分式经典题型分类练习题

分式经典题型分类练习题
分式经典题型分类练习题

分式经典题型分类练习题49496

第一讲 分式的运算 (一)、分式定义及有关题型 题型一:考查分式的定义 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,2 2 π,是分式的有: . 题型二:考查分式有意义的条件 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件 【例3】当x 取何值时,下列分式的值为0. (1)3 1 +-x x (2) 4 2||2--x x (3) 6 53222----x x x x 题型四:考查分式的值为正、负的条件 【例4】(1)当x 为何值时,分式 x -84 为正; (2)当x 为何值时,分式2 ) 1(35-+-x x 为负; (3)当x 为何值时,分式 3 2 +-x x 为非负数. 练习: 1.当x 取何值时,下列分式有意义: (1) 3 ||61 -x (2) 1 )1(32++-x x (3) x 111+ 2.当x 为何值时,下列分式的值为零: (1)4 |1|5+--x x (2) 5 6252 2+--x x x 3.解下列不等式 (1) 01 2 ||≤+-x x (2) 03 252 >+++x x x (二)分式的基本性质及有关题型

1.分式的基本性质:M B M A M B M A B A ÷÷=??= 2.分式的变号法则: b a b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数 【例1】不改变分式的值,把分子、分母的系数化为整数. (1)y x y x 4 1313221+- (2) b a b a +-04.003.02.0 题型二:分数的系数变号 【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)y x y x --+- (2)b a a --- (3)b a --- 题型三:化简求值题 【例3】已知:511=+y x ,求y xy x y xy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出y x 1 1+. 【例4】已知:21=- x x ,求2 21 x x +的值. 【例5】若0)32(|1|2=-++-x y x ,求 y x 241 -的值. 练习: 1.不改变分式的值,把下列分式的分子、分母的系数化为整数. (1) y x y x 5.008.02.003.0+- (2)b a b a 10 141534.0-+ 2.已知:31=+x x ,求1 242 ++x x x 的值. 3.已知: 311=-b a ,求a ab b b ab a ---+232的值. 4.若0106222=+-++b b a a ,求b a b a 532+-的值. 5.如果21<

八年级数学下册《分式第二讲分式方程》知识点及典型例习题.doc

【知识要点】 1. 分式方程的概念以及解法 ; 2. 分式方程产生增根的原因 3. 分式方程的应用题 【主要方法】 2. 1. 分式方程主要是看分母是否有外未知数 ; 解分式方程的关健是化分式方程为整式方程 ; 方程两边同乘以最简公分 母. 3. 解分式方程的应用题关健是准确地找出等量关系, 恰当地设末知数 . 2019-2020 年八年级数学下册《分式第二讲 分式方程》知识点和典型例习题 题型一:用常规方法解分式方程 【例 1】解下列分式方程 ( 1) 1 3 ;( 2) 2 1 0 ;( 3) x 1 4 1 ;( 4) 5 x x 5 x 1 x x 3 x x 1 x 2 1 x 3 4 x 提示易出错的几个问题: ①分子不添括号;②漏乘整数项;③约去相同因式至使漏根; ④忘 记验根 . 题型二:特殊方法解分式方程 【例 2】解下列方程 ( 1) x 4 x 4 4 ; ( 2) x 7 x 9 x 10 x 6 x 1x x 6 x 8 x 9 x 5 提示:( 1)换元法,设 x y ;( 2)裂项法, x 7 1 1 . x 1 x 6 x 6 【例 3】解下列方程组 1 1 1 (1) x y 2 1 1 1 (2) y z 3 1 1 1 (3) z x 4 题型三:求待定字母的值 【例 4】若关于 x 的分式方程 2 1 m 有增根,求 m 的值 . x 3 x 3

