体放电管的转折电压V BO 时放电管开始动作,当放电管动作后在返送装置,的作用下放电管两端的电压维持在很低(约20V以下)时就可以维持其在低阻高通状态,起到吸收浪涌保护后级设备的作用。半导体放电管的保护机理和应用方式和气体放电管相同。半导体放电管动作电压控制精确,通流量较小。

放电管动作后只需要很低的电压即可维持其低阻状态,所以放电管属于开关型的SPD。当正常工作时放电管上的漏电流可忽略不计;击穿后的稳定残压低,保护效果较好;耐流能力较大;在使用中应注意放电管的续流作用遮断,在适当场合中应有有效的续流遮断装置。 气体放电管 气体放电管:气体放电管由封装在小玻璃管或陶瓷管中相隔一定距离的两个电极组成;其电气性能主要取决于气体压力,气体种类,电极距离和电极材料;一般密封在放电管中的气体为高纯度的惰性气体。放电管主要由:电极、陶瓷管(玻璃管)、导电带、电子粉、Ag-Cu焊片和惰性气体组成。 在放电管的两电极上施加电压时,由于电场作用,管内初始电子在电场作用下加速运动,与气体分子发生碰撞,一旦电子达到一定能量时,它与气体分子碰撞时发生电离,即中性气体分子分离成电子和阳离子,电离出来的电子与初始电子在行进过程中还要不断地再次与气体分子碰撞发生电离,从而电子数按几何级数增加,即发生

P0080SB系列半导体放电管固体放电管

THYRISTOR SURGE SUPPRESSER DESCRIPTION DO 214AA SMB Thyristor solid state protection thyristor protect telecommunications equipment such as modems -/,line cards fax machines and other CPE ,,. This Series devices are used to enable equipment to meet various regulato-ry requirements including GR1089ITU-,K 20K 21and K 45IEC 60950and TIA 968formerly known as FCC Part 68.,..,,-(). FEATURES >Excellent capability of absorbing transient surge >Quick response to surge voltage >Eliminates overvoltage caused by fast rising transients >Non degenerative DO-214AA PACKAGE PART NUMBER AND ELECTRICAL PARAMETER @ T=25RH = 45%-75% ℃

PART NUMBERING AND MARKING SYSTEM P 3100 SB (1) Thyristor Surge Suppresser (2) Series: 0080, 0300, 0800, 1800, 2300, 2600, 3100, 3500,4200 etc.(3) Package : SMB 10/700uS:4KV (1) (2) (3) SEMIWILL LOGO Part Number DIMENSIONS SOLDERING PARAMETERS SMB/DO-214AA

半导体放电管和气体放电管的基础知识

半导体放电管和气体放电管的基础知识 气体放电管的结构及特性 开放型气体放电管放电通路的电气特性主要取决于环境参数,因而工作的稳定性得不到保证。为了提高气体放电管的工作稳定性,目前的气体放电管大都采用金属化陶瓷绝缘体与电极进行焊接技术,从而保证了封接的外壳与放电间隙的气密性,这就为优化选择放电管中的气体种类和压力创造了条件,气体放电管内一般充电极有氖或氢气体。气体放电管的各种电气特性,如直流击穿电压、冲击击穿电压、耐冲击电流、耐工频电流能力和使用寿命等,能根据使用系统的要求进行调整优化。这种调整往往是通过改变放电管内的气体种类、压力、电极涂敷材料成分及电极间的距离来实现的。气体放电管有二极放电管及三极放电管两种类型。有的气体放电管带有电极引线,有的则没有电极引线。从结构上讲,可将气体放电管看成一个具有很小电容的对称开关,在正常工作条件下它是关断的,其极间电阻达兆欧级以上。当浪涌电压超过电路系统的耐压强度时,气体放电管被击穿而发生弧光放电现象,由于弧光电压低,仅为几十伏,从而可在短时间内限制了浪涌电压的进一步上升。气体放电管就是利用上述原理来限制浪涌电压,对电路起过压保护作用的。 随着过电压的降低,通过气体放电管的电流也相应减少。当电流降到维持弧光状态所需的最小电流值以下时,弧光放电

