C语言之逆波兰表达式完整代码(附算法)

C语言之逆波兰表达式完整代码(附算法)
C语言之逆波兰表达式完整代码(附算法)

C语言课程设计之逆波兰表达式

//逆波兰表达式(后缀表达式)reverse polish notation

//程序实现的功能是将中缀表达式转变为后缀表达式,再求出其值

//主要运用的知识点有:isdigit函数,pow函数,system("cls")函数,堆栈,格式的强制转换

#include

#include

#include

#include

void shift( char notation[]); //中缀表达式转换为后缀表达式的转换函数

float calculate(float a[][2],int k); //计算后缀表达式

int judge(char notation[]); //判断输入的中缀表达式是否符合要求

int grade(char a); //返回运算符的等级

void display(float a[][2],int k); //在屏幕上显示后缀表达式

//主函数

void main()

{

char notation [100];

char choice;

do

{

printf("请输入正确的中缀表达式:\n");

printf("例如:2*3+4/3-(2+1)\n");

scanf("%s",¬ation);

if(judge(notation))

{

shift(notation);

}

else

printf("你的表达式有错误,请仔细检查!\n");

fflush(stdin);

printf("\n你是否需要继续计算(是输入Y/y,否输入其他任意键)\n");

scanf("%c",&choice);

getchar();

system("cls");

}while(choice=='Y'||choice=='y');

printf("\n程序结束,谢谢使用!\n");

}

//判定函数

int judge(char notation[])

{

int i,m,num=1,p1=0,p2=0;

for(i=0;notation[i]!='\0';i++) //排除表达式外的字符{

if(notation[i]!='('&¬ation[i]!=')'&¬ation[i]!='+'&¬ation[i]!='-'

&¬ation[i]!='*'&¬ation[i]!='/'&&!isdigit(notation[i])&¬ation[i]!='.') {

num=0;

return num;

}

}

if(notation[0]=='*'||notation[0]=='/'||notation[0]==')'||notation[0]=='.') //排除第一个字符为*,/,),.

{

num=0;

return num;

}

for(i=0;notation[i]!='\0';i++) //排除'+','-','*','/','.'之间的连续出现以及'+','-','*','/','.'后面直接加')'

{

if(notation[i]!='('&¬ation[i]!=')'&&!isdigit(notation[i]))

{

if(notation[i+1]!='('&&!isdigit(notation[i+1]))

{

num=0;

return num;

}

}

if(notation[i]=='('&&(notation[i+1]==')'||notation[i+1]=='.'||notation[i+1]=='*'||notation[i+ 1]=='/'))

{ //排除'('和')','.','*','/'一起连用num=0;

return num;

}

if(notation[i]==')'&&(notation[i+1]=='('||notation[i+1]=='.'))//排除')'和'(','.'一起连用

{

num=0;

return num;

}

}

for(i=0;notation[i]!='\0';i++) //小数位不得超过4位{

if(notation[i]=='.'&¬ation[i+1]!='\0'&¬ation[i+2]!='\0'&¬ation[i+3]!='\0'&¬ati

on[i+4]!='\0'&¬ation[i+5]!='\0')

{

if(isdigit(notation[i+1])&&isdigit(notation[i+2])&&isdigit(notation[i+3])&&isdigit(notation[i+ 4])&&isdigit(notation[i+5]))

{

num=0;

return num;

}

}

}

for(i=0;notation[i]!='\0';i++) //排除一个小数中有两个小数点的情况{

if(notation[i]=='.')

{

i++;

while(isdigit(notation[i]))

{

i++;

}

if(notation[i]=='.')

{

num=0;

return 0;

}

}

}

for(i=0;notation[i]!='\0';i++) //排除')'后面不可以直接跟数字以及'('前面不可以加数字

{

if(notation[i]==')'&&isdigit(notation[i+1]))

{

num=0;

return num;

}

if(isdigit(notation[i])&¬ation[i+1]=='(' )

{

num=0;

return num;

}

}

for(i=0;notation[i]!='\0';i++) //约束数字的位数一共最多为七位

{

if(isdigit(notation[i]))

{

m=0; //用来计数,数字的位数为7

while(isdigit(notation[i])||notation[i]=='.')

{

i++;

m++;

if(notation[i]=='.')

{

m--;

}

}

if(m>7)

{

num=0;

return num;

}

}

}

for(i=0;notation[i]!='\0';i++) //'('与')'需要配对存在

{

if(notation[i]=='(')

p1++;

if(notation[i]==')')

p2++;

if(p1!=p2)

{

num=0;

return num;

}

}

return num;

}

//转换函数

void shift( char notation[])

{

char s1[100];

s1[0]='#';

float s2[100][2]; //第一维放后缀表达式的元素,第二维表示小数点的位数以及是否是运算符

int i=0,j=1,k=0,t=0;

float sum,num1=0,num2=0; //num1为存储整数位num2为存储小数位

while(notation[i]!='\0')

{

if(i==0&¬ation[i]=='+') //第一位为正号的情况

{

if(isdigit(notation[++i]))

{

num1=0; //整数部分

while(isdigit(notation[i]))

{

num1=num1*10+(notation[i]-'0'); //notation[i]-'0'可以将字符转换为整数0~9

i++;

}

num2=0; //小数部分

t=0;

if(notation[i]=='.')

{

i++;

while(isdigit(notation[i]))

{

num2=float (num2+pow(0.1,++t)*(notation[i]-'0'));

i++;

}

}

s2[k++][0]=float(num1+num2);

s2[k-1][1]=float(t);

}

}

if(i==0&¬ation[i]=='-') //第一位为负号的情况,代码与正号类似

{

if(isdigit(notation[++i]))

{

num1=0;

while(isdigit(notation[i]))

{

num1=(-1)*num1*10+(-1)*(notation[i]-'0');

i++;

}

num2=0;

t=0;

if(notation[i]=='.')