【例 5】若分式方程 2 x a 1的解是正数,求 a 的取值范围 . x 2 提示: 2 a 0 且 x 2 , a 2 且 a 4 . x 3 题型四:解含有字母系数的方程 【例 6】解关于 x 的方程 x a c b x d (c d 0) 提示:( 1) a, b, c, d 是已知数;( 2) c d 0 . 题型五:列分式方程解应用题 练习: 1.解下列方程: ( 1) x 1 2x 0 ; (2) x 2 4 ; x 1 1 2x x 3 x 3 ( 3) 2x 3 2 ; (4) 7 3 1 7 x 2 x 2 x 2 x 2 x x x 2 x 2 1 ( 5) 5x 4 2x 5 1 (6) 1 1 1 1 2x 4 3x 2 2 x 1 x 5 x 2 x 4 ( 7) x x 9 x 1 x 8 x 2 x 7 x 1 x 6 2.解关于 x 的方程: ( 1) 1 1 2 (b 2a) ;( 2) 1 a 1 b (a b) . a x b a x b x 3.如果解关于 x 的方程 k 2 x 会产生增根,求 k 的值 . x 2 x 2 4.当 k 为何值时,关于 x 的方程 x 3 (x k 2) 1 的解为非负数 . x 2 1)( x 5.已知关于 x 的分式方程 2a 1 a 无解,试求 a 的值 . x 1 (二)分式方程的特殊解法 解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验, 但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法 例 1.解方程: 1 x 3 x 2 二、化归法 例 2.解方程: 1 2 0 1 x 2 x 1

《分式》典型例题分析

《分式》典型例题分析

《分式》复习提纲 考点1. 分式的概念 1、下列各有理式 π y y x y x y x x y xy y x x x ,31),(23,,53,81,4, 23,822++-+---中,分式的个数是( ) A. 3个 B. 4个 C. 5个 D. 6个 考点2. 分式的意义 分式: B A (A ,B 都是整式,且B 中含有字母,B ≠0) ① 分式有意义? ;② 分式无意义? ;③ 分式值为零? 1、若分式 3 2 -x 有意义,则x__________ 2、 要使分式 ) 5)(32(23-+-x x x 有意义,则( ) A. x ≠2 3 - B. x ≠5 C. x ≠23-且x ≠5 D. x ≠2 3 -或x ≠5 3、 当a 为任意有理数时,下列分式一定有意义的是( ) A . 112++a a B. 12+a a C. 112++a a D. 21 a a + 4、分式 3 24 x x +-当x 时有意义;当x 时分式没有意义;当x 时分式的值为零。 5、当x 时,分式2 5 2++x x 的值是零;当x 时,分式242--x x 的值是零; 当x 时,分式 x x -+22 的值是零 考点3、最简公分母、最简分式 1、分式 ac b bc a ab c 3,2,2 --的最简公分母是 ;分式1 3x ,11x x +-,225(1)xy x -的最简公分母为________ 2、下列分式中是最简分式的是( ) A. 122+x x B. x 24 C. 1 12 --x x D. 11--x x

3、下列分式中是最简分式的是( ) A. 2 2 2) (y x y x -- B. 2x xy - C. xy x y x ++2 D. 22-+x x 考点4、分式的基本性质 1. 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。 (1)y x y x 3 22132 21-+; (2)b a b a -+2.05.03.0 2、把分式xy y x +中的分子、分母的x 、y 同时扩大2倍,那么分式的值( ) A. 扩大2倍 B. 缩小为原来的2 1 C. 不变 D. 缩小为原来的4 1 3、约分(1)4 3 22016xy y x -= ;(2)4 4422+--x x x = 4、通分(1)b a 21,2 1ab ; (2)y x -1,y x +1; (3)221y x -,xy x +21. 考点5、计算 1、(1)222222x b yz a z b xy a ÷= ;(2)49 3222--?+-x x x x = ;(3)43222)1.().()( ab a b b a --= (4) x x x x x x 36299622 2+-÷-+- (5)ab a b a a b a b a --+-2224. (6) 22212(1)441x x x x x x x -+÷+?++-

9.3《分式方程》典型例题精析

9.3 分式方程 1.了解分式方程的意义,掌握解分式方程的一般步骤.了解解分式方程验根的必要性. 2.能熟练地解可化为一元一次方程的分式方程,并验根. 3.掌握列分式方程解应用题的基本步骤. 4.能熟练地应用分式方程的数学模型来解决现实情境中的问题.

