课程设计引向天线的设计(三)

课程设计引向天线的设计(三)
课程设计引向天线的设计(三)

中文摘要

摘要:天线在现代通信系统中的作用不可或缺,本文的主要内容就是围绕天线展开。

八木天线的研究与设计

关键词:八木天线HFSS 方向系数方向图半功率角驻波比

ABSTRACT

Antenna plays an important role in present communication system. The main work of this paper focused on the research and design of Yagi-Uda antenna.

KEYWORDS: Yagi-Uda antenna HFSS direction coefficient HPBW VSRW

引向天线的研究与设计目录

第一章绪论 (2)

1.1概述 (2)

1.2八木天线的分析方法 (3)

第二章八木天线的设计 (4)

2.1八木天线的原理 (4)

2.2软件设计、仿真 (5)

2.3平衡不平衡转换器的设计 (9)

2.6小结 (12)

第三章课程设计心得 (13)

参考文献及附录 (14)

第一章绪论

1.1概述

天线在各种无线电技术设备中的作用基本上是相同的。任何无线电技术设备都是通过电磁波来传送信号的,天线就是这种辐射和接收电磁波的装置,它把发射设备产生的高频电流能量转换成电磁波能量,同时又把电磁波能量转换成高频电流形态的能量。

自马可尼和赫兹发明了天线以来,天线技术经过了loo多年的发展,到目前为止,天线的类型可谓是五花八门,种类繁多,形式多样不胜枚举。一般按对天线的分析方法来分共有三大类:

1)线天线:是指天线结构具有线状结构特点,而且金属导线半径远小于波长的天线。如:振子天线、环天线、‘螺旋天线等;

2)面天线或称口径天线:是指电磁波通过一定口径向外辐射的天线。如一喇叭天线、板状天线、角反射天线、抛物面天线、栅格天线、卡塞格伦天线等;

3)天线阵:是指天线的辐射单元按一定规律排列和激励(或称馈电,指馈给每个辐射单元信号的幅度和相位)的天线群体。如:美国爱国者导弹中的相控阵雷达系统、美F-22战机和俄米格一35战机的机载相控阵雷达系统、预警飞机、导弹和空问分集移动通信系统等。

目前天线正广泛应用于通信的各个领域,如微波通信天线、卫星通信天线、微波器件天线、无线公话天线、及应用于汽车上的移动数字电视天线等。从频段上来讲,已经研制出用于GSM/CDMA GPRS,PHS,CDMA2000,3GDEc置WLAN,WCDMA,TSCDMA等领域的天线。各种内置和外置的天线广泛用于手机、无线公话、无线商务电话、电脑笔记本Pc卡、车载电话、无线模块以及其他无线终端。

对于定向高增益天线,八木天线是经典的种类之一,它由一根有源振子和多根无源振子组成,有源振子可以是半波振子,也可以是折合振子。无源振子通常由一个比有源扳子长的反射器和多个比有源振子短的引向器组成。有源振子被馈电后向空间辐射电磁波,使无源振子中产生感应电流来产生辐射,辐射方向指向引向器方向。当改变无源振子的长度及其与有源振子之间的距离时,无源振子上感应电流的幅度及相位也随之而变化,可以影响有源振子的方向图。它的优点是结构简单、增益高、方向性强,其次用它来测向、远距离通信效果特别好。如果再配上仰角和方位旋转控制装置,就能得到良好的干扰检测性能。

上个世纪二十年代,日本东北大学的八木秀次和宇用太郎两人发明了这种天线,被称为“八木宇用天线”,简称“八木天线”,在二次世界大战中陆续推广使用一副典型的八木天线如下图所示。八木天线较偶极天线有高的增益。用它来测向、远距离通信效果特别好。如果再配上仰角和方位旋转控制装置,便可以随心所欲与包括空间飞行器在内的各个方向上的电台联络。

(八木天线实物图)

1.2八木天线的分析方法

分析引向天线的方法有感应电动势法、行波天线的观点及目前广泛采用的计算机辅助设计法。利用计算机辅助设计CAD自从五十年代末发展起来至今,已经在天线设计仿真优化领域发展成一门完整的学科,随着各种结构复杂、功能各异的天线形式不断涌现,人们也在不断的对天线设计仿真手段进行改进和更新,以满足实际项目的更高的需求。EDA仿真软件与电磁场的数值解法密切相关的,不同的仿真软件是根据不同的数值分析方法来进行仿真的。通常,数值解法分为显示和隐示算法,隐示算法(包括所有的频域方法)随着问题的增加,表现出强烈的非线性。显示算法(例如FDTD、FIT方法在处理问题时表现出合理的存储容量和时间。因为微波EDA仿真软件与电磁场的数值算法密切相关,在介绍微波EDA软件之前先简要的介绍一下微波电磁场理论的数值算法。所有的数值算法都是建立在Maxwell方程组之上的,在频域,数值算法有:有限元法(FEM—Finite Element Method)、矩量法(MoM—Method of Moments),差分法(FDM—Finite Difference Methods),边界元法(BEM~),和传输线法(TLM~Transmission-Line-matrix Method),在时域,数值算法有:时域有限差分法(FDTD—Finite Difference Time Domain)和有限积分法(FFT—Finite Integration Technology)。其中基于矩量法仿真的微波EDA仿真软件主要有:ADS(Advanced Design System),Ansoft Designer.基于时域有限差分的微波仿真软件主要有:CST MICROWAVE STUDIO等。基于有限元的微波EDA仿真软件主要有Ansoft HFSS和Ansys Emax。

第二章八木天线的设计

2.1八木天线的原理

八木天线(也有人称之为寄生天线,引向天线等)一副典型的八木天线由一个有源的半波振子,一个(或几个)反射器和一个(或几个)引向器组成的线性端射天线。即有一个连接到传输线上的偶极子,还有若干个未连接、等距离或不等距离安装的平行阵列偶极子(作引向器和反向器)。引向器和反向器的作用是将有源振子的能量引到主辐射方向上去。有源阵子由于加有高频电动势,在周围八木天线空间产生电磁场,使得无源阵子中出现感应电动势,产生相对应的高频电流,这些电流在周围空间再衍生电磁场。由于存在无源阵子,根据互感原理在有源阵子上也产生相应的感应电流。所以有源阵子的总电流是激励电流和感应电流之和。当反射器的长度、引向器的长度和它到有源阵子的距离选得适当,使反射器和有源阵子所产生的电磁场在~个方向(反射器的一边)上相抵消,在相反方向上(引向器一边,主辐射方向)上相叠加,这样就可使天线得到单项辐射特性,使天线辐射可以在引向器方向上形成较尖锐的波束。八木天线的单元越多,方向性越强。但是单元的增加不与方向性成正比。单元过多时,导致工作频带变窄,整个天线尺寸也将偏大。

八木天线的优点是结构简单、馈电方便、重量轻、便于转动,并有一定的增益。缺点是颇带窄,增益不够高,因此常排成阵列使用。它在超短波和微波波段应用广泛。

八木天线的设计包括振子尺寸的设计和优化和平衡不平衡转换设计。

首先是振子尺寸的设计和优化。由于八木天线的馈源只有一个,接在馈源上的振子被称为有源振子,有源振子可以选择偶极子也可以选择折合振子,有关折合振子的分析介绍在第二章已经列出过,对于八木天线的有源振子来讲,一般选择折合振子,因为单个折合折子的阻抗较高,而八木天线的其它无源振子加上后会使天线的整个输入阻抗下降,比单根折合振子的输入阻抗要小很多,因此采用折合振子更便于八木天线与馈线的匹配。