停止,放电管的辉光熄灭。气体放电管主要用来保护通信系统、交通信号系统、计算机数据系统以及各种电子设备的外部电缆、电子仪器的安全运行。气体放电管也是电路防雷击及瞬时过压的保护元件。气体放电管具有载流能力大、响应时间快、电容小、体积小、成本低、性能稳定及寿命长等特点;缺点是点燃电压高,在直流电压下不能恢复截止状态,不能用于保护低压电路,每次经瞬变电压作用后,性能还会下降。 半导体放电管也称固体放电管是一种PNPN元件,它可以被看作一个无门电极的自由电压控制的可控硅,当电压超过它的断态峰值电压或称作雪崩电压时,半导体放电管会将瞬态电压箝制到元件的开关电压或称转折电压值之内。电压继续增大时,半导体放电管由于负阻效应进入导通状态。只有在当电流小于维持电流时,元件才会复位并恢复到它的高阻抗状态。半导体放电管的优点包括它的快速响应时间,稳定的电气性能参数以及长期使用的可靠性。其响应速度是气体放电管的千分之一,而寿命是气体放电管的10倍以上。半导体放电管是负阻元件,其能量转移特性使之不会被高电压是你坏。这一点是远胜于TVS二极管的。另一方面,半导体放电管也能做到较高的浪涌电流和很低的电容值。 半导体放电管主要用作电子通讯和数据通讯电路的首级和二级过电压保护器。一、半导体放电管的结构和工作原理

半导体放电管2SA的培训内容

2SA器件相关知识培训内容 一、2SA器件相关术语及基本特性; 二、器件制造工艺介绍; 三、产品品质控制方法; 四、器件常规检测方法及参考标准; 五、使用的标准与国际标准符合性介绍; 六、器件寿命分析; 七、器件保存和使用的注意事项。

一、2SA器件相关术语及基本特性 1、产品名称:过电压保护用半导体管。 简称:半导体放电管,也有称固体放电管。 2、2SA110-J型号说明: “2”——器件的电极数目 “SA”——过电压保护用半导体管(Semiconductor arrester for the over-voltage protection of telecommunications installations) “110”——产品系列号 “J”——表示夹持安装 3、过电压保护用半导体管的定义: 当在两个电极上施加的电压超过额定值时迅速变成低阻(导通)状态,电压撤消后又恢复成高阻状态且正反特性一致的器件。 相关语术: 最高限制电压——在规定上升速率的电压冲击下半导体管上允许出现的最高电压。 不动作电压——半导体放电管保持高阻状态时所能承受的最高电压。 标称冲击电流——半导体放电管正常工作所允许通过的额定脉冲电流(峰值)。 标称工频电流——半导体放电管正常工作时所允许通过的频率为50HZ的额定交流电流(有效值) 4、SA110-J型放电管的结构如图1所示: 图1 1——上、下两个电极;2——封装材料(环氧树脂);3——半导体芯片放电管的电性能是由半导体芯片生成的。半导体放电管芯片的结构如图2所示:

图2 图3 根据芯片结构图可以画出等效电路图3 图2中P1和P11、P2和P22实际上是同一工艺步骤形成的相同区域,为了清楚分析而特定划分开的。当外加电压施于A1、A2两电极之间,设若A1为正电压,A2为负电压时,PN结J1为正向偏置,呈低阻抗,而PN结J2为反向偏置,呈高阻抗。此时所有的晶体管Q1~Q4皆被截止。放电管呈开路状态。但是当外加电压不断增高,达到和超过PN结J2的击穿电压V BR时,J2立即发生雪崩击穿,有电流通过P2和P22区域并在其上产生电压降。当P22与N2间结上的电压差接近0.6V时,Q2晶体管的发射极N2有电子注入基区P22,晶体管Q2开始动作并有放大作用。电流经过反复放大,于是Q1、Q2迅速进入深饱和区,使A1与A2之间导通,其间的残压可达到3.5V以下,外加的高电压迅即释放。从而起到过电压保护作用,随着外加高电压泄放完毕,晶体管重又自动恢复到截止状态。 由于放电管芯片结构上上下完全对称,因此,反过来A1端为负、A2端为正,动作过程与上述完全类似。半导体放电管伏安特性曲线如图4所示:

气体放电管技术参数

主要技术参数及使用选择 1.直流放电电压 在上升陡度低于100V/s的电压作用下,放电管开始放电的平均电压值称为其直流放电电压。由于放电的分散性,所以,直流放电电压是一个数值范围。 2.冲击放电电压 在具有规定上升陡度的暂态电压脉冲作用下,放电管开始放电的电压值称为其冲击放电电压。 放电管的响应时间或动作时延与电压脉冲的上升陡度有关,对于不同的上升陡度,放电管的冲击放电电压是不同的。 3.工频耐受电流 放电管通过工频电流5次,使管子的直流放电电压及绝缘电阻无明显变化的最大电流称为其工频耐受电流。 4.冲击耐受电流 将放电管通过规定波形和规定次数的脉冲电流,使其直流放电电压和绝缘电阻不会发生明显变化的最大值电流峰值称为管子的冲击耐受电流。 这一参数是在一定波形和一定通流次数下给出的,制造厂通常给出在8/20us波形下通流10次的冲击耐受电流,也有给出在10/1000us波形下通流300次的冲击耐受电流。 5.绝缘电阻和极间电容 放电管的绝缘电阻值很大,厂家一般给出的是绝缘电阻的初始值,约为数千兆欧。绝缘电阻值的降低会导致漏流的增大,有可能产生噪音干扰。 放电管的寄生电容很小,极间电容一般在1pF~5pF范围,极间电容在很宽的频率范围内保持近似不变,同型号放电管的极间电容值分散性很小。 6. 直流放电电压的选择 从不影响被保护系统正常运行的要求出发,希望放电管的直流放电电压选得高些。但直流放电电压高的管子,冲击放电电压也高; 从被保护电子设备的耐受性来说看,希望管子的直流放电电压选得低一些。 所以,放电管的支流放电电压应在这两种相互制约的要求之间进行折衷选择。 优缺点 优点:绝缘电阻很大,寄生电容很小, 缺点:在于放电时延(即响应时间)较大,动作灵敏度不够理想,对于波头上升陡度较大

放电管原理及选型使

放电管的原理及选型使 1、产品简述 陶瓷气体放电管(Gas Tube)是防雷保护设备中应用最广泛的一种开关器件,无论是交直流电源的防雷还是各种信号电路的防雷,都可以用它来将雷电流泄放入大地.其主要特点是:放电电流大,极间电容小(≤3pF),绝缘电阻高(≥109Ω),击穿电压分散性较大(±20%),反应速度较慢(最快为0.1~0.2μs)。按电极数分,有二极放电管和三极放电管(相当于两个二极放电管串联)两种。其外形为圆柱形,有带引线和不带引线两种结构形式(有的还带有过热时短路的保护卡)。 2、工作原理 气体放电管由封装在充满惰性气体的陶瓷管中相隔一定距离的两个电极组成。 其电气性能基本上取决于气体种类、气体压力以及电极距离,中间所充的气体主要是氖或氩, 并保持一定压力,电极表面涂以发射剂以减少电子发射能。这些措施使得动作电压可以调整(一般是70伏到几千伏),而且可以保持在一个确定的误差范围内。当其两端电压低于放电电压时,气体放电管是一个绝缘体(电阻Rohm〉100MΩ).当其两端电压升高到大于放电电压时,产生弧光放电,气体电离放电后由高阻抗转为低阻抗, 使其两端电压迅速降低,大约降几十伏。气体放电管受到瞬态高能量冲击时,它能以10—6秒量级的速度,将其两极间的高阻抗变为低阻抗,通过高达数十千安的浪涌电流. 3、特性曲线

Vs导通电压, Vg辉光电压,Vf弧光电压,Va熄弧电压 4、主要特性参数 ①直流击穿电压Vsdc:在放电管上施加100V/s的直流电压时的击穿电压值.这是放电管的标称电压,常用的有90V、150V、230V、350V、470V、600V、800V等几种,我们有最高3000V、最低70V的。其误差范围:一般为±20%,也有的为±15%。 ②脉冲(冲击)击穿电压Vsi:在放电管上施加1kV/μs的脉冲电压时的击穿电压值。因反应速度较慢,脉冲击穿电压要比直流击穿电压高得多。 陶瓷气体放电管对低上升速率和高上升速率电压的响应如下图所示。 ③冲击放电电流Idi:分为8/20μs波(短波)和10/1000μs波(长波)冲击放电电流两种。常用的是8/20μs波.冲击放电电流又分为单次冲击放电电流(8/20μs波冲击1次)和标称冲击放电电流(8/20μs波冲击10次),一般后者约为前者的一半左右,有2.5 kA、5 kA、10 kA、20 kA……等规格。