1.分式方程的概念 (1)分母中含有未知数的方程叫做分式方程. (2)分式方程有两个重要特征:一是方程;二是分母中含有未知数.因此整式方程和分式方程的根本区别就在于分母中是否含有未知数.例如x +1x =2,5y =7y -2,1x -2=x 2 2-x 等都是分式方程,而x 2-2x +1=0,2x +33=x -12,x +a b -x -b a =2(x 是未知数)等都是整式方程,而不是分式方程. 【例1】下列方程中,分式方程有( ). (1)x +1π=3;(2)1x =2; (3)2x +54+x 3=12;(4)2x -2=1x +1 . A .1个 B .2个 C .3个 D .4个 解析:对于方程(1),因为π是常数,所以该方程不是分式方程,是整式方程;方程(3)中的分母不含字母,所以不是分式方程.方程 (2)(4)符合分式方程的概念,都是分式方程. 答案:B 2.分式方程的解法 (1)把分式方程转化为整式方程,然后通过解整式方程,进一步求得分式方程的解,这是解分式方程的关键.本章中,解分式方程都是把分式方程转化为一元一次方程,通过解一元一次方程求解分式方程.分式方程的解题思路如下图:

(2)解可化为一元一次方程的分式方程的一般步骤是: ①去分母,即在方程的两边乘以最简公分母,把原方程化为整式方程. ②解这个整式方程. ③验根:把求得的根代入最简公分母,看它的值是否为零,使它不为零的根才是原方程的根,使它为零的根即为增根,应舍去. (1)增根能使最简公分母等 于0;(2)增根是去分母后所得的整式方程的根. 以上步骤可简记为“一去(去分母)、二解(解整式方程)、三检验(检查求出的根是否是增根)”. 【例2】解分式方程:(1)x x -2+6x +2 =1; (2)7x 2+x -3x -x 2=6x 2-1 . 分析:(1)中方程的最简公分母是(x -2)(x +2);(2)中方程的最

分式及分式方程题型汇总情况

分式单元复习 (一)、分式定义及有关题型 一、分式的概念: 例:下列各式中,是分式的是 ①1+x 1 ②)(21y x + ③3x ④x m -2 ⑤3-x x ⑥1394y x + ⑦π x 2、下列各式中,是分式的是 ①x 1 ②)(21y x + ③3x ④x m -2 ⑤3-x x ⑥13 94y x + ⑦πy +5 3、下列各式:()x x x x y x x x 2 225 ,1,2 ,34 ,151+---π其中分式共有( )个。 A 、2 B 、3 C 、4 D 、5 例:当x 时,分式 22+-x x 有意义;当x 时,2 2 -x 有意义。 练习:1、当x 时,分式6 53 2+--x x x 无意义。 2.使分式 ||1 x x -无意义,x 的取值是( ) A .0 B .1 C .1- D .1± 3、分式 5 5+x x ,当______x 时有意义。 4、当a 时,分式3 21 +-a a 有意义. 5、当x 时,分式2 2 +-x x 有意义。 6、当x 时, 2 2-x 有意义。 7、当x 时,分式 43 5 x x +-的值为1; 8.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( ) A .121x + B .21x x + C .231 x x + D .2221 x x + 9当x 为任意实数时,下列分式一定有意义的是( )

A. 23x + B.212x - C.1 x D. 211x + 三、分式的值为零说明:①分式的分子的值等于零;②分母不等于零 例1:若分式2 4 2+-x x 的值为0,那么x 。 例2 . 要使分式 9 632 +--x x x 的值为0,只须( ). (A )3±=x (B )3=x (C )3-=x (D )以上答案都不对 练习:1、当x 时,分式 6 ) 2)(2(2 ---+x x x x 的值为零。 2、若分式2 4 2+-x x 的值为0,那么x 。 3、如果分式 2 ||5 5x x x -+的值为0,那么x 的值是( ) 4.分式1 21 22++-a a a 有意义的条件是 ,分式的值等于零的条件是 。 5.已知当2x =-时,分式 a x b x -- 无意义,4x =时,此分式的值为0,则a b +的值等于( ) A .-6 B .-2 C .6 D .2 6.使分式x 312 --的值为正的条件是 7.若分式 9 32 2-+a a 的值为正数,求a 的取值范围 8、当x 时,分式x x --23的值为负数. 9、若关于x 的方程ax=3x-5有负数解,则a 的取值范围是 (二)分式的基本性质及有关题型 分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。 1.填空: aby a xy = ; z y z y z y x +=++2) (3)(6;