{

i++;

while(isdigit(notation[i]))

{

num2=float(num2+(-1)*pow(0.1,++t)*(notation[i]-'0'));

i++;

}

}

s2[k++][0]=float(num1+num2);

s2[k-1][1]=float(t);

}

}

if(isdigit(notation[i])) //当前字符为数字的情况与为正号的情况一样

{

num1=0;

while(isdigit(notation[i]))

{

num1=num1*10+(notation[i]-'0');

i++;

}

num2=0;

t=0;

if(notation[i]=='.')

{

i++;

while(isdigit(notation[i]))

{

num2=float(num2+pow(0.1,++t)*(notation[i]-'0'));

i++;

}

}

s2[k++][0]=float(num1+num2);

s2[k-1][1]=float(t);

}

if(notation[i]=='+'||notation[i]=='-'||notation[i]=='*'||notation[i]=='/')

{ //当前的字符为操作符时,如果s1的站定为'('则将字符直接送入s1

if(s1[j-1]=='(')

{

s1[j++]=notation[i++];

}

}

if(notation[i]=='+'||notation[i]=='-'||notation[i]=='*'||notation[i]=='/')

{ //当前字符为操作符时的普通的情况if(grade(notation[i])>grade(s1[j-1]))

{

s1[j++]=notation[i++];

}

else

{

s2[k++][0]=s1[--j];

s2[k-1][1]=-1;

s1[j++]=notation[i++];

}

}

if(notation[i]=='(') //当前字符为'('的情况

{

s1[j++]=notation[i++];

if(notation[i]=='+') //'('后跟正号的情况

{

if(isdigit(notation[++i]))

{

num1=0;

while(isdigit(notation[i]))

{

num1=num1*10+(notation[i]-'0');

i++;

}

num2=0;

t=0;

if(notation[i]=='.')

{

i++;

while(isdigit(notation[i]))

{

num2=float(num2+pow(0.1,++t)*(notation[i]-'0'));

i++;

}

}

s2[k++][0]=float(num1+num2);

s2[k-1][1]=float(t);

}

}

if(notation[i]=='-') //'('后跟负号的情况

{

if(isdigit(notation[++i]))

{

num1=0;

while(isdigit(notation[i]))

{

num1=float((-1)*num1*10+(-1)*(notation[i]-'0'));

i++;

}

num2=0;

t=0;

if(notation[i]=='.')

{

i++;

while(isdigit(notation[i]))

{

num2=float(num2+(-1)*pow(0.1,++t)*(notation[i]-'0'));

i++;

}

}

s2[k++][0]=float(num1+num2);

s2[k-1][1]=float(t);

}

}

}

if(notation[i]==')') //当前字符为')'的情况

{

while(s1[--j]!='(')

{

s2[k++][0]=s1[j];

s2[k-1][1]=-1;

}

i++;

}

}

while(j>0&&s1[--j]!='#') //依次将s1中的除了'#'外的所有操作符出栈,相当于最后的扫尾工作

{

s2[k++][0]=s1[j];

s2[k-1][1]=-1;

}

printf("\n后缀表达式(逆波兰表达式):\n");

display(s2,k-1);

printf("\n表达式的值为:\n");

sum=calculate(s2,k-1);

printf("%7.4f",sum);

}

//计算函数

float calculate(float a[][2],int k)

{

int i,t=0,j=k;

float b[100][2],c[100];

for(i=k;i>=0;i--)

{

b[i][0]=a[k-i][0];

b[i][1]=a[k-i][1];

}

i=k;

while(j>=0)

{

if(b[i][1]!=-1)

{

c[t]=float (b[i][0]);

j--;

i--;

t++;

}

if(b[i][1]==-1) //每当遇到一个运算符则将栈最上面的两个数出栈进行运算,然后再入栈

{

if(int(b[i][0])=='+')

{

c[t-2]=float (c[t-2]+c[t-1]);

}

if(int(b[i][0])=='-')

{

c[t-2]=float (c[t-2]-c[t-1]);

}

if(int(b[i][0])=='*')

{

c[t-2]=float (c[t-2]*c[t-1]);

}

if(int(b[i][0])=='/')

{

c[t-2]= float (c[t-2]/c[t-1]);

}

j--;

i--;

t--;

}

}

return c[0]; //运算到最后,栈中的元素即为结果

}

//等级函数

int grade(char a) //按照运算符的优先级

{

if(a=='#')

return 0;

if(a=='(')

return 1;

if(a=='-'||a=='+')

return 2;

if(a=='*'||a=='/')

return 3;

if(a==')')

return 4;

else

return 5;

}

//显示函数

void display(float a[][2],int k)

{

int i;

for(i=0;i<=k;i++)

{

if(a[i][1]==0)

printf(" %d",int(a[i][0]));

if(a[i][1]==1)

printf(" %7.1f",a[i][0]);

if(a[i][1]==2)

printf(" %7.2f",a[i][0]);

if(a[i][1]==3)

printf(" %7.3f",a[i][0]);

if(a[i][1]==4)

printf(" %7.4f",a[i][0]);

if(a[i][1]==-1)

printf(" %c",int (a[i][0]));

}

}

算法实现

一个表达式E的后缀形式可以如下定义:

(1)如果E是一个变量或常量,则E的后缀式是E本身。

(2)如果E是E1 op E2形式的表达式,这里op是如何二元操作符,则E的后缀式为E1'E2' op,这里E1'和E2'分别为E1和E2的后缀式。

(3)如果E是(E1)形式的表达式,则E1的后缀式就是E的后缀式。如:我们平时写a+b,这是中缀表达式,写成后缀表达式就是:ab+ (a+b)*c-(a+b)/e的后缀表达式为:(a+b)*c-(a+b)/e →((a+b)*c)((a+b)/e)- →((a+b)c*)((a+b)e/)- →(ab+c*)(ab+e/)- →ab+c*ab+e/-

