DSP实验项目

DSP实验项目
DSP实验项目

DSP实验项目

实验一、汇编语言与C语言的混合编程

实验内容:

1、验证ICETEK-VC5416-A评估板及教学实验箱实验指导书实验1.4;

2、用纯汇编语言编程实现内容1;

3、比较两种程序的代码长度和效率。

int x,y,z;

main()

{

x=3; y=17;

while ( 1 )

{

z=x+y;

} // 在此加软件断点

}

/*

int add(int a,int b)

{

return(a+b);

}

*/

实验二、指示灯实验

实验内容:

1、验证ICETEK-VC5416-A评估板及教学实验箱实验指导书实验3.1;

2、用纯汇编语言编程实现内容1;

3、比较两种程序的代码长度和效率。

// 为LED声明IO端口

ioport unsigned int port3002;

// LED 宏定义

#define LBDS port3002

// 延时和移位子函数声明

void Delay(int nDelay);

void ShiftToLeftAndRight(unsigned int nInit);

main()

{

unsigned int uLED[4]={1,2,4,8}; // 控制字,逐位置1: 0001B 0010B 0100B

1000B

int i;

for(;;)

{

for ( i=0;i<4;i++ )

{

LBDS=~uLED[i]; // 正向顺序送控制字

Delay(64); // 延时

}

for ( i=3;i>=0;i-- )

{

LBDS=~uLED[i]; // 反向顺序送控制字

Delay(64); // 延时

}

}

}

void Delay(int nDelay)

{

int i,j,k;

k=0;

for ( i=0;i

for ( j=0;j<1024;j++ )

k++;

}实验三、外中断实验

实验内容:

1、验证ICETEK-VC5416-A评估板及教学实验箱实验指导书实验3.4.2的程序;

2、修改实验程序完成按键中断控制的指示灯依次逐一点亮功能。

Xint.c程序:

#define IMR *(int *)0x0

#define IFR *(int *)0x1

#define PMST *(int *)0x1d

#define REGISTERCLKMD (*(unsigned int *)0x58)

ioport unsigned int port3002;

ioport unsigned int port3004;

ioport unsigned int port8007;

#define LED port3002

void interrupt xint2(void);

unsigned int uWork,nCount;

unsigned int nCountKey,nLS;

main()

{

nCount=0; nCountKey=0;

nLS=0x40;

REGISTERCLKMD=0x1007; // 设DSP主频改为两倍PLL时钟=32MHz asm(" ssbx INTM"); // 关中断,进行关键设置时不许打扰

port3004=0; // 使能XINT2

port8007=0xc8;

uWork=PMST; // 设置PMST寄存器

PMST =uWork&0xff; // 中断向量表起始地址=80H

IMR = 4; // 使能XINT2

IFR = 4; // 清中断标志位

asm(" rsbx I NTM"); // 开中断

while ( 1 );

}

void interrupt xint2(void) // XINT2中断服务程序

{

nCount++; nCount%=256; // 中断计数

if ( nCount%2==1 )

{

nCountKey++; nCountKey%=8;

nLS^=0x40;

uWork=nCountKey|nLS;

LED=~uWork; // 显示计数值

}

}

Xint.CMD程序:

-w

-stack 400h

-heap 100

-l rts.lib

MEMORY

{

PAGE 0:

VECT : o=80h,l=80h

PRAM : o=100h,l=1f00h

PAGE 1:

DRAM : o=2000h,l=1000h

}

SECTIONS

{

.text : {}> PRAM PAGE 0

.data : {}> PRAM PAGE 0

.cinit : {}> PRAM PAGE 0

.switch : {}> PRAM PAGE 0

.const : {}> DRAM PAGE 1

.bss : {}> DRAM PAGE 1

.stack : {}> DRAM PAGE 1

.vectors: {}> VECT PAGE 0

}

实验四、液晶显示器控制实验

实验内容:

1、验证ICETEK-VC5416-A评估板及教学实验箱实验指导书实验4.3.2的程序。

2、设计程序在液晶显示屏上显示计时时钟,精确到秒,形式为“时时:分分:秒秒”。

// 常量定义

#define LCDDELAY 1

#define LCDCMDTURNON 0x3f

#define LCDCMDTURNOFF 0x3e

#define LCDCMDSTARTLINE 0xc0

#define LCDCMDPAGE 0xb8

#define LCDCMDVERADDRESS 0x40

#define WAITSTATUS (*(unsigned int *)0x28)

// CTR扩展寄存器定义

ioport unsigned int port8000;

ioport unsigned int port8001;

ioport unsigned int port8002;

ioport unsigned int port8003;

ioport unsigned int port8004;

ioport unsigned int port8005;

ioport unsigned int port8007;

#define CTRGR port8000

#define CTRLCDCMDR port8001

#define CTRKEY port8001

#define CTRCLKEY port8002

#define CTRLCDCR port8002

#define CTRLCDLCR port8003

#define CTRLCDRCR port8004

#define CTRLA port8005

#define CTRLR port8007

void Delay(unsigned int nTime); // 延时函数

void TurnOnLCD(); // 打开显示

void LCDCLS(); // 清除屏幕显示内容

unsigned char ledkey[10][8]=

{

{0x00,0x00,0x7C,0x82,0x82,0x82,0x7C,0x00}, //0

{0x00,0x00,0x00,0x84,0xFE,0x80,0x00,0x00}, //1

{0x00,0x00,0x84,0xC2,0xA2,0x92,0x8C,0x00}, //2

{0x00,0x00,0x44,0x92,0x92,0x92,0x6C,0x00},

{0x00,0x00,0x30,0x28,0x24,0xFE,0x20,0x00},

{0x00,0x00,0x4E,0x92,0x92,0x92,0x62,0x00},

{0x00,0x00,0x7C,0x92,0x92,0x92,0x64,0x00},

{0x00,0x00,0x02,0xC2,0x32,0x0A,0x06,0x00},

{0x00,0x00,0x6C,0x92,0x92,0x92,0x6C,0x00},

{0x00,0x00,0x4C,0x92,0x92,0x92,0x7C,0x00}

};

main()

{

int i,nCount=0,nBW=0;

CTRGR=0; // 初始化ICETEK-CTR

CTRGR=0x80;

CTRGR=0;