半导体放电管工作原理及选型应用

半导体放电管工作原理及选型应用 Socay(Sylvia) 1、产品简述 半导体过压保护器是根据可控硅原理采用离子注入技术生产的一种新型保护器件,具有精确导通、快速响应(响应时间ns级)、浪涌吸收能力较强、双向对称、可靠性高等特点。由于其浪涌通流能力较同尺寸的TVS管强,可在无源电路中代替TVS管使用。但它的导通特性接近于短路,不能直接用于有源电路中,在这样的电路中使用时必须加限流元件,使其续流小于最小维持电流。半导体过压保护器有贴装式、直插式和轴向引线式三种封装形式。 2、工作原理 ?反向工作状态(K端接正、A端接负) ?正向工作状态(A端接正、K端接负) ①阻断区:此时器件两端所加电压低于击穿电压,J1正偏,J2为反偏,电流很小,起了阻挡电流的作用,外加电压几乎都加在了J2上。 ②雪崩区:当外加电压上升接近J2结的雪崩击穿电压时,反偏J2结空间电荷区宽度扩展的同时,结区内电场大大增强,从而引起倍增效应加强。于是,通过J2结的电流突然增大,并使流过器件的电流也增大,这就是电压增加,电流急剧增加的雪崩区。 ③负阻区:当外加电压增加到大于VBO时,由于雪崩倍增效应而产生了大量的电子空穴对,此时这些载流子在强场的作用下,电子进入n2区,空穴进入p1区,由于不能很快复合而分别堆积起来,使J2空间电荷区变窄。由此使p1区电位升高、n2区电位下降,起了抵消外电压的作用。随着J2结区电场的减弱,降落在J2结上的外电压将下降,雪崩效应也随之减弱。另一

方面,J1、J3结的正向电压却有所增加,注入增强,造成通过J2结的电流增大,于是出现了电流增加电压减小的负阻现象。 ④低阻通态区:如上所述,雪崩效应使J2结两侧形成空穴和电子的积累,造成J2结反偏电压减小;同时又使J1、J3结注入增强,电流增大,因而J2结两侧继续有电荷积累,结电压不断下降。当电压下降到雪崩倍增完全停止,结电压全部被抵消后,J2结两侧仍有空穴和电子积累时,J2结变为正偏。此时,J1、J2和J3全部为正偏,器件可以通过大电流,因而处于低阻通态区。完全导通时,其伏安特性曲线与整流元件相似。 3、特性曲线 4、主要特性参数 ①断态电压VRM与漏电流IRM:断态电压VRM表示半导体过压保护器不导通的最高电压,在这个电压下只有很小的漏电流IRM。

半导体放电管T0-92直插

A.General Description 简要概述 半导体放电管器件专门用来防止敏感的电信设备、POS 终端、基站设备、网络视频等设备出现由闪电、电源接触和电源感应引起的过压故障危险。它们具有高电气浪涌抑制能力,有助于防止瞬间故障和断开状态的高阻抗,使系统的正常运行过程变得实际上更加透明。 广泛应用在:网络通迅及消费类电子产品、高速数据传 输设备(T1/E1、XDSL、ISDN、HDSL、CATV、SLIC 等)。 经典应用:电话信号接口防护、RS485、RS232、RS422 等数据接口。产品特点产品特点:: 精确导通电压、快速响应 超强的浪涌处理能力 双向对称,可靠性高 安装简便,器件体积小 分SMA、SMB 贴片型/DO-15、TO-92直插型 符合ROHS 要求 满足通信产品标准要求 T0-92 B.Dimension 产品尺寸

C.Specification电气特性 D.Surge Ratings浪涌额定值 B级2502502501008030500 C级50040040015010050500 E.Product Terminology产品术语 Electrical Parameters电气参数 V DM:Repetitive peak Off-state Voltage最高峰值电压,器件可保持关断状态,也即:不正作峰值电压 VBo:Switching Voltage半导体雪崩或开关切换动作电压 Ipp:Surge Ratings最大额定峰值脉冲电流 I DM:Off-state current在V DM下最大泄漏电流值