首先需要分配2个栈,一个作为临时存储运算符的栈S1(含一个结束符号),一个作为输入逆波兰式的栈S2(空栈),S1栈可先放入优先级最低的运算符#,注意,中缀式应以此最低优先级的运算符结束。可指定其他字符,不一定非#不可。从中缀式的左端开始取字符,逐序进行如下步骤:(1)若取出的字符是操作数,则分析出完整的运算数,该操作数直接送入S2栈;若取出的是运算符,并且当前S1栈顶为(,则当前运算符直接入S1栈。

(2)若取出的字符是运算符,则将该运算符与S1

大于S1栈栈顶运算符优先级,则将该运算符进S1栈,否者,将S1栈的栈顶运算符弹出,送入S2栈中,直至S1栈栈顶运算符低于(不包括等于)该运算符优先级,则将该运算符送入S1栈。

(3)若取出的字符是“(”,则直接送入S1栈栈顶。

(4)若取出的字符是“)”,则将距离S1栈栈顶最近的“(”之间的运算符,逐个出栈,依次送入S2栈,此时抛弃“(”。

(5)重复上面的1~4步,直至处理完所有的输入字符

(6)若取出的字符是“#”,则将S1栈内所有运算符(不包括“#”),逐个出栈,依次送入S2栈。

完成以上步骤,S2栈便为逆波兰式输出结果。不过S2应做一下逆序处理。便可以按照逆波兰式的计算方法计算了!

C语言几种常见的排序方法

C语言几种常见的排序方法 2009-04-2219:55 插入排序是这样实现的: 首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")。 从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。 重复2号步骤,直至原数列为空。 插入排序的平均时间复杂度为平方级的,效率不高,但是容易实现。它借助了"逐步扩大成果"的思想,使有序列表的长度逐渐增加,直至其长度等于原列表的长度。 冒泡排序 冒泡排序是这样实现的: 首先将所有待排序的数字放入工作列表中。 从列表的第一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。 重复2号步骤,直至再也不能交换。 冒泡排序的平均时间复杂度与插入排序相同,也是平方级的,但也是非常容易实现的算法。 选择排序 选择排序是这样实现的: 设数组内存放了n个待排数字,数组下标从1开始,到n结束。 i=1 从数组的第i个元素开始到第n个元素,寻找最小的元素。 将上一步找到的最小元素和第i位元素交换。 如果i=n-1算法结束,否则回到第3步 选择排序的平均时间复杂度也是O(n²)的。 快速排序 现在开始,我们要接触高效排序算法了。实践证明,快速排序是所有排序算法中最高效的一种。它采用了分治的思想:先保证列表的前半部分都小于后半部分,然后分别对前半部分和后半部分排序,这样整个列表就有序了。这是一种先进的思想,也是它高效的原因。因为在排序算法中,算法的高效与否与列表中数字间的比较次数有直接的关系,而"保证列表的前半部分都小于后半部分"就使得前半部分的任何一个数从此以后都不再跟后半部分的数进行比较了,大大减少了数字间不必要的比较。但查找数据得另当别论了。 堆排序 堆排序与前面的算法都不同,它是这样的: 首先新建一个空列表,作用与插入排序中的"有序列表"相同。 找到数列中最大的数字,将其加在"有序列表"的末尾,并将其从原数列中删除。 重复2号步骤,直至原数列为空。 堆排序的平均时间复杂度为nlogn,效率高(因为有堆这种数据结构以及它奇妙的特征,使得"找到数列中最大的数字"这样的操作只需要O(1)的时间复杂度,维护需要logn的时间复杂度),但是实现相对复杂(可以说是这里7种算法中比较难实现的)。

C语言9种常用排序法

C语言9种常用排序法 1.冒泡排序 2.选择排序 3.插入排序 4.快速排序 5.希尔排序 6.归并排序 7.堆排序 8.带哨兵的直接插入排序 9.基数排序 例子:乱序输入n个数,输出从小到大排序后的结果1.冒泡排序 #include int main() { int i, j, n, a[100], temp; while(scanf("%d",&n)!=EOF) { for(i=0;i

for(i=0;ia[j+1]) //比较a[j]与a[j+1],使a[j+1]大于a[j] { temp = a[j+1]; a[j+1] = a[j]; a[j] = temp; } } } for(i=0;i int main() {

int i, j, n, a[100], t, temp; while(scanf("%d",&n)!=EOF) { for(i=0;ia[j]) t = j; } temp = a[i]; a[i] = a[t]; a[t] = temp; } for(i=0;i

银行家算法代码c语言编写

#define M 100 #include int max[M][M],allocation[M][M],need[M][M],available[M]; int i,j,n,m,r; void testout() //算法安全性的检测 { int k,flag,v=0; int work[M],a[M]; char finish[M]; r=1; for(i=0;i0) { for (i=0;iwork[j]) flag=0; if (flag==1) //找到还没完成的且需求数小于可提供进程继续运行的 { finish[i]='T'; //资源数的进程 a[v++]=i; //记录安全序列 for (j=0;j