八木天线是一种互耦起决定作用的天线,天线的各个振予的长度及其间距的变化对天线的的方向图及其它性能都有影响,对于设计目标来说,可调参数太多,很多天线工程手册上对于八木天线的设计虽都有详细介绍,而且针对一些特定参数要求也给出了工程上的设计方案及经验尺寸,但是对于实际设计来讲,仅靠经验难于取得最好的结果。对于八木天线来说,引向振子间间距选得较大时,方向图主瓣较窄,也就意味着增益相应的高一些,而间距相对较小的话,增益和方向性就会差些:而且引向振子数目越多,增益也越高,所以设计时要考虑使八木天线的方向图变窄的情况下使天线尺寸不至于太大。

影响八木天线方向性图和增益的因素有:

1、引向器的间距选择

2、反射器和有源阵子的间距选择

3、引向器长度选择

4、反射器长度选择等等。

八木天线各个参数的选择范围分别为:

引向器的间距选择:引向器的间距用d表示,选择引向器之间的距离有两种方案,一种是引向器间距不相等;另一种是引向器间距相等。一般来说,若用n表示引

向器数目的序号,第n到第n一1个的d是在0.15-0.4λ乱范围内选择,当选的较大时,方向图主瓣较窄,输入阻抗的频率响应较平稳,但副瓣较大;当选的较小时,副瓣较低,抗干扰性能较好,但增益和方向性差些。因此,若考虑前者,可取d=0.3k若考虑后者,可取d小于等于0.2l不管哪种情况,第一个有源振子与引向器之间的距离应取得更小一些,一般取0.6到Of7个的d(引向器之间的距离)。

反射器与有源振子间的间距选择:反射器与有源振子的距离一般取为(O.15m-0.23)λ。d主要影响八木天线的前后场比和输入阻抗。当d=(O.15-O.17)λ时,前后比较高但天线的输入电阻小(约15.20Ω)当d=(0.20.23)λ时,前后比较低但天线输入电阻大(约5060Ω),易于同轴电缆匹配

引向器长度选择:有两种方案,第一种是引向器等长度,约取为(O.38.0.44)λ。这种方案的优点是加工和调整较为容易,但频带较窄。第二种方案是个引向器长度随序号增加由长到短渐变。先取第一根引向器长度O.46λ,以后引向器长度则按2-3%的缩短系数递减。这种方案的优点是频带稍宽,但调整和加工麻烦一些

反射器长度选择:反射器长度一般选择在(O.5-0.55)λ之间。但要注意,当所设计的八木天线是在一个频带范围内工作时,反射器长度不宣短于最低频率相应的λ/2。

无源振子半径的确定:无源振子半径是根据八木天线的通频带要求去确定的。2.2软件设计、仿真

采用HFSS的仿真与设计:

HFSS仿真示意图

HFSS的特点是仿真界面简洁直接,可以直接在编辑窗口改变数据以更改仿真模型尺寸,但是仿真过程较复杂。

HFSS仿真建模:

尺寸选择:设八木天线设计频带宽度上的中心频率在910MHz,天线尺寸如下:反射器的长度为0.505λ=168mm,各引向器等长,长度为O.410λ=136mm。折合振子采用中心馈电的矩形截面带状结构,长度为L=O.422λ=140mm,宽度w=9mm,厚度为t=2mm,拐角处用半径为16mm的半圆坏,也即折合振子线距为d=32mm,整个折合的厚度为2mm,由振子阻抗理论可知,此时w<

抗为Zo=120ln(d/a)=120lnll.6~300Ω。反射器和折合振子的间距为0.267λ=92mm,第一个引向器和有源振子的的间距为0.18λ=60mm,各个振子间的间距为0.273λ=91mm。

材料定义:选择天线阵子的材料为铝,相对介电常数为1。

远场边界条件设为辐射边界,辐射边界(Radiation)也被称为吸收边界。辐射边界能够模拟丌放的表面,即波能够朝着辐射边界的方向辐射出去。系统在辐射边界处吸收电磁波,本质上就可把边界看成是延伸到空间无限远处。由于辐射边界可以是任意形状并且靠近结构,这就排除了对球形边界的需要。当结构中包含辐射边界时,远区场计算作为仿真的一部分被完成。由于判断近远场距离场源的距离的准则是r=3λ,当r≧3λ时为远场,当r≦3λ为近场,因此辐射边界定义在距离八木天线3λ处。

为了在更宽的频带范围内观察天线的参数特性,计算频率同样在800—960MHz 之间。仍选择887MH与932MHz作为参考频点:

887MHz时,仿真结果如图所示:

(887MHz八木天线E面方向图)

(887MHz八木天线H面方向图)

由上图可知,887MHz时

E面(水平极化方向)的天线参数为:天线方向性系数为11.457dB:率主瓣宽度为28°~30°;第一副瓣电平为.14.687dB。

H面(垂直极化方向)的天线参数为:天线方向性系数为11.457dB;率主瓣宽度为45°第一副瓣电平为-9.217dB。

932MHz时,仿真结果如图:

(932MHz八木天线E面方向图)

(932MHz八木天线H面方向图)

由上图可知,932MHz时

E面(水平极化方向)的天线参数为:天线方向性系数为10.641dB;方向图半功率主瓣宽度为24°~25°;第一副瓣电平为一12.911dB。

H面(垂直极化方向)的天线参数为:天线方向性系数为10.641dB;方向图半功率主瓣宽度为26°~28°;第一副瓣电平为一9.944dB。

下图是仿真的方向图(3dB)带宽:

(天线方向图带宽)

由上图可知,方向图半功率带宽大于145MHz。

2.3平衡不平衡转换器的设计

平衡转换器是连接平衡传输和非平衡传输的设备,将设备的平衡传输转换成非平衡传输,反之亦可,它隔离传输线,提供平衡输出。在平衡转换器中有一对平衡的终端设备,电流在数值上相等,但相位相反。另外还有一对不平衡的终端设备,其中一端接地,另一端传送信号。平衡转换器广泛于无线通信和电缆通信中,其中,它的~个典型应用就是天线的馈电器。在天线设计过程当中,如果天线是平衡输出,为了使其与信号传输线的不平衡端口相匹配,平衡一不平衡馈电转换将是非常重要的一个环节,它是单元天线的输入输出口,影响天线的平衡,也影响天线的输入阻抗值,没有它的引出,天线将无法正常使用。平衡转换器用作天线馈电器,将完成从平衡到不平衡的馈电转换,使不平衡传输线如同轴电缆设备和天线的平衡馈电端顺利转换并连接。

从天线的四个平衡条件出发n,平衡器可以分成四大类。第一类:抑制外皮电流方式,根掘这一条形成了扼流式平衡器;第二类,电阻对称式,掘此形成了对称式平衡器;第三类,电压平衡式,据此形成了倒相式平衡器;第四类:电流平衡式,掘此形成了磁耦合式平衡器。其中反相式平衡器的作法是通过反相或反接(倒相),使得天线平衡输出端两个输出头a和b之间满足Va=Vb。微带平衡不平衡馈电器就是天线反相式平衡器设计的一种。最简单的对称线天线就是半波阵振子(或是半波偶极子),下面谈到的皆是接到半波振子上的,这样做不失去一般性或通用性。