CTRLR=0; // 关闭东西方向的交通灯

CTRLR=0x40; // 关闭南北方向的交通灯

TurnOnLCD(); // 打开显示

LCDCLS(); // 清除显示内存

CTRLCDCMDR=LCDCMDSTARTLINE; // 设置显示起始行

CTRLCDCR=0;

for (;;)

{

CTRLCDCMDR=LCDCMDPAGE; // 设置操作页=0

Delay(LCDDELAY);

CTRLCDCR=0;

Delay(LCDDELAY);

CTRLCDCMDR=LCDCMDVERADDRESS; // 起始列=0

Delay(LCDDELAY);

CTRLCDCR=0;

Delay(LCDDELAY);

for ( i=0;i<8;i++ )

{

CTRLCDLCR=( nBW==0 )?(ledkey[nCount][i]):(~ledkey[nCount][i]); // 屏幕左侧第1至8行第i列赋值port8002=0;

// (赋值后当前操作列自动加1,所以不需设置)

Delay(LCDDELAY);

CTRLCDCR=0;

Delay(LCDDELAY);

}

Delay(512);

nCount++;

if ( nCount==10 )

{

nCount=0;

nBW=1-nBW;

}

}

}

void Delay(unsigned int nDelay)

{

int ii,jj,kk=0;

for ( ii=0;ii

{

for ( jj=0;jj<1024;jj++ )

{

kk++;

}

}

}

void TurnOnLCD()

{

CTRLCDCMDR=LCDCMDTURNON;

Delay(LCDDELAY);

CTRLCDCR=0;

Delay(LCDDELAY); CTRLCDCMDR=LCDCMDSTARTLINE;

Delay(LCDDELAY);

CTRLCDCR=0;

Delay(LCDDELAY);

}

void LCDCLS()

{

int i,j; CTRLCDCMDR=LCDCMDSTARTLINE;

Delay(LCDDELAY);

CTRLCDCR=0;

Delay(LCDDELAY);

for ( i=0;i<8;i++ )

{

CTRLCDCMDR=LCDCMDPAGE+i;

Delay(LCDDELAY);

CTRLCDCR=0;

Delay(LCDDELAY);

CTRLCDCMDR=LCDCMDVERADDRESS;

Delay(LCDDELAY);

CTRLCDCR=0;

Delay(LCDDELAY);

for ( j=0;j<64;j++ )

{

CTRLCDLCR=0;

Delay(LCDDELAY);

CTRLCDCR=0;

Delay(LCDDELAY);

}

CTRLCDCMDR=LCDCMDPAGE+i;

Delay(LCDDELAY);

CTRLCDCR=0;

Delay(LCDDELAY);

CTRLCDCMDR=LCDCMDVERADDRESS;

Delay(LCDDELAY);

CTRLCDCR=0;

Delay(LCDDELAY);

for ( j=0;j<64;j++ )

{

CTRLCDRCR=0;

Delay(LCDDELAY);

CTRLCDCR=0;

Delay(LCDDELAY);

}

}

}实验五、音频信号发生实验

实验内容:

1、验证ICETEK-VC5416-A评估板及教学实验箱实验指导书实验4.5.2的程序。

2、设计一个按键“弹琴”的程序

#include "scancode.h"

#define TIM *(int *)0x24

#define PRD *(int *)0x25

#define TCR *(int *)0x26

#define IMR *(int *)0x0

#define IFR *(int *)0x1

#define PMST *(int *)0x1d

#define SPSA0 *(unsigned int *)0x38

#define SPSD0 *(unsigned int *)0x39

#define SPSA1 *(unsigned int *)0x48

#define SPSD1 *(unsigned int *)0x49

#define nMusicNumber 40

#define REGISTERCLKMD (*(unsigned int *)0x58)

#define WAITSTATUS (*(unsigned int *)0x28)

ioport unsigned char port8000;

ioport unsigned char port8001;

ioport unsigned char port8002;

ioport unsigned char port8007;

#define CTRGR port8000

#define CTRKEY port8001

#define CTRCLKEY port8002

#define CTRLR port8007

void Delay(unsigned int nTime);

void interrupt time(void);

// 音符数据

unsigned int music[nMusicNumber][2]=

{

{182,480},{151,480},{135,480},{121,480},{135,480},{151,480},{182,480},{0, 480},

{182,480},{151,480},{135,480},{121,480},{135,480},{151,480},{182,480},{0, 480},

{182,240},{151,240},{135,240},{121,240},{135,240},{151,240},{182,240},{0, 240},

{182,240},{151,240},{135,240},{121,240},{135,240},{151,240},{182,240},{0, 240},

{182,1920},{151,1920},{135,1920},{121,1920},{135,1920},{151,1920},{182,1 920},{0,1920}

};

unsigned int uWork;

main()

{

unsigned int uWork1;

int j,nCount,nCount1,nScanCode;

nCount=nCount1=0;

REGISTERCLKMD=0;

CTRGR=0;

CTRGR=0x80;

CTRGR=8;

CTRLR=0; // 关闭东西方向的交通灯

CTRLR=0x40; // 关闭南北方向的交通灯

uWork1=CTRCLKEY; // 清除键盘缓冲区

for ( j=0;j

music[j][0]*=8;

SPSA0=1; // set McBSP0's SPCR2

uWork1=SPSD0;

uWork1&=0xfffe; // set XRST=0

SPSD0=uWork1;

SPSA0=0x0e; // set McBSP0's PCR

uWork1=SPSD0;

uWork1|=0x2020; // set XIOEN=1, Enable IO,DX for output SPSD0=uWork1;

uWork1= PMST;

PMST = uWork1&0xff;

IMR = 0x8;

TCR = 0x412;

TIM = 0;

PRD = music[nCount][0]; // 频率设置

TCR = 0x422;

IFR = 0x100;

asm(" rsbx I NTM");

j=0;

while ( j<1 )

{

nCount1=0;

nScanCode=CTRKEY; // 读扫描码

nScanCode&=0x0ff; // 低8位

uWork1=CTRCLKEY; // 清除键盘缓冲区

if ( nScanCode!=0 )

{

if ( nScanCode==SCANCODE_Enter ) break;

}

nCount1++;

Delay(music[nCount][1]*12); // 音长

nCount++;

if ( nCount>=nMusicNumber )

{

nCount=0; j++;

}

if ( music[nCount][0]==0 )

TCR=0x412; // 静音

else

{

PRD = music[nCount][0]; // 切换音符

TCR = 0x422;

}

}

}

void Delay(unsigned int nDelay)

{

int i,j,k=0;

for ( i=0;i

for ( j=0;j<64;j++ )

k++;

}

void interrupt time(void)

{

SPSA0=1; // set McBSP0's SPCR2

uWork=SPSD0;

uWork&=0xfffe; // set XRST=0

SPSD0=uWork;

SPSA0=0x0e; // set McBSP0's PCR

uWork=SPSD0;

uWork|=0x2000; // set XIOEN=1, Enable IO,DX for output

uWork^=0x20; // DX=^DX

SPSD0=uWork;

}

实验六、FFT实验

实验内容:

1、验证ICETEK-VC5416-A评估板及教学实验箱实验指导书实验5.3。

2、将内容1的位倒序函数、FFT函数改用汇编语言实现。

3、比较两种程序的代码长度和效率。

4、程序计算的功率谱与CCS计算的功率谱为何不一致(只是相近)?如何使它们一致?