几种排序算法的分析与比较--C语言

一、设计思想 插入排序:首先,我们定义我们需要排序的数组,得到数组的长度。如果数组只有一个数字,那么我们直接认为它已经是排好序的,就不需要再进行调整,直接就得到了我们的结果。否则,我们从数组中的第二个元素开始遍历。然后,启动主索引,我们用curr当做我们遍历的主索引,每次主索引的开始,我们都使得要插入的位置(insertIndex)等于-1,即我们认为主索引之前的元素没有比主索引指向的元素值大的元素,那么自然主索引位置的元素不需要挪动位置。然后,开始副索引,副索引遍历所有主索引之前的排好的元素,当发现主索引之前的某个元素比主索引指向的元素的值大时,我们就将要插入的位置(insertIndex)记为第一个比主索引指向元素的位置,跳出副索引;否则,等待副索引自然完成。副索引遍历结束后,我们判断当前要插入的位置(insertIndex)是否等于-1,如果等于-1,说明主索引之前元素的值没有一个比主索引指向的元素的值大,那么主索引位置的元素不要挪动位置,回到主索引,主索引向后走一位,进行下一次主索引的遍历;否则,说明主索引之前insertIndex位置元素的值比主索引指向的元素的值大,那么,我们记录当前主索引指向的元素的值,然后将主索引之前从insertIndex位置开始的所有元素依次向后挪一位,这里注意,要从后向前一位一位挪,否则,会使得数组成为一串相同的数字。最后,将记录下的当前索引指向的元素的值放在要插入的位置(insertIndex)处,进行下一次主索引的遍历。继续上面的工作,最终我们就可以得到我们的排序结果。插入排序的特点在于,我们每次遍历,主索引之前的元素都是已经排好序的,我们找到比主索引指向元素的值大的第一个元素的位置,然后将主索引指向位置的元素插入到该位置,将该位置之后一直到主索引位置的元素依次向后挪动。这样的方法,使得挪动的次数相对较多,如果对于排序数据量较大,挪动成本较高的情况时,这种排序算法显然成本较高,时间复杂度相对较差,是初等通用排序算法中的一种。 选择排序:选择排序相对插入排序,是插入排序的一个优化,优化的前提是我们认为数据是比较大的,挪动数据的代价比数据比较的代价大很多,所以我们选择排序是追求少挪动,以比较次数换取挪动次数。首先,我们定义我们需要排序的数组,得到数组的长度,定义一个结果数组,用来存放排好序的数组,定义一个最小值,定义一个最小值的位置。然后,进入我们的遍历,每次进入遍历的时候我们都使得当前的最小值为9999,即认为每次最小值都是最大的数,用来进行和其他元素比较得到最小值,每次认为最小值的位置都是0,用来重新记录最小值的位置。然后,进入第二层循环,进行数值的比较,如果数组中的某个元素的值比最小值小,那么将当前的最小值设为元素的值,然后记录下来元素的位置,这样,当跳出循环体的时候,我们会得到要排序数组中的最小值,然后将最小值位置的数值设置为9999,即我们得到了最小值之后,就让数组中的这个数成为最大值,然后将结果数组result[]第主索引值位置上的元素赋值为最小值,进行下一次外层循环重复上面的工作。最终我们就得到了排好序的结果数组result[]。选择排序的优势在于,我们挪动元素的次数很少,只是每次对要排序的数组进行整体遍历,找到其中的最小的元素,然后将改元素的值放到一个新的结果数组中去,这样大大减少了挪动的次序,即我们要排序的数组有多少元素,我们就挪动多少次,而因为每次都要对数组的所有元素进行遍历,那么比较的次数就比较多,达到了n2次,所以,我们使用选择排序的前提是,认为挪动元素要比比较元素的成本高出很多的时候。他相对与插入排序,他的比较次数大于插入排序的次数,而挪动次数就很少,元素有多少个,挪动次数就是多少个。 希尔排序:首先,我们定义一个要排序的数组,然后定义一个步长的数组,该步长数组是由一组特定的数字组成的,步长数组具体得到过程我们不去考虑,是由科学家经过很长时间计算得到的,已经根据时间复杂度的要求,得到了最适合希尔排序的一组步长值以及计算

银行家算法-实验报告

淮海工学院计算机工程学院实验报告书 课程名:《操作系统原理》 题目:银行家算法 班级: 学号: 姓名:

一、实验目的 银行家算法是操作系统中避免死锁的典型算法,本实验可以加深对银行家算法的步骤和相关数据结构用法的更好理解。 实验环境 Turbo C 2.0/3.0或VC++6.0 实验学时 4学时,必做实验。 二、实验内容 用C语言编写一个简单的银行家算法模拟程序,用银行家算法实现资源分配。程序能模拟多个进程共享多种资源的情形。进程可动态地申请资源,系统按各进程的申请动态地分配资源。要求程序具有显示和打印各进程的某一时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源数量以及为某进程分配资源后的有关资源数据的情况。 三、实验说明 实验中进程的数量、资源的种类以及每种资源的总量Total[j]最好允许动态指定。初始时每个进程运行过程中的最大资源需求量Max[i,j]和系统已分配给该进程的资源量Allocation[i,j]均为已知(这些数值可以在程序运行时动态输入),而算法中其他数据结构的值(包括Need[i,j]、Available[j])则需要由程序根据已知量的值计算产生。 四、实验步骤 1、理解本实验中关于两种调度算法的说明。 2、根据调度算法的说明,画出相应的程序流程图。 3、按照程序流程图,用C语言编程并实现。 五、分析与思考 1.要找出某一状态下所有可能的安全序列,程序该如何实现? 答:要找出这个状态下的所有可能的安全序列,前提是要是使这个系统先处于安全状态,而系统的状态可通过以下来描述: 进程剩余申请数=最大申请数-占有数;可分配资源数=总数-占有数之和; 通过这个描述来算出系统是否安全,从而找出所有的安全序列。 2.银行家算法的局限性有哪些?