分式的乘除法典型例题

《分式的乘除法》典型例题 例1 下列分式中是最简分式的是() A .264a b B .b a a b --2)(2 C .y x y x ++22 D .y x y x --2 2 例2 约分 (1)36)(12)(3a b a b a ab -- (2)44422 -+-x x x (3)b b 2213432-+ 例3 计算(分式的乘除) (1)22563ab cd c b a -?- (2)42 2 643mn n m ÷- (3)2 33344222++-?+--a a a a a a (4)2 22 22222b ab a b ab b ab b ab a +-+÷-++ 例4 计算 (1))()()(432 2xy x y y x -÷-?- (2)x x x x x x x --+?+÷+--36)3(446222 例5 化简求值 22232232b ab b a b b a ab a b a b +-÷-+?-,其中3 2=a ,3-=b . 例6 约分 (1)3286b ab ; (2)2 22322xy y x y x x --

例7 判断下列分式,哪些是最简分式?不是最简分式的,化成最简分式或整式. (1)44422-+-x x x ; (2)36 ) (4)(3a b b a a --; (3)22 2y y x -; (4)882122++++x x x x 例8 通分: (1)223c a b , ab c 2-,cb a 5 (2)a 392 -, a a a 2312---,652+-a a a

参考答案 例1 分析:(用排除法)4和6有公因式2,排除A .2)(a b -与)(b a -有公因式)(b a -,排除B ,22y x -分解因式为))((y x y x -+与)(y x -有公因式)(y x -,排除D. 故选择C. 解 C 例2 分析(1)中分子、分母都是单项式可直接约分.(2)中分子、分母是多项式,应该先分解因式,再约分.(3)中应该先把分子、分母的各项系数都化为整数,把分子、分母中的最高次项系数化为正整数,再约分. 解:(1)36)(12)(3a b a b a ab --)4()(3)()(3333-?--?-=b a a b b a b a a 3)(4 1b a b --= (2)4 4422-+-x x x )2)(2()2(2-+-=x x x 22+-=x x (3)原式2123486)22 1(6)3432(b b b b -+=?-?+=312482-+-=b b b b b b 634)12)(12(3)12(4-=-++-= 例3 分析(1)可以根据分式乘法法则直接相乘,但要注意符号.(2)中的除式是整式,可以把它看成1 64 mn .然后再颠倒相乘,(3)(4)两题都需要先分解因式,再计算. 解:(1)22563ab cd c b a -?-2253)6(ab c cd b a ?--=b ad 52= (2)422643mn n m ÷-7 43286143n m mn n m -=?-= (3)原式)2)(1)(3)(1()3)(2)(2(++----+=a a a a a a a 1 22--=a a (4)原式)()()()(2b a b a b b a b b a -+÷-+=2 2 22))((b b a b b a b a -=-+= 说明:(1)运算的结果一定要化成最简分式;(2)乘除法混合运算,可将除

分式的基本性质-经典例题及答案

讲义编号: ______________ 副校长/组长签字:签字日期: 【考纲说明】 掌握分式的基本性质,灵活运用分式的基本性质进行约分和通分,本部分在中考中通常会以选择题的形式出现,占3--4分。 【趣味链接】 甲、乙两人分别从A、B两地同时出发相向而行,3小时后相遇. 尔后两人都用原来速度继续前进,结果甲达到B地比乙达到A地早1小时21分.已知甲每小时比乙多走1千米,求甲、乙两人的速度。 【知识梳理】 分式 1.分式的概念:形如(A、B是整式,且B中含有字母,B≠0)的式子叫做分式.其中,A叫分式的分子,B叫分式的分母. 2.分式有意义的条件:因为两式相除的除式不能为零,即分式的分母不能为零,所以,分式有意义的条件是:分式的分母必须不等于零,即B≠0,分式有意义.