I H Min :Minimum Holding current 导通状态最小电流C :O ff-state Capacitance 不工作状态下器件电容值di/dt :Rate of Rise of Current 电流上升率dv/dt :Rate of Rise of Voltage 电压上升率 F.Thermal Considerations 温度特性考虑 封装形式 Symbol 符号 Parameter 参数 Value 值TO-92 T J Operating Junction Temperature Range 工作温度范围-40~+150℃T S Storage Temperature Range 贮存温度范围-55~+150℃R ?JA Thermal Resistance:Junction to Ambient 90℃/W

UN3E8系列陶瓷气体放电管(GDT)特性参数

UN3E8系列陶瓷气体放电管(GDT)特性参数 优恩半导体(UN) 1、UN3E8系列陶瓷气体放电管(GDT)型号: UN3E8-75HM、UN3E8-75HMF、UN3E8-75HP、UN3E8-75H、UN3E8-90HM、UN3E8-90HMF、UN3E8-90HP、UN3E8-90H、 UN3E8-150HM、UN3E8-150HMF、UN3E8-150HP、UN3E8-150H、UN3E8-230HM、UN3E8-230HMF、UN3E8-230HP、UN3E8-230H、UN3E8-250HM、UN3E8-250HMF、UN3E8-250HP、UN3E8-250H、UN3E8-300HM、UN3E8-300HMF、UN3E8-300HP、UN3E8-300H、UN3E8-350HM、UN3E8-350HMF、UN3E8-350HP、UN3E8-350H、UN3E8-420HM、UN3E8-420HMF、UN3E8-420HP、UN3E8-420H、UN3E8-470HM、UN3E8-470HMF、UN3E8-470HP、UN3E8-470H、UN3E8-600HM、UN3E8-600HMF、UN3E8-600HP、UN3E8-600H、UN3E8-800HM、UN3E8-800HMF、UN3E8-800HP、UN3E8-800H。 2、UN3E8系列陶瓷气体放电管(GDT)产品图片及封装形式:

3、UN3E8系列陶瓷气体放电管(GDT)产品特点: 4、UN3E8系列陶瓷气体放电管(GDT)产品型号及特性参数:

5、UN3E8系列陶瓷气体放电管(GDT)命名:

半导体放电管

JKS’S TSS -1-

CONTENTS Contents (2) High Reliability Experiment Lis t…………………………………………3-4 SMA(DO-214AC)Series…………………………………………………5-9 SMB(DO-214AA)Series…………………………………………………10-14 TO-92Series…………………………………………………15-19 DO-41/15/27Series…………………………………………………20-25 -2-

High reliability Experiment List可靠性试验项目 NO. Experiment Item Time or Cycle Experiment Conditions Reference 1High Temperature Reverse Bias 96-180H ①T A=125±5℃forO/J ②T A=150±5℃for GPP Bias=80%VR for all MIL-STD-750D METHOD-1038 2Steady-state Operation Life 168-1000H Rated average rectifier current IO=IF(AV)@TA=25℃ MIL-STD-750D METHOD-1027 3HT Storage168-1000H TA=150±5℃MIL-STD-750D METHOD-1031 4Intermittent Operation Life 1000CYCLE ON=5Min with rated IO MIL-STD-750D METHOD-1036 5Temperature Cycling(air to air) 10CYCLE TH=150+3/-0℃10Min TL=-55+0/-3℃10Min Transfer time=5min MIL-STD-750D METHOD-1051 6Thermal Shock10CYCLE 0℃/5MIN 100℃/5MIN MIL-STD-750D METHOD-1056 7Soldering Heat10SEC260±5℃MIL-STD-750D METHOD-1031 High reliability Experiment List可靠性试验项目 -3-