数据结构经典算法 C语言版

//插入排序法 void InsertSort() { int s[100]; int n,m,j,i=0,temp1,temp2; printf("请输入待排序的元素个数:"); scanf("%d",&n); printf("请输入原序列:"); for (i=0; is[n-1]); s[n]=m; for (i=0; im) { temp1=s[i]; s[i]=m; for (j=i+1; j

//堆排序 static a[8] = {0,25,4,36,1,60,10,58,}; int count=1; void adjust(int i,int n) { int j,k,r,done=0; k = r = a[i]; j = 2*i; while((j<=n)&&(done==0)) { if(j=a[j]) done = 1; else { a[j/2] = a[j]; j = 2* j; } } a[j/2] = r; } void heap(int n) { int i,j,t; for(i =n/2;i>0;i--) adjust(i,n); printf("\n初始化成堆===> "); for(i = 1;i < 8;i++) printf("%5d",a[i]); for(i = n-1;i>0;i--) { t = a[i+1]; a[i+1] = a[1]; a[1] = t; adjust(1,i); printf("\n第%2d步操作结果===>",count++); for(j = 1;j<8;j++) printf("%5d",a[j]); } }

(完整word版)操作系统 银行家算法

操作系统课程设计银行家算法

第一章引言 1.1 课程设计目地: 操作系统是计算机系统的核心系统软件,它负责控制和管理整个系统的资源并组织用户协调使用这些资源,使计算机高效的工作。课程设计的目的是综合应用学生所学知识,通过实验环节,加深学生对操作系统基本原理和工作过程的理解,提高学生独立分析问题、解决问题的能力,增强学生的动手能力。 第二章银行家算法描述 2.1 银行家算法简介: 银行家算法是一种最有代表性的避免死锁的算法。在避免死锁方法中允许进程动态地申请资源,但系统在进行资源分配之前,应先计算此次分配资源的安全性,若分配不会导致系统进入不安全状态,则分配,否则等待。 要解释银行家算法,必须先解释操作系统安全状态和不安全状态。 安全状态:如果存在一个由系统中所有进程构成的安全序列P1,…,Pn,则系统处于安全状态。安全状态一定是没有死锁发生。 不安全状态:不存在一个安全序列。不安全状态不一定导致死锁。 那么什么是安全序列呢? 安全序列:一个进程序列{P1,…,Pn}是安全的,如果对于每一个进程Pi(1≤i≤n),它以后尚需要的资源量不超过系统当前剩余资源量与所有进程Pj (j < i )当前占有资源量之和。 2.2 银行家算法描述: 我们可以把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当

前的申请量分配资源,否则就推迟分配。当进程在执行中继续申请资源时,先测试该进程已占用的资源数与本次申请的资源数之和是否超过了该进程对资源的最大需求量。若超过则拒绝分配资源,若没有超过则再测试系统现存的资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配。 2.3银行家算法原理 2.3.1银行家算法的思路 先对用户提出的请求进行合法性检查,即检查请求的是不大于需要的,是否不大于可利用的。若请求合法,则进行试分配。最后对试分配后的状态调用安全性检查算法进行安全性检查。若安全,则分配,否则,不分配,恢复原来状态,拒绝申请。 2.3.2 银行家算法中用到的主要数据结构 可利用资源向量 int Available[j] j为资源的种类。 最大需求矩阵 int Max[i][j] i为进程的数量。 分配矩阵 int Allocation[i][j] 需求矩阵 int need[i][j]= Max[i][j]- Allocation[i][j] 申请各类资源数量 int Request i[j] i进程申请j资源的数量 工作向量 int Work[x] int Finish[y] 2.3.3 银行家算法bank() 进程i发出请求申请k个j资源,Request i[j]=k (1)检查申请量是否不大于需求量:Request i[j]<=need[i,j],若条件不符重新

计算机操作系统 课程设计报告 银行家算法

《计算机操作系统》 课 程 设 计 报 告 题目:银行家算法 班级: XXXXXXXXXXXXXXXX 姓名: XXM 学号: XXXXXXXXXXXX 指导老师: XXXXXXXXXXXXXX 设计时间: XXXXXXXXXXXXXXX

一.设计目的 1、掌握死锁概念、死锁发生的原因、死锁产生的必要条件; 2、掌握死锁的预防、死锁的避免; 3、深刻理解死锁的避免:安全状态和银行家算法; 二.银行家算法 1.简介 银行家算法是一种最有代表性的避免死锁的算法。在避免死锁方法中允许进程动态地申请资源,但系统在进行资源分配之前,应先计算此次分配资源的安全性,若分配不会导致系统进入不安全状态,则分配,否则等待。为实现银行家算法,系统必须设置若干数据结构。 2.数据结构 1)可利用资源向量Available 是个含有m个元素的数组,其中的每一个元素代表一类可利用的资源数目。如果Available[j]=K,则表示系统中现有Rj类资源K个。 2)最大需求矩阵Max 这是一个n×m的矩阵,它定义了系统中n个进程中的每一个进程对m类资源的最大需求。如果Max[i,j]=K,则表示进程i需要Rj类资源的最大数目为K。 3)分配矩阵Allocation 这也是一个n×m的矩阵,它定义了系统中每一类资源当前已分配给每一进程的资源数。如果Allocation[i,j]=K,则表示进程i当前已分得Rj类资源的数目为K。 4)需求矩阵Need 这也是一个n×m的矩阵,用以表示每一个进程尚需的各类资源数。如果Need[i,j]=K,则表示进程i还需要Rj类资源K个,方能完成其任务。 Need[i,j]=Max[i,j]-Allocation[i,j]. 3.算法原理 操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。当进程在执行中继续申请资源时,先测试该进程本次申请的资源数是否超过了该资源所剩余的总量。若超过则拒绝分配资源,若能满足则按当前的申请量分配资源,否则也要推迟分配。 三.算法实现 1.初始化 由用户输入数据,分别对可利用资源向量矩阵A V AILABLE、最大需求矩阵MAX、分配矩阵ALLOCATION、需求矩阵NEED赋值。 2.银行家算法 在避免死锁的方法中,所施加的限制条件较弱,有可能获得令人满意的系统性能。在该方法中把系统的状态分为安全状态和不安全状态,只要能使系统始终都处于安全状态,便可