3.分式的值为零的条件:分子等于0,分母不等于0,二者缺一不可. 有理式 有理式的分类:有理式 分式的基本性质 分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示为:(其中M≠0) 约分和通分 1.分式的约分:把一个分式的分子与分母中的公因式约去叫约分. 2.分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分. 最简分式与最简公分母: 约分后,分式的分子与分母不再有公因式,我们称这样的分式为最简分式.取各分母所有因式的最高次幂的积作为公分母,这样的公分母称为最简公分母. 【经典例题】 【例1】不改变分式的值,使分式的各项系数化为整数,分子、分母应乘以(? ) A.10 B.9 C.45 D.90 【例2】下列等式:①=-;②=;③=-; ④=-中,成立的是() A.①② B.③④ C.①③ D.②④ 【例3】不改变分式的值,使分子、分母最高次项的系数为正数,正确的是(? ) A. B. C. D. 【例4】分式,,,中是最简分式的有() A.1个 B.2个 C.3个 D.4个

分式和分式方程题型

分式与分式方程题型 一、单选题 1、在式子y x y x x c ab y a 109,87,65,43,20,13+++π中,分式的个数是( ) A 2 B 3 C 4 D 5 2、下列各式中计算正确的是( ) .A 31273-??= ??? .B 236a a a ?= .C ()23639a a --= .D 538 a a a += 3、分式:①223a a ++,②22a b a b --,③412() a a b -,④12x -中,最简分式有 ( ) A.1个 B.2个 C.3个 D.4个 4、无论x 取什么数时,总是有意义的分式是( ) A . 122+x x B.12+x x C.133+x x D.25x x - 5、 |1x -|3x -的值为负值,则x 取值为( ) A 、x<1 B 、x<3 且x ≠1 C 、x<3 D 、 x=3 6.若把分式xy y x +中的x 和y 都扩大2倍,那么分式的值( C ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍 7、若方程342(2) a x x x x =+--有增根,则增根可能为( ) A :0 B :2 C :0或2 D :1 8、不改变分式2323523 x x x x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(? ) A .2332523x x x x +++- B .2332523 x x x x -++- C .2332523x x x x +--+ D .2332523x x x x ---+ 9、已知4 32c b a ==,则c b a +的值是( )A .54 B. 47 C.1 D.45 10、一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( ) A .x x -=+306030100 B .306030100-=+x x C .x x +=-306030100 D .30 6030100+=-x x 11.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。设原计划行军的速度为xkm/h ,,则可列方程( ) A . 1%206060++=x x B. 1% 206060-+=x x C. 1%2016060++=)(x x D. 1%2016060-+=)(x x 二、填空题 1、用科学计数法表示下列各数:0.000 04=________ -0.0000000102= ; 2、当x ________时,分式x x 2121-+有意义. 3、当x ________时,分式2 21-+x x 无意义 4、当x _________时,分式1 12+-x x 的值为零 5、当x 时,分式21x x -的值为正数;

解分式方程练习题(中考经典计算)

分式方程 一.解答题(共30小题) 1.解方程:.2..3..4:=+1.5.:.6.:. 7.. 8..9..10..11..12..13..14.. 15.(2)解不等式组.16.:.17.①解分式方程; ②解不等式组.18..19.(1)计算:|﹣2|+(+1)0﹣()﹣1+tan60°; (2)解分式方程: =+1.20.21.+=122..23. 24.25.26.+=1 27.

28.29.30..

答案与评分标准 一.解答题(共30小题) 1.(2011?自贡)解方程:. 考点:解分式方程。 专题:计算题。 分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验. 解答:解:方程两边都乘以y(y﹣1),得 2y2+y(y﹣1)=(y﹣1)(3y﹣1), 2y2+y2﹣y=3y2﹣4y+1, 3y=1, 解得y=, 检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0, ∴y=是原方程的解, ∴原方程的解为y=. 点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根. 2.(2011?孝感)解关于的方程:. 考点:解分式方程。 专题:计算题。 分析:观察可得最简公分母是(x+3)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x+3)(x﹣1),得 x(x﹣1)=(x+3)(x﹣1)+2(x+3), 整理,得5x+3=0, 解得x=﹣. 检验:把x=﹣代入(x+3)(x﹣1)≠0. ∴原方程的解为:x=﹣. 点评:本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根. 3.(2011?咸宁)解方程. 考点:解分式方程。 专题:方程思想。 分析:观察可得最简公分母是(x+1)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:两边同时乘以(x+1)(x﹣2), 得x(x﹣2)﹣(x+1)(x﹣2)=3.(3分)