下图所示是一种典型的移相式平衡器,它是通过λ/2的电缆传输线在设计频率上满足Va=-Vb,因而是一种窄带平衡器,并进行4:l阻抗交换。

半波长U形环模型半波长U形环等效电路

其中,Z3是天线的共模阻抗,Za是天线自身的阻抗,Zl是同轴线对地的阻抗,ab段的长度即为半波长。由传输线理论可知,半波长的传输线电压相位相差π,即电压大小相等,相位相反,因两使天线的两个平衡馈电点a、b满足倒相要求,而在输出端接同轴线等不平衡传输线设备,从而完成天线馈电的平衡不平衡转换转换。

在聚四氟环氧乙烯的介质基板上,设计一个简单的微带传输线。基板厚1.509mm,如果要使微带线的特性阻抗为50欧姆,假设W/h≧1,则由计算得出微带线的宽度是2.869mm,用HFSS建模仿真,将微带线的两截断端作为两个集总端口,并得到接传输线的端口的S参数和阻抗特性如下:

端口S参数和特性阻抗

Ansoft HFSS来仿真此平衡不平衡转换器:将辐射边界条件放置在距离辐射体十分之一到四分之一波长的地方,在主辐射方向上,设置在四分之一波长以外,本文微带上导体带设为距离辐射边界四分之一波长,理想电导体接地板为pec结

构,由于下方没有场,所以不必设置。而左右离辐射边界可以放在稍近的地方。

(微带平衡不平衡转换器仿真示意图)

选用介质介电系数为4.4的环氧树脂作介质基板,微带线的宽度和λ/2长度则由本文第二部分列出的公式(4.9)、(4,10),并利用HFSS的优化选项确定一一首先选定介质参数和中心频率,然后对微带线的长度和宽度进行变量优化:由前文工程公式的计算得到近似解,并以此为依据选定尺寸范围,进行优化,观察驻波比的变化,使得VSWR的值在设计的频带内最小,并满足特性阻抗为50Ω的要求。最终得到的尺寸为:微带线宽2mm,介质基片的厚度为1.509mm,λe/2(有效半波长)为98mm,“U”形微带线连接馈源直边长度是40mm,另一直边连接馈源倾部分线段长度是13mm,连接倾斜部分与“u”形底部的线段长32mm,“u”形底部线段长13m。微带线的厚度为0.1mm。基片底部涂一层薄薄的接地金属层厚度为0.1mm,板子的尺寸是长×宽=48mm×39mm。在仿真模型中把微带线的平衡接入端和不平衡接入端两个端口分别设为集总端(lumpedPort2和lumpedPort1 ),由于微带线接折合振子的两个馈电端,λ/2长的传输线从一

个振子臂的馈电端经过微带表面的介质层连接到另一个振子臂的馈电端,看起来

呈“u”字形。天线没有接阻抗变换器时的输入阻抗示意图如下图所示,由第一部分分析的结果可知,此微带传输线结构除了使平衡馈电转换成不平衡,还将完成4:1的阻抗变换。从下图中可以看出天线在885.934MHz时的阻抗大约是180Ω一268Ω之间,通过阻抗变换可使变换在45Ω~67Ω之间,从而与50Ω的同轴线匹配,这些预想的结果要在实验模型中得到恰当的验证,必须得到在设计频率上的的,或电压驻波比VSWR,使其满足规定的昭职s1.5的要求。仿真时分别在LumpedPort2上加50Ω的传输线特性阻抗,LumpedPort2接天线馈电端。

(天线阻抗)

由图的对比可知,平衡不平衡转换基本上完成了4:1的阻抗变换,并且实测和仿真结果整体上有20Ω的差别,有待于进一步完善,但是基本上实现了预期的设计。

下图所示为仿真和实测的天线驻波比:

VSWR仿真结果曲线

VSWR实测结果曲线

仿真时分别在LumpedPortl上加50Ω的传输线特性阻抗LumpedPort2接天线馈电端。VAWR的仿真结果和实测结果依次如上图所示。

由本次设计仿真得出结果:设计的八木天线的阻抗带宽为75MHz(驻波比1.5以下);半功率方向性角在885.889MHz时为36-38°左右,而930—934MHz时32.34°;输入阻抗在885—934MHz频带内约40Ω左右。

2.6小结

讲述了八木天线的设计方法,通过软件和实测得到了比较合理的结果,从天线参

数的结果来看,基本上满足了设计预计的要求;

第三章课程设计心得

通过本文的分析设计和仿真,完成了八木天线的设计。通过理论分析和仿真软件HFSS设计仿真,得到符合要求的八木天线。通过仿真得到了天线在两个频段上垂直和水平极化方向的方向图及相关特参数、天线输入阻抗、驻波比及带宽等天线设计要求的参数。本次天线的设计在885MHz.889MHz

频段内和上行930MHz.934MHz频段内有高的方向性系数;方向图主瓣半功率角小于40°,并且副瓣电平不影响干扰检测定向的程度内(<=9dB);天线阻抗带宽(vSWR<1.5)要覆盖885—934MHz的频带,即带宽大于50MHz;天线尺寸长78.9cm,最大宽度14cm,满足了移动检测的便携式要求。

对于天线特性参数的测量,包括天线的校准、天线方向图的测量、天线驻波比的测量,通过理论学习和实际动手操作,在详细了解测量方法、测量步骤、测量误差的分析的基础上对实际操作有了比较深刻的理解。

参考文献及附录

网络

宋铮张建华–天线与电波传播李明洋—HFSS天线设计

喇叭天线地设计1206030201

微波技术与天线课程设计—— 角锥喇叭天线 :吴爽 学号:1206030201

目录 一.角锥喇叭天线基础知识 (3) 1. 口径场 (3) 2. 辐射场 (4) 3.最佳角锥喇叭 (7) 4. 最佳角锥喇叭远场E 面和H面的主瓣宽度 (7) 二.角锥喇叭设计实例 (7) 1. 工作频率 (8) 2.选用作为激励喇叭的波导 (8) 3.确定喇叭的最佳尺寸 (8) 4.喇叭与波导的尺寸配合 (9) 5.天线的增益 (10) 6.方向图 (10)

一.角锥喇叭天线基础知识 角锥喇叭是对馈电的矩形波导在宽边和窄边均按一定角开而形成的,如下图所示。矩形波导尺寸为a×b,喇叭口径尺寸为D H×D E,其E面(yz 面)虚顶点到口径中点的距离为R ,H 面(xz 面)虚顶点到口径中点的距离为R E,H 面(xz 面)虚顶点到口径中点的距离为R H。 1. 口径场 角锥喇叭的电磁场,目前还未有严格的解析解结果,原因在于,角锥喇叭在x和y两个方向随喇叭的长度方向均是渐变而逐渐扩展的,因而要在一个正交坐标系下求得角锥喇叭的场的严格解析解是困难的。通常近似地认为,矩形角锥喇叭中的电磁场具有球面波特性,而且假设角锥喇叭口径面上的相位分布沿x和y两个方向均为平方律变化。

按此假设,可写出角锥喇叭的口径场为: η πβy X R y R x j H y E H e D x E E E H -==+-)2(022)cos( (1.1) 如果是尖顶角锥喇叭,则 R H = R E ,可用作标准增益喇叭。若是楔形喇叭,则R H ≠R E 。由此口径面场分布计算的远场与实测的结果吻合的很好,说明了假设的口径场分析模型的正确性。 2. 辐射场 由角锥喇叭的口径场分布,仿照前面求 E 面和 H 面扇形喇叭远区辐射场的步骤,就可以求出角锥喇叭的远区辐射场表达式。由于计算过程较繁,这里直接给出结果。 ])cos 1([cos 2])cos 1([sin 200H E r j H E r j I I r e E j E I I r e E j E θ?λθ?λβ?βθ+=+=-- (2.1) 其中:

HFSS的天线课程设计报告书

. . . . . 图1:微带天线的结构 一、 实验目的 ●利用电磁软件Ansoft HFSS 设计一款微带天线。 ◆微带天线要求:工作频率为2.5GHz ,带宽 (回波损耗S11<-10dB)大于5%。 ●在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、 实验原理 1、微带天线简介 微带天线的概念首先是由Deschamps 于1953年提出来的,经过20年左右的发展,Munson 和Howell 于20世纪70年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。与天线性能相关的参数 包括辐射源的长度L 、辐射源的 宽度W 、介质层的厚度h 、介质 的相对介电常数r ε和损耗正切 δtan 、 介质层的长度LG 和宽度WG 。图1所示的微带贴片天线是采用微带天线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线街头的心线穿过参考地和介质层与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能,矩形贴片微带天线的工作主模式是TM10模,意味着电场在长度L 方向上有2/g λ的改变,而在宽度W 方向上保持不变,如图2(a )所示,在长度L 方向上可以看做成有两个终端开路的缝隙辐射出电磁能量,在宽度W 方向的边缘处由于终端开路,所以电压值最大电流值最小。从图2(b )可以看出,微带线边缘的电场可以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。

PBG结构的微带贴片天线设计

PBG结构的微带贴片天线设计 由于微带贴片天线具有体积小、重量轻、低剖面、易加工、共形等优点,所以在军事和民用方面都有着广泛的应用前景。众所周知,集成电路的基底是一些高介电常数材料,而微带贴片天线在低介电常数基底上才能获得最佳性能。位于高介电常数基底的贴片天线由于表面波的损耗辐射效率很低,并且频率带宽极窄,当应用的频率变高时这种情况更加突出,导致贴片天线的增益和效率下降,并且在阵列情况下还会有高的交叉极化电平和互耦电平。 为了实现微带贴片天线的集成化,同时避免昂贵的基底混合技术,就必须在高介电常数基底上实现高效率的贴片天线。近年来出现的新型光子晶体贴片天线能够较好地改善以高介电常数介质为基底的贴片天线的性能。光子晶体贴片天线是指基于光子晶体的贴片天线。所谓光子晶体,或称PBG材料,是指将高介电常数的介质周期性的放置所产生的一种人工电磁晶体,该电磁晶体的表面波波矢图在某一频率范围内出现一个频率禁带,简称禁带。通过在贴片天线中人为的引入光子晶体结构,并利用光子晶体的禁带效应,抑制沿基底传播的表面波,增加天线辐射到空间的电磁波,从而改善天线的性能。 本文所采用的高阻抗表面型PBG结构具有结构紧凑、带隙性能好、可以集成等优点,在天线的设计中得到了广泛的应用。 1 PBG天线设计 本文设计的矩形贴片天线,是中心频率为10 GHz的矩形微带天线(辐射元为矩形),馈电方式选为中心侧馈。采用ROGER3010材料做为基板,厚度h=1.28 mm,相对介电常数=10.2。矩形贴片的尺寸为L×W。贴片单元的尺寸由经验公式计算可以得出: 利用ADS自带的计算传输线的软件LineCalc来计算传输线的宽度ω=0.162 mm。PBG材料的设计首先利用等效媒质模型得到初始的参数,更准确的参数则通过全波数值仿真获得。由于高阻抗表面PBG结构的周期大小远小于工作波长,适合用集总电路元件(电容、电感)组成的等效LC并联谐振电路来描述其电磁特性。像电路滤波器一样阻止沿表面传输的电流。如前所述,蘑菇型高阻抗表面相邻贴片间的电容效应(介质基片既起着支撑作用,又达到增强电容的效果),与金属过孔的等效电感组成集中参数的并联谐振电路。这里有高阻面的设计公式: 式中:εr是介质的介电常数;t是高阻面的高度;g是周期间距;ω是单元边长;a为周期。最后得到的设计结果是,ω=1.73 mm,g=0.22 mm()。 2 建模与仿真 根据设计的PBG天线的结构,在HFSS中建模并仿真。模型图 仿真得到的反射系数图。 可以看到回波损耗小于-10 dB的带宽约为600 MHz,参考天线谐振频率为9.96 GHz,PBG 微带天线谐振频率为10.05 GHz。PBG天线的谐振频率比参考天线略高,这是因为二者之间的耦合造成的。二者在9.99 GHz具有相同的反射系数-21.28 dB,在这个频率上仿真得到其方向图。可以看到PBG结构使方向性有所增强,天线的增益大约提高0.53 dB。PBG贴片

单极天线

实验报告 实验名称:单极天线 实验器材:数据采集接口/电源、射频发生器、天线定位器、计算机、八木天线、单级天线 实验步骤: 1、将电源、射频发生器、天线定位器、电脑正确安装; 2、将有水平夹的天线杆固定到发送支架上。将水平极化的八木天线架 到杆上,将其连接到射频发生器的1GHz OSCILLATOR OUTPUT端; 3、将单级连接器插入接地面的中心并用螺丝将其牢牢固定。将λ/4 长导线插入连接器中心; 4、将另一个有水平夹的天线杆固定到天线定位器的滑动支架上。将单 极天线加到杆上,定向为E面;(确保天线和天线定位器的旋转中 心一致) 5、将天线之间的距离置为r=1m远。将其调整到同一高度并直接相对; 6、将射频发生器做如下调整: 1GHZ OSCILLATOR MODE ------ 1KHZ 1GHZ OSCILLATOR RF POWER ------ OFF 10GHZ OSCILLATOR RF POWER ------ OFF 7、接通电源,开启射频发生器,打开电脑,启动LVDAM-ANT软件; 8、将射频发生器上的1GHZ OSCILLATOR RF POWERK 开关置到ON位置。 控制优化信号的接收;开始采集,辐射图如下: 9、旋转八木天线使其垂直极化,从滑动支架上移除带水平夹的杆,换

垂直夹的杆。将单级加到杆上,确保它定向为H面,用短缆线替换中长 SAM缆线。进行新的采集,辐射图如下: 10、将单级天线从杆上移除并断开连接器和接地面的连接,将四条弯曲的 导线插入连接器的每个角,然后将新的天线装到杆上,定向为H面; 11、再次采集,保持相同衰减级。辐射图如下:

微波工程课程设计实验报告Smith圆图程序设计

一、摘要 Smith圆图主要用语计算微波网络的阻抗、导纳及网络阻抗匹配设计,还可用于设计微波元器件。Smith圆图软件不仅适用于微波工程设计,也可用于电磁场、微波技术及天线与电波传播等。本软件可形象的演示圆图上的阻抗值、导纳值与反射系数。 二、设计目的 微波网络的正弦稳态分析含有复数计算,运算十分繁琐和耗时。在计算机运算速度和存不够发达以前,图解分析法达到长足发展,其中多年来运用最广的事Smith圆图。在计算微波传输线输入阻抗、导纳、及阻抗匹配等问题时,它不仅能避开繁琐的公式及复数运算,是工程设计总相关计算简单便捷,而且图解过程物理概念清晰,所的结果直观形象。但随着计算机技术的飞速发展,图解法在计算精度上的固有缺陷日益显现,因为,圆图的设计精度取决于圆图中必须有足够的圆周数,而且过多的圆周会导致图线过于密集,不便将阻抗,反射系数、电压驻波系数(VSWR)及电长度等相关数据从图上直接读出。通过对圆图构成的基本原理和应用问题的分析,利用现代计算机技术可以解决原图计算精度等问题,为此设计Simth圆图。 三、设计要求 圆图软件设计要求计算结果以图形和数据并行输出,整个圆图软件分为用户图形界面模块、圆图计算模块、圆图演示模块。圆图计算模块分为反射系数计算、单支节匹配计算、输入阻抗计算及整个Smith圆图;画图演示模块分为等归一化电阻圆、等归一化电抗圆、反射系数圆等;确定阻抗值在圆图上的位置、圆图的基本应用、求输入阻抗及其在圆图上的位置以及单支节匹配等问题。

四、程序流程图 程序结构模型: 功能实现图: 五、演示验证过程 1、打开Smith圆图软件 2、点击“Smith圆图”按钮,观察到图形区出现了已经画好的圆图,绿色是反射系数圆,紫色是阻抗圆实部,紫色是阻抗圆虚部。 3、在图形区点住鼠标左键不放,此时移动鼠标时,在图形区中自动画出鼠标所在点的Smith圆图,蓝色是反射系数圆,红色是阻抗圆。在界面的右边可以读出此时的反射系数、阻抗值、导纳值,并且计算出该点的驻波比和行波系数,判断该点是否是波腹或者波节点。

微带天线仿真设计(5)讲解

太原理工大学现代科技学院 微波技术与天线课程设计 设计题目:微带天线仿真设计(5) 专业班级 学号 姓名 指导老师

专业班级 学号 姓名 成绩 设计题目:微带天线仿真设计(5) 一、设计目的: 通过仿真了解微带天线设计 二、设计原理: 1、微带天线的结构 微带天线是由一块厚度远小于波长的介质板(成为介质基片)和(用印刷电路或微波集成技术)覆盖在他的两面上的金属片构成的,其中完全覆盖介质板一片称为接触板,而尺寸可以和波长想比拟的另一片称为辐射元。 微带天线的馈电方式分为两种,如图所示。一种是侧面馈电,也就是馈电网络与辐射元刻制在同一表面;另一种是底馈,就是以同轴线的外导体直接与接地板相连,内导体穿过接地板和介质基片与辐射元相接。 微带天线的馈电 (a )侧馈 (b )底馈 2、微带天线的辐射原理 用传输线模分析法介绍矩形微带天线的辐射原理。矩形贴片天线如图: … …………… …… …… …… … …装 …… …… …… …… … …… …… …… 订… …… … …… …… …… …… …… … …线 …… …… …… …… … …… …… ……

设辐射元的长为L,宽为ω,介质基片的厚度为h。现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。缝的宽度△L≈h,长度为ω,两缝间距为L≈λ/2。这就是说,微带天线的辐射可以等效为有两个缝隙所组成的二元阵列。 经过查阅资料,可以知道微带天线的波瓣较宽,方向系数较低,这正是微带天线的缺点,除此之外,微带天线的缺点还有频带窄、损耗大、交叉极化大、单个微带天线的功率容量小等.在这个课设中,借助EDA仿真软件Ansoft HFSS进行设计和仿真。Ansoft公司推出的基于电磁场有限元方法(FEM)的分析微波工程问题的三维电磁仿真软件,Ansoft HFSS 以其无与伦比的仿真精度和可靠性,快捷的仿真速度,方便易用的操作界面,稳定成熟的自适应网格剖分技术,使其成为高频结构设计的首选工具和行业标准,并已广泛应用于航

射频微波技术课程设计

射频微波技术课程设计 专业班级: 学号: 学生姓名: 指导教师: 年月日

设计题目:圆极化微带天线仿真设计 一、内容摘要 微带天线(microstrip antenna)在一个薄介质基片上,一面附上金属薄层作为接地板,另一面用光刻腐蚀方法制成一定形状的金属贴片,利用微带线或同轴探针对贴片馈电构成的天线。微带天线分2 种:①贴片形状是一细长带条,则为微带振子天线。②贴片是一个面积单元时,则为微带天线。如果把接地板刻出缝隙,而在介质基片的另一面印制出微带线时,缝隙馈电,则构成微带缝隙天线。 二、设计任务及指标: 设计一种谐振频率为920MHz的圆极化贴片天线,利用Ansoft公司的HFSS13.0对其进行建模并对其进行仿真分析天线的远区辐射场特性并进行一系列优化。进一步理解微带天线的特性与应用,掌握微波天线的工程设计方法和技巧,熟悉三维电磁场仿真工具HFSS,了解微波天线产品的系统概念,提高专业素质和工程实践能力。 (1)工作频段:900~1200MHz。 (2)基板FR4:H=1.5mm,Er=4.4,tand=0.02。 (3)驻波比小于1.5。 (4)轴比小于3dB。 (5)方向性系数高于3dB。 (6)极化方式RHCP。 三、设计原理: 1.微带贴片天线的工作原理 微带贴片天线是由介质基片、在基片一面上有任意平面形状的导电贴片和基片另一面上的地板所构成。 天线要解决的两个重要问题是阻抗特性和方向特性。前者要解决天线与馈线的匹配问题; 后者要解决定向辐射或定向接收问题,也就是要解决提高发射功率或接收机灵敏度的问题。 而不论是阻抗特性还是方向特性都必须首先求出天线在远区的电磁场分布,为此要求解满足天线边界条件的麦克斯韦方程组。对于这样一个电磁场的边值问题,严格的数学求解是很困难的。因此,经常采用工程近似的方法进行研究,即用某种初始场的近似分布代替真实的准确分布来计算辐射场。 微带天线的辐射机理实际上是高频的电磁泄漏。一个微波电路如果不是被导体完全封闭,电路中的不连续处就会产生电磁辐射。例如微带电路的开路端,结构尺寸的突变、折弯等不连续处也会产生电磁辐射(泄漏)。当频率较低时,这些部分的电尺寸很小,因此泄漏也笑;但随着频率的增高,电尺寸增大,泄漏就大。在经过特殊设计,即放大成贴片状,并使其工作在谐振状态,辐射就明显增强,辐射效率就大大提高,从而成为有效的天线。 图1是一个简单的微带贴片天线的结构,由辐射元、介质层和参考地三部分组成。与天线性能相关的参数包括辐射元的长度L、辐射元的宽度W、介质层的厚度h、介质的相对介

微波天线课程设计56GHz微带天线设计不同切角

课程设计 课程名称:微波技术与天线微带天线设计(不同切角)课设题目: 博学馆机房实验地点: 电信1201班专业班级: 2012001422 学号: 学生姓名: 指导教师:李鸿鹰

日月年2015 7 4 课程设计任务书 注:课程设计完成后,学生提交的归档文件应按,封面—任务书—说明书—图纸

指导教师签名日期:2015-6-10 : 一、设计题目: 微带天线仿真设计(不同切角贴片设计) 二、设计目的: 通过仿真了解微带天线设计,基于微带贴片天线基础理论以及熟练掌握HFSS10仿真软件基础上设计一个矩形贴片天线,分析其远区辐射场特性以及S曲线。 三、设计原理: 矩形贴片是微带贴片天线最基本的模型,本设计就是基于微带贴片天线基础理论以及熟练掌握HFSS10仿真软件基础上,设计一个右手圆极化矩形贴片天线,其工作频率为5.6GHz,分析其远区辐射场特性以及S曲线。