基于C语言的多种排序方法的实现

基于C语言地多种排序方法地实现 1 引言 1.1 课题背景 排序问题源远流长,一直是数学地重要组成部分.随着各种信息地快速更新,排序问题也走进了其他领域以及我们地日常生活.如何高效地排序一直困扰着我们. 1.2 课程设计目地 排序是数学地重要组成部分,工作量大是其存在地问题.如何高效地排序?本程序就是解决这个问题而设计.程序中,把数列储存在数组中,采用插入排序等十种排序方法对数组元素进行排序,高效地解决了排序问题.本软件开发地平台为最新地微软公司出版地市面最新系统Windows 2000,而且可以作为自身地运行平台非常广泛,包括 Windows 98/2000/XP/Vista等等. 1.3课程设计内容 本程序把对数列地排序转化为对数组元素地排序,用户可以根据自己地实际问题选择系统提供地七种排序方法地任意一种进行排序.程序通过自身地判断以及处理实现排序.程序最后输出每趟排序及初始排序结果. 2 系统分析与设计方案 2.1 系统分析 设计一个排序信息管理系统,使之能够操作实现以下功能: 1) 显示需要输入地排序长度及其各个关键字 2) 初始化输入地排序序列 3) 显示可供选择地操作菜单

4) 显示输出操作后地移动次数和比较次数 5) 显示操作后地新序列 5) 可实现循环继续操 2.2 设计思路 通过定义C语言顺序表来存储排序元素信息,构造相关函数,对输入地元素进行相应地处理. [2] 2.3 设计方案 设计方案如图2.1所示 图2.1 设计方案 具体流程见图2.2

图 2.2 程序流程图

3功能设计 3.1 SqList顺序表 其中包括顺序表长度,以及顺序表.源代码如下:[1] typedef struct { KeyType key。 //关键字项 InfoType otherinfo。 //其他数据项 }RedType。 typedef struct { RedType r[MaxSize+1]。 //r[0]作为监视哨 int length。 //顺序表长度 }SqList。 3.2 直接插入排序 直接插入排序是将一个记录插入到已排好序地有序表中,从而得到一个新地、记录数增1地有序表 图3.1 直接插入排序示意图 将第i个记录地关键字r[i].key顺序地与前面记录地关键字r[i-1].key,r[i-2].key,……,r[1].key进行比较,把所有关键字大于r[i].key地记录依次后移一位,直到关键字小于或者等于r[i].key地记录

C语言常用排序算法

/* ===================================================================== ======== 相关知识介绍(所有定义只为帮助读者理解相关概念,并非严格定义): 1、稳定排序和非稳定排序 简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就 说这种排序方法是稳定的。反之,就是非稳定的。 比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为 a1,a2,a4,a3,a5, 则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4, a2,a3,a5就不是稳定的了。 2、内排序和外排序 在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序; 在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。 3、算法的时间复杂度和空间复杂度 所谓算法的时间复杂度,是指执行算法所需要的计算工作量。 一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。 ===================================================================== =========== */ /* ================================================ 功能:选择排序 输入:数组名称(也就是数组首地址)、数组中元素个数 ================================================ */ /* ==================================================== 算法思想简单描述:

银行家算法报告和代码

课程设计(论文) 题目:银行家算法 院(系):信息与控制工程系专业班级: 姓名: 学号: 指导教师: 2016年1 月15日

西安建筑科技大学华清学院课程设计(论文)任务书 专业班级:学生姓名:指导教师(签名): 一、课程设计(论文)题目 银行家算法:设计一个n个并发进程共享m个系统资源的程序以实现银行家算法。 二、本次课程设计(论文)应达到的目的 操作系统课程实践性比较强。课程设计是加强学生实践能力的一个强有力手段。课程设计要求学生在完成程序设计的同时能够写出比较规范的设计报告。严格实施课程设计这一环节,对于学生基本程序设计素养的培养和软件工作者工作作风的训练,将起到显著的促进作用。 本题目要达到目的:了解多道程序系统中,多个进程并发执行的资源分配。掌握银行家算法,了解资源在进程并发执行中的资源分配情况。掌握预防死锁的方法,系统安全状态的基本概念。 三、本次课程设计(论文)任务的主要内容和要求(包括原始数据、技术参数、设计要求等) 要求: 1)能显示当前系统资源的占用和剩余情况。 2)为进程分配资源,如果进程要求的资源大于系统剩余的资源,不与分配并且提示分配不成功; 3)撤销作业,释放资源。 编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用适当的算法,有效地防止和避免死锁的发生。 银行家算法分配资源的原则是:系统掌握每个进程对资源的最大需求量,当进程要求申请资源时,系统就测试该进程尚需资源的最大量,如果系统中现存的资源数大于或等于该进程尚需求资源最大量时,就满足进程的当前申请。这样就可以保证至少有一个进程可能得到全部资源而执行到结束,然后归还它所占有的全部资源供其它进程使用。 四、应收集的资料及主要参考文献: 操作系统经典算法的编程实现资料非常丰富,可以在图书馆找书籍或在因特网上找资料,都很容易找到,但是大部分代码是不全的,不能直接运行,希望大家只是把它当参考,编码还是自己做。 参考文献: 【1】汤小丹、梁红兵、哲凤屏、汤子瀛编著.计算机操作系统(第三版).西安:西安电子科技大学出版社,2007.5 【2】史美林编.计算机操作系统教程.北京:清华大学出版社,1999.11 【3】徐甲同编著.操作系统教程.西安:西安电子科技大学出版社,1996.8 【4】Clifford,A.Shaffer编著.数决结构与算法分析(C++版).北京:电子工业出版社,2005.7 【5】蒋立翔编著.C++程序设计技能百练.北京:中国铁道出版社,2004.1 五、审核批准意见 教研室主任(签字)

快速排序法(C语言)