半导体过压保护器件和它的应用

半导体过压保护器件和它的应用 它造成的后果有以下几个方面。一个是造成部分或整体的损坏,第二种是干扰正常的功能,无法完成正常使用效果,最严重的可能会加速设备老化,缩短寿命。雷击有三个渠道,通过这三个渠道可以对我们的设备造成损害,一种是雷击在我们室外传输线附近感受雷击的话,会通过传输线进到我们的设备,如果雷击到我们设备地线的时候,导致我们地电位的上升,导致设备的损坏,第三种还有雷在附近爆炸,通过电子脉冲的方式辐射到设备中,也会造成损坏。 雷击的浪涌电压有两个特点,一个电压会很高,电流也很大,但是它的作用时间会非常的短,这是雷电流的一种,一种是直击雷,一种耦合雷,对应雷的电流是不一样。 工业过电压就不说了,大概是这么几种情况。静电也是我们需要防护的一个很重要的方面,尤其是半导体用来做防静电效果非常好,这是核磁脉冲。 哦对了,先自我介绍一下,大家好刘建朝,今天我是简单跟大家介绍一下半导体的保护器件,大概分这么几个方面,首先介绍一下浪涌的来源,大概分四种,作为保护来说,研究比较多的一个是雷击,一个是静电,这个主要是军用的,遇到的情况比较少,大部分是大电流的,保护不是半导体考虑的,我们更考虑雷击和静电。谢谢!同时感谢本次电路保护与电磁兼容研讨会的主办方中国电子展(https://www.360docs.net/doc/633716184.html,)、电子元件技术网(https://www.360docs.net/doc/633716184.html,) 和我爱方案网(https://www.360docs.net/doc/633716184.html,)! ESD的产生根据这几种模型大概分成以下几种。最常用的就是人体放电的模型,机器放电的模型,主电充电的模型,还有电场感应的模型。 它的危害也很大,会造成设备损坏,影响可靠性,每年造成的损失是相当可观的,机理大概分这么几部分,失效机理会造成这儿几个,第一个是二次击穿,一个是金属层的熔化,介质击穿,气弧的放电,还有其它的击穿方式。 一些静电保护投入会有很高的回报。下面一个是它的标准,我们谈保护,大家用的最高的标准就是电工协会的标准,我们的国标跟这个基本上差不多,这是我们已经有的ESD保护的器件,我们分成两大类,一个纯ESD保护,有一种是ESD、EMI的滤波器在一起的保护,这个纯ESD保护又分几种,一种单路,一种阵列的,一种低电容的,种类很多,最小的大概一个毫米都不到,还有多路的,然后低电容的,低电容最新已经做到0.5个PF,半导体的ESD保护器件,有ESD 的保护,还有滤波器,都是半导体的保护。 讲一下它的选型,TVS的选型可能要考虑几个方面,一个是击穿电压的选择,我们大概有这么一个准则,有单向的,有双向的。第二个是钳位电压的选择,第三个是浪涌功率的选择,第四个是极间电容的选择,因为现在通讯越来越快,电容大家选TVS电容要注意的地方,选择不好会有很多不良的影响。 这是我们给出来的一个极间电容与工作频率的关系,你的工作频率是多少?你要选它的电容,要小到什么程度?这样让保护器件不至于对你电路造成不良的影响。

气体放电管原理及应用(详解)

气体放电管原理及应用(详解) 原理:气体放电管采用陶瓷密闭封装,内部由两个或数个带间隙的金属电极,充以惰性气体(氩气或氖气)构成,基本外形如图1所示。当加到两电极端的电压达到使气体放电管内的气体击穿时,气体放电管便开始放电,并由高阻变成低阻,使电极两端的电压不超过击穿电压。 气体放电管的主要参数 1)反应时间指从外加电压超过击穿电压到产生击穿现象的时间,气体放电管反应时间一般在μs数量极。 2)功率容量指气体放电管所能承受及散发的最大能量,其定义为在固定的8×20μs电流波形下,所能承受及散发的电流。 3)电容量指在特定的1MHz频率下测得的气体放电管两极间电容量。气体放电管电容量很小,一般为≤1pF。 4)直流击穿电压当外施电压以500V/s的速率上升,放电管产生火花时的电压为击穿电压。气体放电管具有多种不同规格的直流击穿电压,其值取决于气体的种类和电极间的距离等因素。 5)温度范围其工作温度范围一般在-55℃~+125℃之间。 6)绝缘电阻是指在外施50或100V直流电压时测量的气体放电管电阻,一般>1010Ω。 气体放电管的应用示例