矩形贴片天线示意图 四、贴片天线仿真步骤 1、建立新的工程 运行HFSS,点击菜单栏中的Project>Insert HFSS Dessign,建立一个新的工程。 2、设置求解类型 (1)在菜单栏中点击HFSS>Solution Type。 (2)在弹出的Solution Type窗口中 (a)选择Driven Modal。 (b)点击OK按钮。 3. 设置模型单位 将创建模型中的单位设置为毫米。 (1)在菜单栏中点击3D Modeler>Units。 (2)设置模型单位: (a)在设置单位窗口中选择:mm。 (b)点击OK按钮。 4、创建微带天线模型 (1)创建地板GroundPlane。在菜单栏中点击Draw>Rectangle,创建矩形模型。在坐标输入栏中输:dZ,90:dY,90:dX按回车键。在坐标输入栏中输入长、宽:0:Z,-45:Y,-45:X入起始点的坐标: 0按回车键。在特性(Property)窗口中选择Attribute标签,将该名字修改为GroundPlane。(2)为GroundPlane设置理想金属边界。在菜单栏中点击Edit>Select>By Name。在对话框中

HFSS矩形微带贴片天线的仿真设计报告

基于HFSS矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真实验内容:矩形微带天线仿真:工作频率 天线结构尺寸如表所示: 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File?save as,输入Antenna,点击保存。 (2).设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK (3)、设置模型单位:3D Modeler>Units 选择mm,点击OK (4)、菜单栏Tools>>Options>>Modeler Options, 勾选” Edit properties of new pri ” ,点击OK 二、建立微带天线模型 (1)点击三仓U 建GND,起始点:x:0 ,y:0 ,z: ,dx:,dy:32,dz:

(2) 介质基片:点击 :比,:x:0, y:0 , z:0。dx: , dy: 32 , dz:-, 修改名称为Sub,修改 材料属性为 Rogers RT/Duriod 5880,修改颜色为绿色 点击OK (3) 建立天线模型patch , 点击^已,x:,y: 8, z:0 ,dx: ,dy: 16 ,dz: 命名为patch ,点击OK (4) 建立天线模型微带线 MSLine 点击’硏,x:,y: 0, ,z: 0 , dx: ,dy: 8 ,dz:, 命名为MSLine,材料pec,透明度 选中 Patch 和 MSLine,点击 Modeler>Boolean>Unite (5) 、建立端口。创建供设置端口用的矩形,该矩形连接馈线与地 Modeler>Grid Plane>XZ ,或者设置回厂刁冈 习 点击 e ,创建Port 。命名为port 双击 Port 下方 CreatRectangle 输入:起始点:x: ,y: 0,z:-,尺寸:dx: ,dy: 0 ,dz: (6) 、创建 Air 。 点击1 ,x:-5 ,y:-5 ,z:, dx:, dy:42, dz: 修改名字为Air ,透明度. 三、设置边界条件和端口激励。 (1)设置理想金属边界:选择 GND 右击Assign Boundaries>>Pefect E 将理想边界命名为:PerfE_GND ,点击OK (2)、设置边界条件:选择 Port ,点击 Assign Boundaries>>Pefect E 在对话框中将其命名为 PerfE_Patch ,点击0K ,透明度。 修改名称为GND,修改材料属性为pec ,

微波课设八木天线设计

微波课设八木天线设计文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

课设报告 课程名称:微波技术与天线 课设题目:八木天线的仿真设计 课设地点:电机馆跨越机房 专业班级:信息1002班 学号: 学生姓名: 指导教师: 2013/6/27 目录 1、设计摘要 2、设计原理 3、八木天线参数选择及设计要求 4、八木天线的HFSS10仿真 (1)建立模型 (2)确认设计 (3) S参数(反射参数) (4)2D辐射远区场方向图 (5)3D Polar 5、仿真结果分析 6、实验中的问题 7、心得体会

一、设计摘要 八木天线又称引向天线,它由一个有源振子及若干无源振子组成的线形端射天线。其结构示意图如下,在无源振子中较长的一个为反射器,其余的均为引向器,它被广泛应用于米波、分米波波段的通信、雷达、电视、及其它无线电系统中。 六元八木天线示意图 八木天线中,有源振子可以是半波振子,也可以是折合振子一般常用折合振子,以提高八木天线的输入阻抗,以便和馈电线匹配。主要作用是提高辐射能量。无源振子是若干孤立的金属杆,它与馈线和有源振子不直接相连,作用是使辐射的能量集中到天线的端向。 二、设计原理: 八木天线的工作原理是:有源振子被馈电后,向空间辐射电磁波,使无源振子中的产生感应电流,从而也产生辐射。改变无源振子的长度及其与有源振子之间的距离,无源振子上的感应电流的幅度和相位也随着改变,从而影响有源振子的方向图。若无源振子与有源振子之间的距离小于λ/4,无源振子比有源振子短时,整个电磁波能量将在无源振子方向增强;无源振子比有源振子长时,将在无源振子方向减弱。比有源振子稍长一点的称反射器,它在有源振子的一侧,起着消弱从这个方向传来的电波或从本天线发射去的电波的作用;比有源振子略短的称引向器,它位于有源振子的另一侧,它能增强从这一侧方向传来的或向这个方向发射出去的电波。通常反射器的长度比有源振子长4%~5%,而引向器可以有多个,第1~4个引向器的长度通常比有源振子顺序递减2%~5%。 本设计就是基于八木天线的基本理论的基础上,设计一个六元八木天线。三、八木天线参数选择及设计要求

微带天线课程设计报告

课程设计报告 课设名称:微波技术与天线课设题目:微带天线仿真设计课设地点:跨越机房 专业班级:学号: 学生姓名: 指导教师: 2012年 6 月 23 日

一、设计要求: 矩形贴片是微带贴片天线最基本的模型,本设计就是基于微带贴片天线基础理论以及熟练掌握HFSS10仿真软件基础上,设计一个右手圆极化矩形贴片天线,其工作频率为2.45GHz,分析其远区辐射场特性以及S曲线。 矩形贴片天线示意图 二、设计目的: 1.理解和掌握微带天线的设计原理 2.选定微带天线的参数:工作频率、介质基片厚度、贴片模型及馈电点位置 3.创建工程并根据设计尺寸参数指标绘制微带天线HFSS模型 4.保存工程后设定边界条件、求解扫描频率,生成S参数曲线和方向图 5.观察对比不同尺寸参数的微带天线的仿真结果,并分析它们对性能的影响 三、实验原理: 用传输线模分析法介绍它的辐射原理。。 设辐射元的长为L,宽为ω,介质基片的厚度为h。现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。 在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。缝的宽度△L≈h,长度为ω,两缝间距为L≈

北大天线理论课件:第四章 行波天线

第四章行波天线 天线上电流按行波分布的天线称为行波天线(Travelling Wave Antenna)。行波天线具有如下特点: 1)电流为行波分布,不存在反射电流; 2)输入阻抗和方向图对频率变化不敏感; 3)频带宽,绝对带宽可达1 2 ~ (; : ) 3 4)效率低。 常用的行波天线主要有菱形天线、V形天线和螺旋天线等,用于短波波段的无线通信。 §4.1 长导线天线 长度大于一个波长、其上电流按行波分布的导线构成的天线,称为长导线天线。为使导线上传输单一的行波电流,通常在其末端接一匹配负载 R以抑制反 L 射波,见下图所示。 行波长导线天线