DSP实验报告

实验0 实验设备安装才CCS调试环境 实验目的: 按照实验讲义操作步骤,打开CCS软件,熟悉软件工作环境,了解整个工作环境内容,有助于提高以后实验的操作性和正确性。 实验步骤: 以演示实验一为例: 1.使用配送的并口电缆线连接好计算机并口与实验箱并口,打开实验箱电源; 2.启动CCS,点击主菜单“Project->Open”在目录“C5000QuickStart\sinewave\”下打开工程文件sinewave.pjt,然后点击主菜单“Project->Build”编译,然后点击主菜单“File->Load Program”装载debug目录下的程序sinewave.out; 3.打开源文件exer3.asm,在注释行“set breakpoint in CCS !!!”语句的NOP处单击右键弹出菜单,选择“Toggle breakpoint”加入红色的断点,如下图所示; 4.点击主菜单“View->Graph->Time/Frequency…”,屏幕会出现图形窗口设置对话框 5.双击Start Address,将其改为y0;双击Acquisition Buffer Size,将其改为1; DSP Data Type设置成16-bit signed integer,如下图所示; 6.点击主菜单“Windows->Tile Horizontally”,排列好窗口,便于观察 7.点击主菜单“Debug->Animate”或按F12键动画运行程序,即可观察到实验结果: 心得体会: 通过对演示实验的练习,让自己更进一步对CCS软件的运行环境、编译过程、装载过程、属性设置、动画演示、实验结果的观察有一个醒目的了解和熟悉的操作方法。熟悉了DSP实验箱基本模块。让我对DSP课程产生了浓厚的学习兴趣,课程学习和实验操作结合为一体的学习体系,使我更好的领悟到DSP课程的实用性和趣味性。

DSP实验二 拨码开关实验

实验二拨码开关实验 —、实验目的 1.了解DSP开发系统的组成和结构 2.了解IO的基本编程方法 二、实验设备 计算机,CCS3.3版本软件,DSP仿真器,E300实验箱,2812CPU板。 三、实验原理 8位的数字量输入(由拨码开关产生),当拨码打到靠近LED时为低。相反为高。通过 74LS244(可读)缓冲连接到DSP的数据总线的低8位。CPU通过读指令读取到拨码开关产 生的8位输出的数字量,然后CPU通过写指令把读出的8位数字量写入(0x2200)单元内, 使连接到DSP的数据总线的低8位的74LS273的输出端产生高低信号,此时LED灯产生亮灭。 当对应LED灯点亮时说明输出为低,熄灭时为高。 (器件74LS244和74LS273详细的介绍请参看数据手册) 数字量输入输出单元的资源分配如下: 基地址:2000h(当CS1为0时分配有效) 数字量分配空间为数据空间地址:基地 址+0x2200(低8位,只读) 拨码开关扩展工作原理 说明:74LS244片选号、74LS273 片选信号和74LS273复位信号由E300 上CPLD译码产生。 本实验使用DSP数据总线的低8 位。 实验任务一: 1、编写程序完成将拨码开关的信息读入DSP,然后再将该信息回写,控制led灯。调整"数字输入输出单元"的开关K1~K8,观察LED1~LED8灯亮灭的变化。 2、本实验的程序流程框图如下:

3、输入主要程序 #include "DSP281x_Device.h" // DSP281x Headerfile Include File #include "DSP281x_Examples.h" // DSP281x Examples Include File void main(void) { unsigned int temp; temp = 0; DINT; InitSysCtrl(); InitPieCtrl(); IER = 0x0000; IFR = 0x0000; InitPieVectTable(); for(;;) { asm(" nop "); temp = *(int *)0x2200&0x00ff; asm(" nop "); * (int *)0x2200 = temp; asm(" nop "); } } 四、实验步骤(步骤基本与实验一相同) 1. 2812CPU板的JUMP1的1和2脚短接,拨码开关SW1的第二位置ON。 2.E300板上的开关SW4的第二位置ON,其余OFF;SW5开关全部置ON;其余开关全部置OFF。 3.运行Code Composer Studio (CCS)(CCS3.3需要“DEBUG→Connect”) 4. 用“Project\open”打开系统项目文件 路径为“c:\DSP_examep\DSP281X_examples\e300_02_switch\Example_281x_switch.pjt”双击该文件 5、输入主要程序。

DSP实验报告-深圳大学-自动化

深圳大学实验报告课程名称:DSP系统设计 实验项目名称:DSP系统设计实验 学院:机电与控制工程学院 专业:自动化 指导教师:杜建铭 报告人1:. 学号:。班级:3 报告人2:. 学号:。班级:3 报告人3:. 学号:。班级:3 实验时间: 实验报告提交时间: 教务处制

实验一、CCS入门试验 一、实验目的 1. 熟悉CCS集成开发环境,掌握工程的生成方法; 2. 熟悉SEED-DEC2812实验环境; 3. 掌握CCS集成开发环境的调试方法。 二、实验仪器 1.TMS320系列SEED-DTK教学试验箱24套 2. 台式PC机24台 三、实验内容 1.仿真器驱动的安装和配置 2. DSP 源文件的建立; 3. DSP程序工程文件的建立; 4. 学习使用CCS集成开发工具的调试工具。 四、实验准备: 1.将DSP仿真器与计算机连接好; 2.将DSP仿真器的JTAG插头与SEED-DEC2812单元的J1相连接; 3.启动计算机,当计算机启动后,打开SEED-DTK2812的电 源。SEED-DTK_MBoard单元的+5V,+3.3V,+15V,-15V的电源指示灯及SEED-DEC2812的电源指示灯D2是否均亮;若有不亮,请断开电源,检查电源。 五、实验步骤 (一)创建源文件 1.进入CCS环境。

2.打开CCS选择File →New →Source File命令 3.编写源代码并保存 4.保存源程序名为math.c,选择File →Save 5.创建其他源程序(如.cmd)可重复上述步骤。 (二)创建工程文件 1.打开CCS,点击Project-->New,创建一个新工程,其中工程名及路径可任意指定弹 出对话框: 2.在Project中填入工程名,Location中输入工程路径;其余按照默认选项,点击完成 即可完成工程创建; 3.点击Project选择add files to project,添加工程所需文件;

DSP实验二.