1)电话机/传真机等各类通讯设备防雷应用 如图3所示。特点为低电流量,高持续电源,无漏电流,高可靠性。 图3 通讯设备防雷应用 2)气体放电管和压敏电阻组合构成的抑制电路 图4是气体放电管和压敏电阻组合构成的浪涌抑制电路。由于压敏电阻有一致命缺点:具有不稳定的漏电流,性能较差的压敏电阻使用一段时间后,因漏电流变大可能会发热自爆。为解决这一问题在压敏电阻之间串入气体放电管。但这又带来了缺点就是反应时间为各器件的反应时间之和。例如压敏电阻的反应时间为25ns,气体放电管的反应时间为 100ns,则图4的R2,G,R3的反应时间为150ns,为改善反应时间加入R1压敏电阻,这样可使反应时间为25ns。 图4 气体放电管和压敏电阻配合应用 3)气体放电管在综合浪涌保护系统中的应用 自动控制系统所需的浪涌保护系统一般由二级或三级组成,利用各种浪涌抑制器件的特点,可以实现可靠保护。气体放电管一般放在线路输入端,做为一级浪涌保护器件,承受大的浪涌电流。二级保护器件采用压敏电阻,在μs级时间范围内更快地响应。对于高灵敏的电子电路,可采用三级保护器件TVS,在ps级时间范围内对浪涌电压产生响应。如图5所示。当雷电等浪涌到来时,TVS首先起动,会把瞬间过电压精确控制在一定的水平;如果浪涌电流大,则压敏电阻起动,并泄放一定的浪涌电流;两端的电压会有所提高,直至推动前级气体放电管的放电,把大电流泄放到地。 图5 三级保护

(完整版)三种类型的放电管性能比较

左右,在它未导通前,会有一个幅度较大的尖脉冲漏过去。 若要抑制这个尖脉冲,有以下几种方法:a、在放电管上并联电容器或压敏电阻;b、在放电管后串联电感或留一段长度适当的传输线,使尖脉冲衰减到较低的电平;c、采用两级保护电路,以放电管作为第一级,以TVS管或半导体过压保护器作为第二级,两级之间用电阻、电感或自恢复保险丝隔离。 2、陶瓷气体放电管击穿电压一致性较差,离散性较大,误差为±20%。一般不作并联使用。 3、直流击穿电压(DC-Spark-over Voltage)的选择:直流击穿电压的最小值应大于被保护线路的最大工作电压的1.2倍以上。 4、脉冲击穿电压(Impulse Spark-over Voltage)的选择:脉冲击穿电压要考虑浪涌防护等级,例如采用10/700μs的波形试验电压4000V,GDT的脉冲击穿电压要小于4000V,这样在测试时GDT才能导通,起到保护作用。单纯从线路保护来讲,脉冲击穿电压越低,线路保护效果越好。实际上,选定了GDT的直流击穿电压,它的脉冲击穿电压也随之确定了。

5、冲击放电电流(通流量)的选择:要根据线路上可能出现的最大浪涌电流或需要防护的最大浪涌电流来选择。 6、续流问题:为了使放电管在冲击击穿后能正常熄弧,在有可能出现续流的地方(如有源电路中),可以在放电管上串联压敏电阻或自恢复保险丝等限制续流,使它小于放电管的维持电流。 二、玻璃气体放电管: SPG(Spark Gap Protectors),玻璃气体放电管,也称强效气体放电管。 1、反应速度快(与陶瓷气体放电管不同,不存在冲击击穿的滞后现象)。SPG 内部由半导体硅集成,在动作时,当外加电压增大至超过惰性气体的绝缘强度后,由于半导体硅的不稳定性作用,会使两极间的放电发展更为迅速。因此:玻璃气体放电管的反应速度比陶瓷气体放电管要快。 2、通流容量较陶瓷气体放电管小得多。 3、击穿电压尚未形成系列值。 4、击穿电压分散性较大,为±20%。 三、半导体放电管: TSS(Thyristor Surge Suppressors),浪涌抑制晶闸管,也称半导体放电管。 1、半导体放电管电容较大,有几十至几百pF。 2、击穿电压精度高。 AC220V电源防护方案 1、陶瓷气体放电管: GDT1/GDT2:型号:UN2E5-600LL;直流标称电压(V):600±20%;冲击电流(8/20μs):5KA;Cp:<1pF;电阻:>1GΩ;备注:中防护级别。 GDT1/GDT2:型号:UN2E8-600ML;直流标称电压(V):600±20%;冲击电流(8/20μs):10KA;Cp:<1pF;电阻:>1GΩ;备注:高防护级别。 2、压敏电阻:MOV1/MOV2/MOV3: 型号:14D561K;压敏电压(@1mA):504V-616V;突破电流耐量(8/20μs):4500A;最大抑制电压(@5A):925V;备注:中防护级别。型号:20D561K;压敏电压(@1mA):504V-616V;突破电流耐量(8/20μs):6500A;最大抑制电压(@5A):925V;备注:高防护级别。

相关文档
最新文档