4.1.1 辐射场 假设导线沿z 轴放置,线上电流幅度相等、相位连续滞后。线上电流可以表示成: () ' 0' jkz e I z I -= 远区辐射场为: ()()()()θθθ πηθλ πθθθcos 12 cos 12sin sin 4sin 60cos 120'cos 00''-??????-==------?kl kl e r e klI j dz e e r I j E kl j jkr z r jk l jkz 式中r 为原点到场点的距离,θ为射线与z 轴之间的夹角。由此得到长导线天线的方向函数为: ()()()θθθθcos 12 cos 12sin sin -? ?????-=kl kl F 下图是根据上式画出的行波长导线天线的方向图。 长导线天线方向图随长度的变化

导线长度为λ5=l 时的立体方向图如上图所示。 方向图特点: 1) 沿轴线方向没有辐射; 2) 随l 增长,最大辐射方向逐渐靠近轴线,同时主瓣变窄,副瓣增大、数目增多; 3) 当λl 很大时,主瓣方向随λl 的变化很小,方向性具有宽频带特性。 4.1.2 性能参数 1) 最大辐射角与零点位置 方向函数可以改写成: ()()?? ? ???-???? ??=θθθcos 12sin 2cot kl F 当l 很长时,()?? ????-θcos 12 sin kl 项随θ的变化比?? ? ??2cot θ项要快 得多,天线的最大辐射方向由()?? ? ???-θcos 12sin kl 决定。令 λ 5=l 行波长导线天线方向图( )

北邮电磁场与微波实验天线部分实验报告二

北邮电磁场与微波实验天线部分实验报告二

信息与通信工程学院电磁场与微波实验报告

实验二网络分析仪测试八木天线方向图 一、实验目的 1.掌握网络分析仪辅助测试方法; 2.学习测量八木天线方向图方法; 3.研究在不同频率下的八木天线方向图特性。 注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等; 二、实验步骤: (1) 调整分析仪到轨迹(方向图)模式; (2) 调整云台起点位置270°; (3) 寻找归一化点(最大值点); (4) 旋转云台一周并读取图形参数; (5) 坐标变换、变换频率(f600Mhz、900MHz、1200MHz),分析八木天线方向图特性; 三、实验测量图 不同频率下的测量图如下: 600MHz:

900MHz:

1200MHz:

四、结果分析 在实验中,分别对八木天线在600MHz、900MHz、1200MHz频率下的辐射圆图进行了测量,发现频率是900MHz的时候效果是最好的,圆图边沿的毛刺比较少,方向性比较好,主瓣的面积比较大。 当频率为600 MHz的时候,圆图四周的毛刺现象比较严重,当频率上升到1200MHz时,辐射圆图开始变得不规则,在某些角度时出现了很大的衰减,由对称转向了非对称,圆图边缘的毛刺现象就非常明显了,甚至在某些角度下衰减到了最小值。 从整体来看,八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候周围的人应该避免走动,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 由实验结果分析可知:最大辐射方向基本在90°和270°这条直线上,图中旁瓣均较小,及大部分能量集中在主瓣。 八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候应当尽量保持周边环境参数一定,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 五、实验总结

通信系统天线综合课程设计报告书

J I A N G S U U N I V E R S I T Y 通信系统天线综合课程设计 学院名称: 专业班级: 学生: 学生学号:

一、课程设计目的 通过综合课程设计,在学习EDA仿真软 件HFSS使用方法的基础上,掌握常见通信系 统天线的仿真设计方法。 二、课程设计容: 以“通信系统天线”课程课件“Ch4.1 偶 极和单极天线”、“Ch4.2 常用振子天线和馈 电技术”、“Ch5 宽带天线_c”、“Ch6 移动系 统常用天线_c”为参考资料,分别仿真偶极 子天线、UHF probe 振子天线、共面波导馈 电领结天线和同轴馈电贴片天线,并对天线 进行分析。 三、设计步骤及仿真结果 天线设计实例1:偶极子天线 1)设计步骤 打开HFSS并保存一个新项目 打开File选项(alt+F),单击Save as。输入 项目名hfss_dipole。 一.Step1 创建模型 1、创建振子1 (1)选择cylinder图标 (2)输入参数: 切换到参数设置区(在工作区的右下角),设置圆柱体的基坐标为(x=0 mm,y=0 mm,z=1.25mm); 按下Enter 键后输入半径和长度:dx =2.5mm, dy=0 mm, dz=73.75mm 。 (3)设置振子1的名称和材料 在对象列表中双击cylinder1, 弹出如下属性窗口。 设置名称:将Name改为“pole1”。 设置材料:单击Material的Value,在如下对话框中输入“pec”并确定。

2、创建振子2 (1)选择cylinder图标 (2)输入参数: 切换到参数设置区,设置圆柱体的基坐标为(x=0 mm,y=0 mm,z=-1.25mm); 按下Enter 键后输入半径和长度:dx =2.5mm, dy=0 mm, dz=-73.75mm 。注意此时坐标的选取。 (3)设置名称和材料 设置名称为“pole2”,材料同为“pec”。设置完毕,如下图所示。

HFSS的天线课程设计(20201005041508).docx

一、实验目的 ●利用电磁软件Ansoft HFSS 设计一款微带天线。 ◆微带天线要求:工作频率为,带宽( 回波损耗 S11<-10dB)大于 5%。 ● 在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、实验原理 1、微带天线简介 微带天线的概念首先是由 Deschamps于 1953 年提出来的,经过 20 年左右的发展, Munson和 Howell 于 20 世纪 70 年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1 是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。与天线性能相关的参数 包括辐射源的长度L、辐射源的 宽度 W、介质层的厚度 h、介质 的相对介电常数r和损耗正切 tan、介质层的长度LG和宽度 WG。图 1 所示的微带贴片天线是图 1:微带天线的结构 采用微带天线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈 电,也就是将同轴线街头的内心线穿过参考地和介质层与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能, 形贴片微带天线的工作主模式是TM10模,意味着电场在长度L方向上有 g / 2 矩 的 改变,而在宽度 W方向上保持不变,如图 2(a)所示,在长度 L 方向上可以看做 成有两个终端开路的缝隙辐射出电磁能量,在宽度W方向的边缘处由于终端开路,所以电压值最大电流值最小。从图 2(b)可以看出,微带线边缘的电场可以分解成 垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小 相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分 量相互抵消,辐射电场平行于天线表面。

GHz矩形微带贴片天线设计

燕山大学 课程设计说明书 题目: 基于ADS的矩形微带贴片天线的设计 学院(系):理学院 年级专业:电子信息科学与技术13 学号: 学生姓名:张凤麒任春宇 指导教师:徐天赋 教师职称:副教授 燕山大学课程设计(论文)任务书 院(系):理学院基层教学单位:电子信息科学与技术13