实验三 IIR 滤波器设计 一、实验目的: 1.认真复习滤波器幅度平方函数的特性,模拟低通滤波器的巴特沃思逼近、切比雪夫型逼近方法;复习从模拟低通到模拟高通、带通、带阻的频率变换法;从模拟滤波器到数字滤波器的脉冲响应不变法、双线性变换法的基本概念、基本理论和基本方法。 2掌握巴特沃思、切比雪夫模拟低通滤波器的设计方法;利用模拟域频率变换设计模拟高通、带通、带阻滤波器的方法.。 3.掌握利用脉冲响应不变法、双线性变换法设计数字滤波器的基本方法;能熟练设计巴特沃思、切比雪夫低通、带通、高通、带阻数字滤波器。 4.熟悉利用MATLAB 直接进行各类数字滤波器的设计方法。 二、实验内容 a. 设计模拟低通滤波器,通带截止频率为10KHz,阻带截止频率为16KHz,通带最大衰减1dB,阻带最小衰减20dB。 (1) 分别用巴特沃思、切比雪夫I、切比雪夫II 型、椭圆型滤波器分别进行设计,并绘制所设计滤波器的幅频和相频特性图。 (2) 在通带截止频率不变的情况下,分别用n=3,4,5,6 阶贝塞尔滤波器设计所需的低通滤波器,并绘制其相应的幅频响应和相频响应图。 %%%%%%%%%----巴特沃思-----%%%%%%% clc;clear all; omegap=10000*2*pi;omegas=16*10^3*2*pi; Rp=1;As=20; [N,omegac]=buttord(omegap,omegas,Rp,As,'s');%低通的节次 [b,a]=butter(N,omegac,'s'); [H,w]=freqs(b,a); %设计滤波器的幅频和相频特性图 subplot(211) plot(w/2*pi/1000,20*log10(abs(H)))

DSP实验报告

DSP实验报告 软件实验 1无限冲激响应滤波器(IIR) 算法 一.实验目的 1 .掌握设计IIR 数字滤波器的原理和方法。 2 .熟悉IIR 数字滤波器特性。 3 .了解IIR 数字滤波器的设计方法。 二.实验设备 PC 兼容机一台,操作系统为Windows2000( 或Windows98 ,WindowsXP ,以下默认为Windows2000) ,安装Code Composer Studio 2.21 软件。 三.实验原理 1 .无限冲激响应数字滤波器的基础理论。 2 .模拟滤波器原理(巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器、贝塞尔滤波器)。 3 .数字滤波器系数的确定方法。 4 .根据要求设计低通IIR 滤波器: 要求:低通巴特沃斯滤波器在其通带边缘1kHz 处的增益为-3dB ,12kHz 处的阻带衰减为30dB ,采样频率25kHz 。设计: - 确定待求通带边缘频率fp1Hz 、待求阻带边缘频率fs1Hz 和待求阻带衰减-20log δsdB 。 模拟边缘频率为:fp1=1000Hz ,fs1=12000Hz 阻带边缘衰减为:-20log δs=30dB - 用Ω= 2πf/fs 把由Hz 表示的待求边缘频率转换成弧度表示的数字频率,得到Ωp1 和Ωs1 。 Ωp1=2 πfp1/fs=2 π1000/25000=0.08 π弧度 Ωs1=2 πfs1/fs=2 π12000/25000=0.96 π弧度 - 计算预扭曲模拟频率以避免双线性变换带来的失真。 由w=2fs tan( Ω/2) 求得wp1 和ws1 ,单位为弧度/ 秒。 wp1=2fs tan( Ωp1/2)=6316.5 弧度/ 秒 ws1=2fs tan( Ωs1/2)=794727.2 弧度/ 秒 - 由已给定的阻带衰减-20log δs 确定阻带边缘增益δs 。

北邮dsp软件实验报告

Matlab仿真实验 实验报告 学院:电子工程学院 专业:电子信息科学与技术 班级: 学号: 姓名:

时间:2015年12月23日 实验一:数字信号的FFT分析 1.实验目的 通过本次试验,应该掌握: (a)用傅里叶变换进行信号分析时基本参数的选择 (b)经过离散时间傅里叶变换和有限长度离散傅里叶变换后信号频谱上的区别,前者DTFT时间域是离散信号,频率域还是连续的,而DFT在两个域中都是离散的。(c)离散傅里叶变化的基本原理、特性,以及经典的快速算法(基2时间抽选法),体会快速算法的效率。 (d)获得一个高密度频谱和高分辨率频谱的概念和方法,建立频率分辨率和时间分辨率的概念,为将来进一步进行时频分析(例如小波)的学习和研究打下基础。(e)建立DFT从整体上可看成是由窄带相邻滤波器组成的滤波器组的概念,此概念的一个典型应用时数字音频压缩中的分析滤波器,例如DVD AC3和MPEG Audio。 2.实验容、要求及结果。 (1)离散信号的频谱分析: 设信号x(n)=0.001*cos(0.45n)+sin(0.3n)-cos(0.302n-) 此信号的0.3谱线相距很近,谱线0.45的幅度很小,请选择合适的序列长度N和窗函数,用DFT分析其频谱,要求得到清楚的三根谱线。 【实验代码】:

k=2000; n=[1:1:k]; x=0.001*cos(0.45*n*pi)+sin(0.3*n*pi)-cos(0.302*n*pi-pi/4); subplot(2,1,1); stem(n,x,'.'); title(‘时域序列'); xlabel('n'); ylabel('x(n)'); xk=fft(x,k); w=2*pi/k*[0:1:k-1]; subplot(2,1,2); stem(w/pi,abs(xk)); axis([0 0.5 0 2]); title('1000点DFT'); xlabel('数字频率'); ylabel('|xk(k)|'); 【实验结果图】:

DSP实验程序及结果

#include"math.h" #define PI 3.1415926 #define WANG 16 #define RUI 1024 int FIRLOW(int *nx,float *nh,int nError,int nCoeffNumber); float h[WANG],fU; int xx[RUI],rr[RUI],wc[RUI]; main() { int i,n_Output=0; fU=0.0005; for ( i=0;i

FIR #include #define RUI 25 #define RUI1 1000 #define RUI2 4500 #define SAMPLEF 10000 #define PI 3.1415926 float Wave(); float FIR(); float fHn[RUI]={ 0.0,0.0,0.001,-0.002,-0.002,0.01,-0.009, -0.018,0.049,-0.02,0.11,0.28,0.64,0.28, -0.11,-0.02,0.049,-0.018,-0.009,0.01, -0.002,-0.002,0.001,0.0,0.0 }; float fXn[RUI]={ 0.0 }; float fInput,fOutput; float fSignal1,fSignal2; float fStepSignal1,fStepSignal2; float f2PI; int i; float fIn[256],fOut[256]; int nIn,nOut; main() { nIn=0; nOut=0; f2PI=2*PI; fSignal1=0.0; fSignal2=PI*0.1; fStepSignal1=2*PI/30;

DSP运行实验报告

DSP运行实验报告 一、实验目的 熟悉CCS软件仿真下,DSP程序的下载和运行;熟悉借助单片机的DSP程序下载和运行; 熟悉借助仿真器的DSP程序下载和运行;熟悉与DSP程序下载运行相关的CCS编程环境。 二、实验原理 CCS软件仿真下,借用计算机的资源仿真DSP的内部结构,可以模拟DSP程序的下载和运行。 如果要让程序在实验板的DSP中运行、调试和仿真,可以用仿真器进行DSP程序下载和运行。初学者也可以不用仿真器来使用这款实验板,只是不能进行程序调试和仿真。 在本实验板的作用中,单片机既是串口下载程序的载体,又是充当DSP 的片外存储器(相对于FLASH),用于固化程序。 三、实验设备、仪器及材料 安装有WINDOWS XP操作系统和CCS3.3的计算机。 四、实验步骤(按照实际操作过程) 1、CCS软件仿真下,DSP程序的下载和运行。 第一步:安装CCS,如果不使用仿真器,CCS 的运行环境要设置成一个模拟仿真器(软仿真)。

第二步:运行CCS,进入CCS 开发环境。 第三步:打开一个工程。 将实验目录下的EXP01目录拷到D:\shiyan下(目录路径不能有中文),用[Project]\[Open]菜单打开工程,在“Project Open”对话框中选 EXP01\CPUtimer\CpuTimer.pjt,选“打开”, 第四步:编译工程。 在[Project]菜单中选“Rebuild All”,生成CpuTimer.out文件。 第五步:装载程序。 用[File]\[Load Program]菜单装载第四步生成CpuTimer.out文件,在当前工程目录中的Debug 文件夹中找到CpuTimer.out文件,选中,鼠标左键单击“打开”。

DSP实验报告2解读

DSP实验报告 院系:哈尔滨理工大学荣成校区 专业:电子信息工程 学号: 1230160101 姓名:董小天 日期: 2015年6月16日

实验二有限冲击响应滤波器(FIR)算法实验 一、实验目的 1.掌握用窗函数发设计FIR数字滤波器的原理和方法; 2.熟悉线性相位FIR数字滤波器特性; 3.了解各种窗函数对滤波特性的影响; 二、实验设备 1.计算机,CCS 3.1版软件,实验箱,DSP仿真器,连接线。 三、实验原理 1.有限冲击响应数字滤波器的基础理论; 2.模拟滤波器原理(巴特沃斯滤波器、且比学府滤波器、贝塞尔滤波器); 3.数字滤波器系数的确定方法。 四、实验步骤 1、复习如何设计FIR数字滤波;阅读本实验原理,掌握设计步骤; 2、阅读本实验所提供的样例子程序; 3、运行CCS软件,对样例程序进行跟踪,分析结果; 4、填写实验报告。 5、样例程序实验操作说明 A.实验前准备: ①实验箱和CPU配置:SW2的2、4置ON,1、3置OFF;S2全置ON,S23置ON,JP3拨码开关的3、6位置ON,其余置OFF;S2全部置OFF. ②用到西安连接“信号源”2号孔“信号源1”和“A/D单元”2号孔“ADIN1”; B.实验 启动CCS 3.1,打开文件Exp_fir.pjt工程文件;在i=0处设置断点;打开VIEW/GRAPH/TIME/FREQUENCY打开窗口,进行如下改动(参照图片),其中x,y分别表示经A/D转换后的输入混叠信号(输入信号)和对该信号进行FIR滤波的结果; 五、成果展示及代码

单击“Animate”运行程序,在实验箱上调整观察窗口并观察滤波的效果(滤波效果明显);

dsp实验报告

DSP 实验课大作业实验报告 题目:在DSP 上实现线性调频信号的脉冲压缩,动目标显示和动目标检测 (一)实验目的: (1)了解线性调频信号的脉冲压缩、动目标显示和动目标检测的原理,及其DSP 实现的整个流程; (2)掌握C 语言与汇编语言混合编程的基本方法。 (3)使用MATLAB 进行性能仿真,并将DSP 的处理结果与MATLAB 的仿真结果进行比较。 (二)实验内容: 1. MATLAB 仿真 设定信号带宽为B= 62*10,脉宽-6=42.0*10τ,采样频率为62*10Fs =,脉冲重复周期为-4T=2.4*10,用MATLAB 产生16个脉冲的线性调频信号,每个脉冲包含三个目标,速度和距离如下表: 对回波信号进行脉冲压缩,MTI ,MTD 。并且将回波数据和频域脉压系数保存供DSP 使用。 2.DSP 实现 在Visual Dsp 中,经MATLAB 保存的回波数据和脉压系数进行脉压,MTI 和MTD 。 (三)实验原理 1.脉冲压缩原理 在雷达系统中,人们一直希望提高雷达的距离分辨力,而距离分辨力定义为:22c c R B τ?==。其中,τ表示脉冲时宽,B 表示脉冲带宽。从上式中我们可以看