#include #include #include #include #define randx(x) (rand()%x) typedef int KeyType; typedef int DataType; typedef struct { KeyType key;/*排序码字段*/ DataType info; /*记录的其它字段*/ }RecordNode; typedef struct { int n; /*文件中的记录个数,可以视为常量*/ RecordNode *record; }SortObject; void creatsort(SortObject * pvector, int &l, int &r)//新建二叉排序树{ int i; int k; printf("您即将要创建一个序列\n");

printf("\n请输入该序列元素的个数\n"); scanf("%d", &pvector->n); pvector->record = (RecordNode*)malloc((sizeof(RecordNode))*(pvector->n)); printf("\n你要以什么方式创建序列?\n方式1:自动创建请输入1,方式2:手动创建请输入0\n"); scanf("%d", &k); if (k) { srand((int)time(0)); for (i = 0; i < pvector->n; i++) { if(pvector->n<100) pvector->record[i].key = randx(100); else if((pvector->n<1000)) pvector->record[i].key = randx(1000); else pvector->record[i].key = randx(pvector->n); } } else { printf("\n请输入%d个大小不一样的整数\n", pvector->n);

C语言常用排序算法

1、稳定排序和非稳定排序 简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就说这种排序方法是稳定的。反之,就是非稳定的。 比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4,a2,a3,a5就不是稳定的了。 2、内排序和外排序在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序; 在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。 3、算法的时间复杂度和空间复杂度 所谓算法的时间复杂度,是指执行算法所需要的计算工作量。 一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。 ================================================ 功能:选择排序 输入:数组名称(也就是数组首地址)、数组中元素个数 ==================================================== 算法思想简单描述: 在要排序的一组数中,选出最小的一个数与第一个位置的数交换; 然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环 到倒数第二个数和最后一个数比较为止。 选择排序是不稳定的。算法复杂度O(n2)--[n的平方] ===================================================== void select_sort(int*x,int n) { int i,j,min,t; for(i=0;i

1银行家算法是一种算法

习题二 一选择题 1.银行家算法是一种___算法。 A.死锁解除B.死锁避免 C.死锁预防D.死锁检测 2.在下列解决死锁的方法中,属于死锁预防策略的是___。 A.银行家算法 B.资源有序分配法 C.死锁检测法 D.资源分配图化简法 3.在为多道程序所提供的可共享的系统资源不足时,可能出现死锁。但是,不适当的___也可能产生死锁。 A.进程优先权 B.资源的线性分配 C.进程推进顺序 D.分配队列优先权 4.采用资源剥夺法可解除死锁,还可以采用____方法解除死锁。 A.执行并行操作 B.撤消进程 C.拒绝分配新资源 D.修改信号量 5.资源的按序分配可以破坏___条件。 A.互斥使用资源 B.占有且等待资源 C.非抢夺资源 D.循环等待资源 6.在___的情况下,系统出现死锁。 A.计算机系统发生了重大故障 B.有多个封锁的进程同进存在 C.若干进程因竞争资源而无休止地相互等待他方释放已占有的资源 D.资源数大大小于进程数或进程同时申请的资源大大超过资源总数 7.产生死锁的四个必要条件是:互斥、___、循环等待和不剥夺。 A.请求与阻塞 B.请求与保持 C.请求与释放 D.释放与阻塞 8.在分时操作系统中,进程调度经常采用___算法。 A.先来先服务 B.最高优先权 C.时间片轮转 D.随机 9.___优先权是在创建进程时确定的,确定之后在整个进程运行期间不再 改变。 A.先来先服务 B.静态 C.动态 D.短作业 10.某系统中有3个并发进程,都需要同类资源4个,试问该系统不会发生 死锁的最少资源数是___。 A.9 B.10 C.11 D.12 11.支持多道程序设计的操作系统在运行过程中,不断地选择新进程执行来实现CPU的共享,但其中___不是引起操作系统选择新进程的直接原因。 A.执行进程的时间片用完 B.执行进程出错 C.执行进程要等待某一事件发生 D.有新进程进入就绪队列 二综合题 ⒈名词解释: 进程调度、死锁、安全序列、资源分配图、死锁定理、饥饿、鸵鸟算法。 ⒊请解释什么是先来先服务算法、时间片轮转法和优先数优先算法?有什么用途? ⒍何谓静态优先权和动态优先权?确定优先权的依据是什么? ⒎何谓死锁?产生死锁的原因是什么? ⒏什么是产生死锁的必要条件? ⒐预防死锁的有几种方法? 12.如何对资源分配图化简?

操作系统课程设计实验报告用C实现银行家算法

操作系统课程设计实验报告用C实现银行家算 法 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

操作系统 实 验 报 告 (2) 学院:计算机科学与技术学院 班级:计091 学号:姓名:

时间:2011/12/30 目录 1.实验名称 (3) 2.实验目的 (3) 3.实验内容 (3) 4.实验要求 (3) 5.实验原理 (3) 6.实验环境 (4) 7.实验设计 (4) 数据结构设计 (4) 算法设计 (6) 功能模块设计 (7) 8.实验运行结果 (8) 9.实验心得 (9) 附录:源代码(部分) (9) 一、实验名称: 用C++实现银行家算法 二、实验目的: 通过自己编程来实现银行家算法,进一步理解银行家算法的概念及含义,提高对银行家算法的认识,同时提高自己的动手实践能力。 各种死锁防止方法能够阻止发生死锁,但必然会降低系统的并发性并导致低效的资源利用率。死锁避免却与此相反,通过合适的资源分配算法确保不会出现进程循环等