《分式》典型例题分析

《分式》复习提纲 考点1. 分式的概念 1、下列各有理式 π y y x y x y x x y xy y x x x ,31),(23,,53,81,4,23,822++-+---中,分式的个数是( ) A. 3个 B. 4个 C. 5个 D. 6个 考点2. 分式的意义 分式:B A (A , B 都是整式,且B 中含有字母,B ≠0) ① 分式有意义? ;② 分式无意义? ;③ 分式值为零? 1、若分式3 2-x 有意义,则x__________ 2、 要使分式) 5)(32(23-+-x x x 有意义,则( ) A. x ≠23- B. x ≠5 C. x ≠23-且x ≠5 D. x ≠2 3-或x ≠5 ? 3、 当a 为任意有理数时,下列分式一定有意义的是( ) A . 112++a a B. 12+a a C. 112++a a D. 21a a + 4、分式324 x x +-当x 时有意义;当x 时分式没有意义;当x 时分式的值为零。 5、当x 时,分式2 52++x x 的值是零;当x 时,分式242--x x 的值是零; 当x 时,分式x x -+22 的值是零 考点3、最简公分母、最简分式 1、分式ac b b c a ab c 3,2,2--的最简公分母是 ;分式13x ,11x x +-,225(1)xy x -的最简公分母为________ 2、下列分式中是最简分式的是( ) A. 122+x x B. x 24 C. 1 12--x x D. 11--x x 3、下列分式中是最简分式的是( ) { A. 2 2 2)(y x y x -- B. 2x xy - C. xy x y x ++2 D. 22-+x x 考点4、分式的基本性质 1. 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。

培优专题分式方程培优提高经典例题

分式方程专题 例1:去分母法解分式方程 1、 ()()113116=---+x x x 2、2 2416222-+=--+-x x x x x 3、22412212362x x x x x x x -+++=++--- 4、64534275--+--=--+--x x x x x x x x 例2:整体换元与倒数型换元: 1、用换元法解分式方程:(1) 6151=+++x x x x (2)12221--=+--x x x x 变式练习: (11上海)用换元法解分式方程13101x x x x --+=-时,如果设1x y x -=,将原方程化为关于y 的整式方程,那么这个整式方程是( ) A .230y y +-= B .2310y y -+= C .2310y y -+= D .2310y y --= 例3:分式方程的(增)根的意义 1、 若分式方程: 024122=+-+-x x a 有增根,求a 的值。 2、关于x 的分式方程131=---x x a x 无解,则a=_________。 变式练习:当m 为 时,分式方程 ()01163=-+--+x x m x x x 有根。

例4一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货物量不变,且甲、乙两车单独运这批货物分别运2a 次、a 次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180t ;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270t . 问:⑴乙车每次所运货物量是甲车每次所运货物量的几倍; ⑵现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元?(按每运1t 付运费20元计算) 课堂总练习 1关于x 的分式方程 1131=-+-x x m 的解为正数,则m 的取值范围是 2.关于x 的方程 223242mx x x x +=--+会产生增根,则m 为____________ 3.若关于x 的方程 2111 x m x x ++=--产生增根,则 m =____________; 4.k 取何值时,方程x x k x x x x +=+-+211 2会产生增根? 5.当a 为何值时,关于x 的方程223242 ax x x x +=--+无解?

分式方程重点题型精选.

分式易考题型 ※【典例剖析】 例1(分式概念) (1) 当x 时,分式x -13无意义; (2)当x 时,分式3 92--x x 的值为零. 随堂练习1 1要使式子33-+x x ÷4 2-+x x 有意义,x 的取值应为 。 2、当x 时,分式33 +-x x 的值为0。 3、使分式1 122+-a a 有意义的a 的取值是( ) A 、a ≠1 B 、a ≠±1 C 、a ≠-1 D 、a 为任意实数 4、当x = -3时,下列分式中有意义的是( ) A 、33-+x x B 、3 3+-x x C 、)2)(3()2)(3(--++x x x x D 、)2)(3()2)(3(-++-x x x x 5、判断下列各分式中x 取什么值时,分式的值为0?x 取什么值时,分式无意义 ⑴)1)(3(2x x x --+; ⑵2522+-x x ; ⑶2 231--+x x . 例2(分式的约分) 已知311=-y x ,求y xy x y xy x ---+55的值. 随堂练习2 1、下列变形不正确的是( ) A.2222+-=---a a a a B.11112--=+x x x (x ≠1) C.1212+++x x x =2 1 D.2126336-+=-+y x y x 2、若2x =-y ,则分式 22y x xy -的值为________. 3、化简求值: (1)222222484y x y xy x -+- 其中x =2,y =3. (2)已知y x =2,求222263y xy x y xy x +++-的值.