出高的雷达分辨率要求时宽τ小,而要求带宽B大。但是时宽τ越小雷达的平均发射功率就会很小,这样就大大降低了雷达的作用距离。因此雷达作用距离和雷达分辨力这两个重要的指标变得矛盾起来。然而通过脉冲压缩技术就可以解决这个矛盾。脉冲压缩技术能够保持雷达拥有较高平均发射功率的同时获得良好的距离分辨力。 在本实验中,雷达发射波形采用线性调频脉冲信号(LFM),其中频率与时延成正比关系,因此我们就可以将信号通过一个滤波器,该滤波器满足频率与时延成反比关系。那么输入信号的低频分量就会得到一个较大的时延,而输入信号的高频分量就会得到一个较小的时延,中频分量就会按比例获得相应的时延,信号就被压缩成脉冲宽度为1/B的窄脉冲。 从以上原理我们可以看出,通过使用一个与输入信号时延频率特性规律相反的滤波器我们可以实现脉冲压缩,即该滤波器的相频特性与发射信号时共轭匹配的。所以说脉冲压缩滤波器就是一个匹配滤波器。从而我们可以在时域和频域两个方向进行脉冲压缩。 滤波器的输出() h n= y n为输入信号() x n与匹配滤波器的系统函数() *(1) y n x n s N n =--。转换到频域就是--卷积的结果:* ()()*(1) s N n =。因此我们可以将输入信号和系统函数分别转化到频域:Y k X k H k ()()( Y k,然后将结果再转化到时域, h n H k →,进行频域相乘得() ()() x t X k →,()() 就可以得到滤波器输出:()() →。我们可用FFT和IFFT来实现作用域的 Y k y n 转换。原理图如下: 图1.脉冲压缩原理框图 2.MTI原理 动目标显示(MTI)技术是用来抑制各种杂波,来实现检测或者显示运动目标的技术。利用它可以抑制固定目标的信号,显示运动目标的信号。以线性调频

DSP实验报告

DSP实验报告

软件实验 1无限冲激响应滤波器(IIR) 算法 一.实验目的 1 .掌握设计IIR 数字滤波器的原理和方法。 2 .熟悉IIR 数字滤波器特性。 3 .了解IIR 数字滤波器的设计方法。 二.实验设备 PC 兼容机一台,操作系统为Windows2000( 或Windows98 ,WindowsXP ,以下默认为Windows2000) ,安装Code Composer Studio 2.21 软件。 三.实验原理 1 .无限冲激响应数字滤波器的基础理论。 2 .模拟滤波器原理(巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器、贝塞尔滤波器)。 3 .数字滤波器系数的确定方法。 4 .根据要求设计低通IIR 滤波器: 要求:低通巴特沃斯滤波器在其通带边缘1kHz 处的增益为-3dB ,12kHz 处的阻带衰减为30dB ,采样频率25kHz 。设计: - 确定待求通带边缘频率fp1Hz 、待求阻带边缘频率fs1Hz 和待求阻带衰减-20log δsdB 。 模拟边缘频率为:fp1=1000Hz ,fs1=12000Hz 阻带边缘衰减为:-20log δs=30dB - 用Ω= 2πf/fs 把由Hz 表示的待求边缘频率转换成弧度表示的数字频率,得到Ωp1 和Ωs1 。 Ωp1=2 πfp1/fs=2 π1000/25000=0.08 π弧度 Ωs1=2 πfs1/fs=2 π12000/25000=0.96 π弧度 - 计算预扭曲模拟频率以避免双线性变换带来的失真。 由w=2fs tan( Ω/2) 求得wp1 和ws1 ,单位为弧度/ 秒。 wp1=2fs tan( Ωp1/2)=6316.5 弧度/ 秒 ws1=2fs tan( Ωs1/2)=794727.2 弧度/ 秒 - 由已给定的阻带衰减-20log δs 确定阻带边缘增益δs 。 因为-20log δs=30 ,所以log δs=-30/20 ,δs=0.03162

DSP第二次实验报告

DSP实验报告(第二次实验) 实验四、正弦信号发生器 验四、正弦信号发生器 一、实验目的 1. 掌握利用DSP产生正弦信号的原理 2. 熟悉子程序调用的程序结构以及堆栈的使用 3.掌握CCS的图形输出操作 二、实验设备 1. 集成开发环境Code Composer Studio(简称CCS) 2. 实验代码Sin.s54、Lab.cmd和Lab.gel

三、实验内容 1. 阅读理解多项式逼近正弦的文档 2. 阅读和理解Sin.s54 3. 调试正弦波发生器 4. 加入断点,并选取图形观测,利用动画及时更新 5. 试利用迭代的方法来实现正弦信号发生器 四、实验结果和提示 1. 2345sin()= 3.140625 + 0.02026367 - 5.325196 + 0.5446778 + 1.800293x x x x x x ,x 为第一象限内的弧度值。因为sin()sin(),sin()sin()x x x x π-=-=-,所以只需将第二,三,四象限内的弧度值转换到第一象限即可计算出相应的正弦函数值。由于有限精度,规定弧度值从~ππ-,其中π=0x7FFF ,π/2=0x4000,π-=0x8000。利用级数展开产生正弦波,必须在调用计算子程序之前备份好累加器A 中的当前弧度值,以便计算结束后实现x 增量。正弦波的频率可以通过增幅的大小来进行控制,如果假定程序循环一次为一个时间单位,则正弦波的周期为65536/步长,频率为周期倒数。x 自动增长时要注意当x 超过π后必须调整到~ππ-的范围内才能调用计算子程序,即若,2x x x ππ>=-则。 2. 需要使用临时数据时,必须用frame 语句留出所需空间,使用结束后要将堆栈指针还原以防堆栈内存泄漏。要注意的是frame 的下一条指令不能使用直接寻址。 3. 注意事项:利用累加器写乘法寄存器T (stlm )之后的下一条指令不能使用T ;条件转移指令xc 在指令访问阶段判断条件,该条件必须在先于xc 指令的2个指令之前产生;条件转移指令bc 是在指令执行阶段判断条件,不存在这方面的问题。具体细节请参见《数字信号处理系统的应用和设计》3.6节和 4.5节。 4. 图形观测时选择菜单View->Graph->Time/Frequency ,然后设置如下图:

dsp实验报告5

一、实验原理: 1、无限冲击响数字滤波器的基础理论; 2、模拟滤波器原理(巴特沃斯滤波器、切比雪夫滤波器、贝塞尔滤波器); 3、双线性变换的设计原理。 二、实验内容: 1、复习有关巴特沃斯滤波器设计和用双线性变换法设计IIR数字滤波器的知识; 2、阅读本实验所提供的样例子程序; 3、运行CCS软件,对样例程序进行跟踪,分析结果; 4、填写实验报告。 5、样例程序实验操作说明 1)正确完成计算机、DSP仿真器和实验箱连接后,开关K9拨到右边,即仿真器选择连接右边的CPU:CPU2; 2)“A/D转换单元”的拨码开关设置: JP3 3)检查:计算机、DSP仿真器、实验箱是否正确连接,系统上电; 4)置拨码开关S23的1、2拨到OFF,用示波器分别观测模拟信号源单元的2号孔“信号源1”和“信号源2”输出的模拟信号,分别调节信号波形选择、信号频率、信号输出幅值等旋钮,直至满意,置拨码开关S23的1到ON,两信号混频输出; 三、程序分析: cpu_init(); //CPU初始化 fs = 25000; //设置采样频率为2500HZ nlpass = 0.18; //设置通带上限频率归一化参数为0.18 nlstop = 0.29; //设置阻带下限截止频率归一化参数为0.29 biir2lpdes(fs,nlpass,nlstop,a,b); 根据双线性变换法求滤波器的系数a和b set_int(); //调用低通滤波器子程序对信号进行滤波 中断程序注释: interrupt void int1()

{ in_x[m] = port8002; //读取port8002端口的数值 in_x[m] &= 0x00FF; //取后八位送入X[m] m++; //每取一个数字m加1 intnum = m; if (intnum == Len) //当取到128个字节时,重新读取port8002端口的数值 { intnum = 0; xmean = 0.0; for (i=0; i

DSP实验报告二CCS的使用

实验二 CCS使用操作:报告: 1.实验目的 (1) 熟悉CCS集成开发环境,掌握工程的生成方法。 (2) 掌握CCS集成开发环境的调试方法。 2.实验容及步骤 (1)查阅CCS发展历史,给出CCS发展的版本和适用的芯片。 Code Composer Studio 包含一整套用于开发和调试嵌入式应用的工具。它包含适用于每个TI 器件系列的编译器、源码编辑器、项目构建环境、调试器、描述器、仿真器以及多种其它功能。CCS IDE 提供了单个用户界面,可帮助您完成应用开发流程的每个步骤。借助于精密的高效工具,用户能够利用熟悉的工具和界面快速上手并将功能添加至他们的应用。 版本 4 之前的 CCS 均基于 Eclipse 开放源码软件框架。Eclipse 软件框架可用于多种不同的应用,但是它最初被开发为开放框架以用于创建开发工具。我们之所以选择让 CCS 基于Eclipse ,是因为它为构建软件开发环境提供了出色的软件框架,并且正成为众多嵌入式软件供应商采用的标准框架。CCS 将 Eclipse 软件框架的优点和仪器 (TI) 先进的嵌入式调试功能相结合,为嵌入式开发人员提供了一个引人注目、功能丰富的开发环境。 CCS 有 2 个版本:白金版和微处理器版。各版本支持的处理器不同。支持的核白金版:TMS320C6000、TMS320C5000、TMS320C2800、TMS470、TMS570、ARM 7、ARM9、ARM 11、ARM Cortex M3(不包含 Stellaris Cortex M3)、ARM Cortex R4、ARM Cortex A8 和 MSP430 处理器版:TMS320C2800 和MSP430 CCS 白金版和微处理器版都使用以下各项:主机:PC 操作系统:Microsoft Windows Vista 和 XP (2) 使用CCS时,经常遇到下述扩展名文件,说明分别是什么文件。 ①project. mak :即MAKE文件,VC4及以前版本使用的工程文件,用来指定如何建立一个工程, VC6把MAK文件转换成DSP文件来处理。 ②program. c :定义的变量、数组、函数的声明 ③program. asm :Oracle管理文件(OMF) ④filename. h :H C程序头文件 ⑤filename. lib :LIB 库文件 ⑥project. cmd :CMD Windows NT,OS/2的命令文件;DOS CD/M命令文件;dBASEⅡ程序文件 ⑦program. obj :OBJ 对象文件 ⑧program. Out: C语言输出文件 ⑨project. Wks :WKS Lotus 1-2-3电子表格;Microsoft Works文档 保存配置文件时产生的文件: ①programcfg.cmd 连接器命令文件 ②programcfg.h54 头文件 ③programcfg.s54 汇编源文件 DSP源文件的建立;

DSP实验二

信号与信息处理综合实验(DSP部分) 学院:信息与通信工程学院 班级:2013211125 姓名:商晴庆 学号: 班内序号: 组号: 2016年4月

实验二 FFT的实现 一、实验目的 (1)进一步熟悉DSK6416开发平台,掌握调试功能; (2)充分理解FFT过程,并编码实现功能。 二、程序功能 (1)基础:将FFT结果写入SDRAM中,并读取出来。 (2)提高:其他点数的FFT 三、模块描述 (1)GBLCTL寄存器配置部分: static EMIFA_Config MyEmifaConfig = { EMIFA_GBLCTL_RMK ( EMIFA_GBLCTL_EK2RATE_FULLCLK, //1 X EMIF input clock EMIFA_GBLCTL_EK2HZ_CLK, //eclkout2 continue output during hold EMIFA_GBLCTL_EK2EN_ENABLE, //eclkout2 enable output EMIFA_GBLCTL_BRMODE_MRSTATUS, //bus request is memory access or refresh pending/in progress EMIFA_GBLCTL_NOHOLD_DISABLE, EMIFA_GBLCTL_EK1HZ_CLK, //eclkout1 continue output during hold EMIFA_GBLCTL_EK1EN_ENABLE, //eclkout1 enable output EMIFA_GBLCTL_CLK4EN_ENABLE, //clkout4 output enable EMIFA_GBLCTL_CLK6EN_ENABLE //clkout6 output enable ), (2)CECTL0-3寄存器配置部分 0xffffffd3, //64BIT SDRAM 0xffffffe3, 0x22a28a22, 0x22a28a22, (3)SDCTL寄存器配置部分

DSP硬件实验报告北邮

北京邮电大学DSP硬件实验报告 学院: 电子工程学院 专业: 姓名: 学号: 班级:

实验一常用指令实验 一、实验目的 熟悉DSP开发系统的连接 了解DSP开发系统的组成和结构和应用系统构成 熟悉常用C54X系列指令的用法(程序寻址,寄存器,I/O口,定时器,中断控制)。 二、实验步骤与内容 (一)简单指令程序运行实验 源程序: ;File Name:exp01.asm ;the program is compiled at no autoinitialization mode --程序在非自动初始化模式下编译 .mmregs --(enter memory-mapped registers into the symbol table) --进入记忆映射注册进入符号表 .global _main --(identify one or more global(external)symbols)--定义一个或多个全局变量 _main: stm(累加器的低端存放到存储器映射寄存器中) #3000h,sp(堆栈指针寄存器);堆栈指针的首地址设为#3000h ssbx(状态寄存器位置位)xf ;状态寄存器位置位,灯亮 call (非条件调用,可选择延迟)delay(存储器延时) ;调用delay函数延时 rsbx(状态寄存器复位)xf ;状态寄存器位复位,灯灭 call delay ;调用delay函数延时 b (累加器)_main ;可选择延迟的无条件转移,循环执行 nop(无操作) nop ;delay .5 second delay: ;延迟0.5秒 stm 270fh,ar3 (辅助寄存器3) ;把地址存放到存储器映射寄存器中 loop1: stm 0f9h,ar4 (辅助寄存器4);把地址存放到存储器映射寄存器中 loop2: banz loop2,*ar4- ;AR4不为0时转移,指针地址减一

DSP实验报告

实验一 离散系统的时域分析 一、实验目的 1、掌握离散时间信号的MATLAB 表示; 2、信号运算; 3、差分方程的求解; 4、离散时间信号的卷积运算。 二、实验原理 1、离散时间信号 离散时间信号只在某些离散的瞬时给出函数值,而在其他时刻无定义。它是时间上不连续按一定先后次序排列的一组数的集合,称为时间序列,用x(n)表示,n 取整数代表时间的离散时刻。 在matlab 中用向量来表示一个有限长度的序列。 2、序列的类型 为了分析的方便,在数字信号处理中规定了一些基本的序列。 a) 单位采样序列 function [x,n]=impseq(n1,n2,n0) n=[n1:n2]; x=[(n-n0)==0]; 调用该函数 [x,n]=impseq(-2,8,2); stem(n,x) 0010()001()0n n n n n n n n n δδ =?=? ≠? =?-? ≠?

单位采样序列的另一种生成方法 n0=-2; n=[-10:10]; nc=length(n); x=zeros(1,nc); for i=1:nc if n(i)==n0 x(i)=1 end end stem(n,x) b) 单位阶跃序列 function [x,n]=stepseq(n1,n2,n0) n=[n1:n2]; x=[(n-n0)>=0]; 调用该函数 [x,n]=stepseq(-2,8,2); stem(n,x) 000 10()001()0n n n n n n n n n εε >=?=? =?-?

c) 实数指数序列 x(n)=an (运算符“.^”) n=[0:10]; x=0.9.^n; stem(n,x) d) 复数指数序列 n=[-10:10]; alpha=-0.1+0.3*j; x=exp(alpha*n); real_x=real(x); image_x=imag(x); mag_x=abs(x); phase_x=angle(x); subplot(2,2,1); stem(n,real_x) subplot(2,2,2); stem(n,image_x) subplot(2,2,3); stem(n,mag_x) subplot(2,2,4); stem(n,phase_x) ()()j n x n e αω+=(0.1j0.3)n x(n)e (10n 10) -+= -<<

DSP技术及课程设计实验报告二(精)

东南大学自动化学院 实验报告 课程名称: D SP 原理及C 程序开发 第二次实验 实验名称:基于DSP 系统的实验——指示灯、拨码开关和定时器院(系):自动化专业:自动化 姓名:学号: 实验室:实验组别: 同组人员:实验时间:2012 年 4 月 18日 评定成绩:审阅教师: 第一部分实验:基于DSP 系统的实验——指示灯和拨码开关 一.实验目的 1. 了解ICETEK –F28335-A 评估板在TMS320F28335DSP 外部扩展存储空间上的扩展。 2. 了解ICETEK –F28335-A 评估板上指示灯和拨码开关扩展原理。 3. 学习在C 语言中使用扩展的控制寄存器的方法。 二.实验设备 计算机,ICETEK –F28335-A 实验箱(或ICETEK 仿真器+ICETEK–F28335-A 评估板+相关连线及电源)。 三.实验原理

1.TMS320F28335DSP 的存储器扩展接口 存储器扩展接口是DSP 扩展片外资源的主要接口,它提供了一组控制信号和地址、数据线,可以扩展各类存储器和存储器、寄存器映射的外设。 -ICETEK –F28335-A 评估板在扩展接口上除了扩展了片外SRAM 外,还扩展了指示灯、DIP 开关和D/A 设备。具体扩展地址如下: 0x180004- 0x180005:D/A 转换控制寄存器 0x180001:板上DIP 开关控制寄存器 0x180000:板上指示灯控制寄存器 -与ICETEK –F28335-A 评估板连接的ICETEK-CTR 显示控制模块也使用扩展空间控制主要设备: 208000-208004h :读-键盘扫描值,写-液晶控制寄存器 208002-208002h :液晶辅助控制寄存器 208003-208004h :液晶显示数据寄存器 2.指示灯与拨码开关扩展原理

DSP实验报告重叠保留法和重叠相加法(精)

北京邮电大学 实 学班姓学 日 验报告 MATLAB 实现线性卷积运算院:信息与通信工程学院级:名: ______ 号: 期: 实验名称:用 索引

一、实验原 理 ..................................................................................................................... 3 1、算法产生背景 (3) 2、算法基本思 想 ...........................................................................................................................3 1)重叠相加法 (3) 2)重叠保留 法 ...........................................................................................................................4 二、流程图设计 . ................................................................................................................. 5 1、重叠相加 法 . .............................................................................................................................. 5 2、重叠保留 法 . (6) 三、MATLAB 源代 码 . ........................................................................................................... 7 1、重叠相加源码 ...........................................................................................................................7 2、重叠保留源 码 ...........................................................................................................................8 四、实验结果与分析 ........................................................................................................... 9 ①调用CONV (计 算 . ......................................................................................................................... 9 ②测试重叠相加算法 (9) ③测试重叠保留算 法 .....................................................................................................................9 五、讨论与总结 . ............................................................................................................... 10 1、算法效率分 析: .....................................................................................................................10 A. 重叠相加法 . (10)

相关文档
最新文档