待链,从而避免死锁。本实验旨在了解死锁产生的条件和原因,并采用银行家算法有效地防止死锁的发生。 三、实验内容: 利用C++,实现银行家算法 四、实验要求: 1.完成银行家算法的设计 2.设计有n个进程共享m个系统资源的系统,进程可动态的申请和释放资源,系统按各进程的申请动态的分配资源。 五、实验原理: 系统中的所有进程放入进程集合,在安全状态下系统收到进程的资源请求后,先把资源试探性的分配给它。之后,系统将剩下的可用资源和进程集合中的其他进程还需要的资源数作比较,找出剩余资源能够满足的最大需求量的进程,从而保证进程运行完毕并归还全部资源。这时,把这个进程从进程集合中删除,归还其所占用的所有资源,系统的剩余资源则更多,反复执行上述步骤。最后,检查进程集合,若为空则表明本次申请可行,系统处于安全状态,可以真正执行本次分配,否则,本次资源分配暂不实施,让申请资源的进程等待。 银行家算法是一种最有代表性的避免的算法。在避免死锁方法中允许进程动态地申请资源,但系统在进行资源分配之前,应先计算此次分配资源的安全性,若分配不会导致系统进入不安全状态,则分配,否则等待。为实现银行家算法,系统必须设置若干。要解释银行家算法,必须先解释操作系统安全状态和不安全状态。安全序列是指一个进程序列{P1,…,Pn}是安全的,如果对于每一个进程Pi(1≤i≤n),它以后尚需要的资源量不超过系统当前剩余资源量与所有进程Pj (j < i )当前占有资源量之和。

基于C语言的多种排序方法的实现

基于C语言的多种排序方法的实现

《基于C 语言的多种排序方法的实现》第 1 页共30页基于C语言的多种排序方法的实现 1 引言 1.1 课题背景 排序问题源远流长,一直是数学地重要组成部分。随着各种信息的快速更新,排序问题也走进了其他领域以及我们地日常生活。如何高效地排序一直困扰着我们。 1.2 课程设计目的 排序是数学的重要组成部分,工作量大是其存在的问题。如何高效地排序?本程序就是解决这个问题而设计。程序中,把数列储存在数组中,采用插入排序等十种排序方法对数组元素进行排序,高效地解决了排序问题。本软件开发的平台为最新的微软公司出版的市面最新系统Windows 2000,而且可以作为自身的运行平台非常广泛,包括Windows 98/2000/XP/Vista等等。 1.3课程设计内容 本程序把对数列的排序转化为对数组元素的排序,用户可以根据自己的实际问题选择系统提供的七种排序方法的任意一种进行排序。程序通过自身的判断以及处理实现排序。程序最后输出每趟排序及初始排序结果。

2 系统分析与设计方案 2.1 系统分析 设计一个排序信息管理系统,使之能够操作实现以下功能: 1) 显示需要输入的排序长度及其各个关键字 2) 初始化输入的排序序列 3) 显示可供选择的操作菜单 4) 显示输出操作后的移动次数和比较次数 5) 显示操作后的新序列 5) 可实现循环继续操 2.2 设计思路 通过定义C语言顺序表来存储排序元素信息,构造相关函数,对输入的元素进行相应的处理。[2] 2.3设计方案 设计方案如图2.1所示 图2.1 设计方案

具体流程见图2.2

十大经典排序算法-C语言

十大经典排序算法(动图演示,收藏好文) 0、算法概述 0.1 算法分类 十种常见排序算法可以分为两大类: 非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此称为非线性时间比较类排序。 线性时间非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此称为线性时间非比较类排序。 0.2 算法复杂度 0.3 相关概念 稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。 不稳定:如果a原本在b的前面,而a=b,排序之后 a 可能会出现在 b 的后面。时间复杂度:对排序数据的总的操作次数。反映当n变化时,操作次数呈现什么规律。

空间复杂度:是指算法在计算机内执行时所需存储空间的度量,它也是数据规模n 的函数。 1、冒泡排序(Bubble Sort) 冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。 1.1 算法描述 ?比较相邻的元素。如果第一个比第二个大,就交换它们两个; ?对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数; ?针对所有的元素重复以上的步骤,除了最后一个; ?重复步骤1~3,直到排序完成。 1.2 动图演示

1.3 代码实现 function bubbleSort(arr) { var len = arr.length; for (var i = 0; i < len - 1; i++) { for (var j = 0; j < len - 1 - i; j++) { if (arr[j] > arr[j+1]) { // 相邻元素两两对比var temp = arr[j+1]; // 元素交换 arr[j+1] = arr[j]; arr[j] = temp; } } } return arr; }

银行账户管理系统C语言源代码

#include #include #include #include char cFile[] = "date.txt"; struct bank { char id[10+1]; char psw[6+1]; double money; }; welcome1() { printf("\n\n\t\t欢迎使用虚拟银行自动取款机服务!\t\t\n\n"); printf("请选择功能:\n"); printf("\n=================================================\n"); printf(" || 请输入序号||\n"); printf(" || 1.新用户开户。||\n"); printf(" || 2.老用户登陆。||\n"); printf(" || 3.退出系统。||\n"); printf("=================================================\n"); } welcome2() { printf("\n\n\t\t注册须知\n\n"); printf("**************************************************\n"); printf("* 1.请填写您的真实资料! *\n"); printf("* 2.开户首期必须存入100元以上*\n"); printf("**************************************************\n"); } welcome3() { printf("\n\n\t\t\3 欢迎进入虚拟银行系统\3\n\n"); printf("\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\ 1\1\1\1\1\1\1\1\1\n"); printf("\1\1\t 请选择功能:1.取款(最多透资2000); \1\1\n"); printf("\1\1\t 2.存款; \1\1\n"); printf("\1\1\t 3.查询余额; \1\1\n"); printf("\1\1\t 4.修改密码; \1\1\n"); printf("\1\1\t 5.返回主页面; \1\1\n"); printf("\1\1\t 任意键退出. \1\1\n"); printf("\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\ 1\1\1\1\1\1\1\1\1\n");

相关文档
最新文档