说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。年月日燕山大学课程设计评审意见表

基于ADS的矩形微带贴片天线设计 The Design of Rectangular microstrip patch antenna with ADS 摘要:本文研究了通信系统中的矩形微带贴片天线。首先介绍了矩形微带贴片的背景及微带馈电的设计考虑。使用了安捷伦辅助仿真工具ADS对2GHz矩形微带贴片天线结构及相应的参数进行了设置仿真及优化,尽可能达到其相应的技术指标。 Abstract:This paper studies the rectangular microstrip patch antenna in communication system. Firstly, the background of rectangular microstrip patch and the design considerations of microstrip feed are introduced. The microstrip patch antenna structure and corresponding parameters of 2GHz rectangular microstrip patch antenna are simulated and optimized by ADS, and the corresponding technical index is reached as far as possible. 关键词:矩形微带贴片天线 ADS 设计 Keyword:Rectangular microstrip patch antenna ADS design 一.矩形微带贴片天线的背景 微带贴片天线由于具有质量轻、体积小,易于制造等优点,现今已经广泛应用于个人无线通信中。微带贴片天线由接地板、介质基片和介质基片上的辐射贴片构成的,其中辐射贴片可以是任意的几何形状,但是只有有限的几何形状能计算出辐射特性,比如矩形,圆形,椭圆形,三角形、半圆形、正方形等比较规则的几何形状,其中矩形和圆形贴片的研究最多,可以作为单独的天线使用也可以作为阵元使用。当然在实际应用中,也有矩形和圆形贴片达不到要求的情况,这就促使了人们对各种几何形状微带贴片天线的研究。本文选用矩形贴片来研究微带天线。

微波天线课程设计56GHz微带天线设计(不同切角)教材

课程设计 课程名称:微波技术与天线 课设题目:微带天线设计(不同切角) 实验地点:博学馆机房 专业班级:电信1201班 学号:2012001422 学生姓名: 指导教师:李鸿鹰 2015 年7 月 4 日

课程设计任务书 注:课程设计完成后,学生提交的归档文件应按,封面—任务书—说明书—图纸的顺序进 行装订上交(大张图纸不必装订) 指导教师签名: 日期:2015-6-10 专业班级 电信1201 学生姓名 课程名称 微波技术与天线 课程设计 设计名称 微带天线设计 设计周数 1.5周 指导教师 李鸿鹰 设计 任务 主要 设计 参数 1 熟悉HFSS 仿真平台的使用 2 熟悉微带天线的工作原理与设计方法 3 在HFSS 平台上完成如下微带天线的仿真设计 设计要求如下: 频率:5.6GHz 介质:FR4 4 结合同组其他同学的设计结果完成对于该天线结构参数与性能之间关系的探讨 5 在1.5周内完成设计任务 设计内容 设计要求 6.11:分组、任务分配、任务理解 6.12:查阅参考资料,理论上熟悉所设计的器件的工作原理与特性,完成方案设计。 6.15~6.18:熟悉仿真平台的使用,完成在平台上的建模,设置,结果提取与分析,以及验收。 6.19:同组同学结果汇总及讨论 6. 22:设计说明书的撰写 在设计过程中,作为设计小组成员,每位同学要具有团队意识和合作精神,并最终独立完成自己的设计任务。 主要参考 资 料 刘学观,微波技术与天线,西安电子科技大学电出版社,2012 顾继慧,微波技术,科学出版社,2007 李明洋,HFSS 应用设计详解,人民邮电出版社,2010 学生提交 归档文件 1.设计报告 2.工程文件

基于ADS的微带缝隙天线的仿真设计

课程设计说明书 题目:基于ADS的微带缝隙天线的仿真设计 学院(系): 年级专业: 学号: 学生姓名: 指导教师: 教师职称:

基于ADS的微带缝隙天线的仿真设计 摘要:通信系统的发展带来了天线行业的勃勃生机,在众多的天线类型中微带天线已成为当前研究的前沿之一,具有广阔的前景与实用意义。特别是微带缝隙天线,以其重量轻、剖面薄、平面结构且易与载体共形,馈电网络可与天线结构一起制成等优点已经引起天线工作者的广泛关注。本文就设计一个中心频率工作为880MHz,相对带宽为B=5%,介质板厚度h=1.6mm,损耗角正切tanδ=0.0018,介电常数为Er=2.3的微带缝隙天线展开研究以及仿真和优化。 关键词:ADS;微带缝隙天线;仿真设计; Design of microstrip slot antenna based on ADS simulation Abstract: Communication system development has brought the antenna the vitality of the industry, in many types of antenna microstrip antenna has become one of the forefront of current research, has broad prospects and practical significance. Microstrip slot antenna, in particular, with its light weight, thin section, flat structure and easy with conformal carrier, feeding the advantages of network can be made with the antenna structure has caused extensive concern of antenna workers. In this paper, the design of a work center frequency is 880 MHZ, relative bandwidth is B = 5%, medium plate thickness h = 1.6 mm, loss tangent tan delta = 0.0018, the dielectric constant of Er = 2.3 microstrip slot antenna study and simulation and optimization. Key words: ADS; Microstrip slot antenna. The simulation design; 学习目的

矩形微带贴片天线设计及仿真

《现代电子电路》课程设计题目矩形微带天线的设计与仿真 单位(院、系):信息工程学院 学科专业: 电子与通信工程 学号:416114410159 姓名:曾永安 时间:2011.4.25

矩形微带天线的设计与仿真 学科专业:电子与通信工程学号:416114410159 姓名:曾永安指导老师:吴毅强 摘要:本文介绍了一种谢振频率为2.45GHz,天线输入阻抗为50Ω的使用同轴线馈电的矩形微带天线。通过HFSS V10软件对该天线进行仿真、优化,最终得到最佳性能。 关键词:HFSS,微带线,天线

Design and Simulation of Rectangular Microstrip Antenna Abstract:This paper introduces a rectangular microstrip antenna which works at resonance frequency of 2.45GHz and antenna input impedance of 50Ω and is fed by coaxial cable. The model of the antenna is set up a nd simulated by ANSOFT HFSS V10 ,and the optimal parameters of the microstrip antenna are obtained as well. Key words:HFSS,Microstrip,Antenna

1.引言 微带天线的概念首先是由Deschamps于1953年提出来的,经过20多年的发展,Munson和Howell于20世纪70年代初期制造了实际的微带天线。微带天线结构简单,体积小,能与载体共形, 能和有源器件、电路等集成为统一的整体,已被大量应用于100MHz~100GHz宽频域上的无线电设备中, 特别是在飞行器和地面便携式设备中得到了广泛应用。微带天线的特征是: 比通常的微波天线有更多的物理参数, 可以有任意的几何形状和尺寸;能够提供50Ω输入阻抗,不需要匹配电路或变换器;比较容易精确制造, 可重复性较好;可通过耦合馈电, 天线和RF电路不需要物理连接;较易将发射和接收信号频段分开;辐射方向图具有各向同性。本文设计的矩形微带天线工作于ISM频段,其中心频率为2.45GHz;无线局域网、蓝牙、ZigBee等无线网络均可工作在该频段上。选用的介质板材为Rogers R04003,其相对介电常数εr=3.38,厚度h=5mm;天线使用同轴线馈电。 2.微带贴片天线理论分析 图1是一个简单的微带贴片天线的结构,由辐射元、介质层和参考地三部分组成。与天线性能相关的参数包括辐射元的长度L、辐射元的宽度W、介质层的厚度h、介质的相对介电常数 r和损耗角正切tanδ、介质层的长度LG和宽度WG。图1所示的微带贴片天线采用微带线馈电,本文将要设计的矩形微带天线采用的是同轴线馈电,也就是将同轴线街头的内芯线穿过参考点和介质层与辐射元相连接。 图1 微带天线的结构

相关文档
最新文档