例3(分式的乘除法)使分式2 2222)(y x ay ax y a x a y x ++?--的值等于5的a 的值是( ) A.5 B.-5 C.51 D.-5 1 随堂练习3 计算:(1)(xy -x 2 )÷xy y x - (2)24244422223-+-÷+-+-x x x x x x x x 例4(分式加减法) 例4-1化简求值:当x = 21时,求1 121122-+-++-x x x x x 的值. 例4-2 62)1(33)1)(1()1(3)1)(1(313)1)(1(313132--=+--=-++--+-=---+-=----x x x x x x x x x x x x x x x x (1)上述计算过程中,从哪一步开始出现错误: (2)从B 到C 是否正确; 。若不正确,错误的原因是 (3)请你正确解答。 随堂练习4 1、分式xy 2,y x +3,y x -4的最简公分母是________. 2、计算:2 22321xyz z xy yz x +-=_____________. 3计算:)11(1x x x x -+-=_____________. 例5 (分式的混合运算) 化简求值:(2+1111+--a a )÷(a -2 1a a -),其中a=2

分式考点及典型例题分析(最全面)

分式考点及典型例题分析 1、分式的定义: 例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2-a 2、m 1、65xy x 1、21、212+x 、π xy 3、y x +3、m a 1+中分式的个数为( ) (A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 . ⑴275x x -+; ⑵ 123 x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹222xy x y +. (2)下列式子,哪些是分式? 5a -; 234x +;3y y ; 78x π+;2x xy x y +-;145 b -+. 2、分式有,无意义,总有意义: (1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解; 注意:(12 +x ≠0) 例1:当x 时,分式 51-x 有意义; 例2:分式x x -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义。 例4:当x 时,分式12+x x 有意义 例5:x ,y 满足关系 时,分式x y x y -+无意义; 例6:无论x 取什么数时,总是有意义的分式是( ) A . 122+x x B.12+x x C.133+x x D.2 5x x - 例7:使分式2+x x 有意义的x 的取值围为( )A .2≠x B .2-≠x C .2->x D .2

初中数学分式方程典型例题讲解

第十六章分式知识点和典型例习题 【知识网络】 【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:()0b c b c a a a a ±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法: b d bd a c ac ?=,b c b d bd a d a c ac ÷=?= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n 6.积的乘方与幂的乘方:(ab)m = a m b n , (a m ) n = a mn 7.负指数幂: a -p = 1p a a 0 =1 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2 - b 2 ;(a ±b)2= a 2±2ab+b 2 (一)、分式定义及有关题型 题型一:考查分式的定义(一)分式的概念: 形如 A B (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母. 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,22π,是分式的有: . 题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没 有意义. 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义

分式方程典型例题

三人行教育陈老师教案——分式方程典型例题 题型一:解分式方程, 解分式方程时去分母后所得整式方程的解有可能使原分式方程的分母为0,所以解分式方程必须检验. 例1.解方程(1) 2223-=---x x x (2) 11 4 112=---+x x x 专练一、解分式方程 (1)14-x =1; (2)3 5 13+=+x x ; (3) 30120021200=--x x (4)255 522-++x x x =1 (5) 2124111x x x +=+--. (6) 222746 1x x x x x +=+-- (7)11322x x x -+=--- (8)512552x x x =--- 题型二:关于增根:将分式方程变形为整式方程,方程两边同时乘以一个含有未知数的整式,并越去分母,有时可能产生不适合原分式方程的根,这种根通常称为增根. 例2、 若方程x x x --=+-34 731有增根,则增根为 . 例3.若关于x 的方程3 1 3292-=++-x x x m 有增根, 则增根是多少?产生增根的m 值又是多少? 专练习二: 1.若方程 33 23-+=-x x x 有增根,则增根为 . 2.当m 为何值时,解方程115122-=-++x m x x 会产生增根?

题型三:分式方程无解①转化成整式方程来解,产生了增根;②转化的整式方程无解. 例4、 若方程x m x x -=--223无解,求m 的值. 思考:已知关于x 的方程 m x m x =-+3 无解,求m 的值. 题型四:解含有字母的分式方程时,注意字母的限制. 例5、.若关于x 的方程 81=+x ax 的解为41 =x ,则a = 例6、.关于x 的方程 12 -=-+x m x 的解大于零, 求m 的取值范围. 注:解的正负情况:先化为整式方程,求整式方程的解 ①若解为正???>去掉增根正的解0x ;②若解为负? ??<去掉增根负的解0 x 解: 专练三: 1.若分式方程 5 2 )1()(2-=--x a a x 的解为3=x ,则a = . 3.已知关于x 的方程3 23-=--x m x x 解为正数,求m 的取值范围. 4.若方程k x x +=+233有负数根,求k 的取值范围. .

分式方程的重要题型

分式方程的重要题型 第一种题型工程问题: 1.某市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增 加乙队,两队又共同工作15天,共完成总工程的。 ①.求乙队单独完成这项工程需要多少天? ②.为了加快工程进度,甲乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效 率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍? 2.某工厂计划在规定的时间内生产24000个零件,若每天此原计划多生产30个零件,则在规定的 时间内可以多生产300个零件。 ①.求原计划每天生产的零件个数和规定的天数。

②.为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进了5组机器人 生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数。 3.某一公路道路维修工程,准备从甲乙两个工程队中选一个队单独完成,根据两队每天的工程费用 和每天完成的工程量可知,若由两队合作此项维修工程,6天可以完成,共需工程费用385200元,若由一队单独完成此项维修工程,甲队比乙队少用5天,甲队每天的工程费用比乙队多4000元,从节省资金的角度考虑,应选择哪个工程队单独完成此项维修工程? 4.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年后,城区绿化总面积新增 360万平方米,自2013年年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务。 ①.问实际每年绿化面积是多少万平方米?

分式的化简求值经典练习题(带答案)

分式的化简 一、比例的性质: ⑴比例的基本性质:a c ad bc b d =?=,比例的两外项之积等于两内项之积. ⑵更比性(交换比例的内项或外项): ( ) ( ) ( )a b c d a c d c b d b a d b c a ?=?? ?=?=?? ?=?? 交换内项 交换外项 同时交换内外项 ⑶反比性(把比例的前项、后项交换):a c b d b d a c =?= ⑷合比性:a c a b c d b d b d ±±=?=,推广:a c a kb c kd b d b d ±±=?=(k 为任意实数) ⑸等比性:如果....a c m b d n ===,那么......a c m a b d n b +++=+++(...0b d n +++≠) 二、基本运算 分式的乘法:a c a c b d b d ??=? 分式的除法:a c a d a d b d b c b c ?÷=?=? ( 乘方:()n n n n n a a a a a a a a b b b b b b b b ?=?=?个 个 n 个 =(n 为正整数) 整数指数幂运算性质: ⑴m n m n a a a +?=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数) ⑷m n m n a a a -÷=(0a ≠,m 、n 为整数) 负整指数幂:一般地,当n 是正整数时,1 n n a a -= (0a ≠),即n a -(0a ≠)是n a 的倒数 】 知识点睛中考要求

分式的加减法法则: 同分母分式相加减,分母不变,把分子相加减,a b a b c c c +±= 异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bc b d bd bd bd ±±=±= , 分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算. 结果以最简形式存在. 一、分式的化简求值 【例1】 先化简再求值: 2 11 1x x x ---,其中2x = 【考点】分式的化简求值 【难度】2星 【题型】解答 【关键词】2010年,湖南郴州 ) 【解析】原式()()111x x x x x =---()11 1x x x x -==- 当2x =时,原式11 2x == 【答案】1 2 【例2】 已知:22 21()111 a a a a a a a ---÷?-++,其中3a = 【考点】分式的化简求值 【难度】2星 【题型】解答 【关键词】 【解析】22 222 1(1)()4111(1)a a a a a a a a a ---+÷ ?=-=--++- 【答案】4- 【例3】 ! 【例4】 先化简,再求值: 22144 (1)1a a a a a -+-÷ --,其中1a =- 【考点】分式的化简求值 例题精讲

相关文档
最新文档