快速成型材料

快速成型材料
快速成型材料

光固化成型材料介绍

潘磊

11机自A1

摘要

光固化成型材料主要介绍了所有光固化材料需要有的共同点。然后分别介绍Vantico公司的SL系列、3D Systems公司的ACCURA系列、DSM公司的SOMOS 系列的固化材料的不同性能特点和不同的应用和基本固化的原理。

快速成型材料以及设备一直是快速成型技术研究与开发的核心,也是快速成型技术重要组成部分。快速成型材料直接决定着快速成型技术制作的模型的性能以及适用性,而快速成型制造设备可以说是相应的快速成型技术方法以及相关材料等研究成果的集中体现,快速成型设备系统的先进程度标志着快速成型技术发展的水平。快速成型技术是继数控加工技术(NC)之后制造业的又一次重大革命,广泛应用于航空航天、家用电气、汽车、医学、军事、教学科研等领域。接下来,我们就从快速成型材料方面阐述其特点和性能。

光固化成型材料根据工艺要求,需要具备以下几个优点:1)固化快,可以在几秒内固化,可应用于要求立刻固化的场合。2)不需要加热,这一点对于某些不能耐热的塑料、光学、电子零件来说非常有用。3)可以配成无溶剂产品。使用溶剂会涉及许多环境问题和审批手续问题,因此少用为好。4)节省能量。各种光源的效率都高于烘箱。5)可以使用单组分,无配置操作,使用周期长。6)可以实现自动化操作以及固化,提高生产的自动化程度,从而提高身产效率。

7)固化收缩率小。8)产品精度高。9)阳离子聚合物是活性聚合,

在光熄灯后课继续引发聚合。10)粘度低11)生坯件强度高。12)

产品可以直接用于注塑模具。

下面我们就介绍一下Vantico公司的SL系列、3D Systems公司的ACCURA系列、DSM公司的SOMOS系列的固化材料的性能特点。

Vantico公司的SL系列中的SL5196环氧树脂具有较低的黏性,较好的强度、精度,并能得到光滑的表面效果。SL5510材料是一种多用途、精确的、尺寸稳定、高产的材料,可以满足多种生产要求。SL7510材料具有较好的侧面质量,成型效率高,适合于熔模铸造等。SL7540制作的原型性能类似于聚丙烯,具有较高的耐久性,侧壁质量好,可以较好的制作精细结构,较适用于功能模型的断裂试验等。SL7560的性能类似于ABS材料。SL5530HT是一种在高温条件下仍然具有较好抗力的特殊材料,使用温度可以超过200°C以上,适合于零件的检测、热流体流动可视化、照明器材检测以及飞行器高温成型等方面。以上是几种SL系列光固化树脂具体种类的不同性能,实际应用时,我们可以根据不同的要求选择合适的选择方案。

3D Systems公司的其立体激光成形材料Accura Si 40可以达到ABS工程塑料的膨胀、弯曲性能;有着与ABS工程塑料相同的耐高温性能,是第一种既具有高耐热性、又有韧性的材料,适用于汽车应用,其性能与尼龙66相似。部件透明,具有高的劲度和适中的伸长率,能被钻孔,攻螺纹和用螺栓连接。Accura? Bluestone? 具有异常坚硬和抵受热力达250°C的环境。Accura? si 50 (Color: Natural / Grey)

是精确及抗磨损的SL原料,近似ABS注塑料 (颜色 : 原白色或灰色)。Accura? si 45HC高速,耐热和耐潮的原料,用于3D Systems' SLA?250系统制作功能原型,有尼龙6:6的塑胶特性。Accura? si 40 具有结合坚韧及耐高温特性,稳定精确的SL原料。Accura? si 30 的高延展性带有适中硬度,卓越的精细特征制作能力,低粘度容易清洗。Accura? si 20 具有抗磨损并提供高压坯强度, 具有令人满意的产能及耐潮性,在按扣装配及矽胶复模应用上的理想原料。Accura? si 10 具有结合高压坯强度、耐潮性并在不影响速度下拥有精确、高质量的部件,适用于“QuickCast”式样用作熔模铸造。Accura? Amethyst? 是制作高品质、精确珠宝式样,精美细致的原版模型,并何用作直接铸件。

DSM Somos ProtoTherm 14120光敏树脂是一种用于SL成型机的高速液态光敏树脂,低聚物是其主体,所以低聚物也决定了其基本的物理化学特性。能制作具有高强度、耐高温、防水等功能的零件。用此材料制作的零部件外观呈现为乳白色。其光固化特行分析,在激光照射下,光敏树脂从液态向固态转变,达到凝胶态。同时其成型系统中的光源为激光。激光是一种单色光,具有单一波长。omos ProtoTherm 14120光敏树脂与其它耐高温光固化材料不同的是:此材料经过后期高温加热后,拉伸强度明显增大,同时断裂延伸率仍然保持良好。这些性能使得此材料能够理想地应用于汽车及航空等领域内需要耐高温的重要部件上。

000三维快速成型打印机成型材料_王位

三维快速成型打印机成型材料 王 位,陆亚林,杨卓如 (华南理工大学化学与化工学院,广东广州510640) 摘 要:三维快速成型打印技术作为新兴技术,具有很大潜力。简述了三维快速成型打印技术的发展和现状,描述了三 维打印技术的成型原理,材料的选择后处理过程,并提出了展望。 关键词:3DP ;成型原理;材料选择;后处理中图分类号:TP391 文献标识码:A 文章编号:1000-8356(2012)01-0103-04 Materials for Printing Shaping in 3D Rapid Prototyping Technology WANG Wei,LU Ya-lin ,YANG Zhuo -ru (School of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510640,China) Abstract :The development of three-dimensional printing (3DP)technology,a new rapid prototyping technology ,was described,and the shaping principle was described,and something about the choice of materials and the post-processing was put forward.Key words :3DP;shaping principle;materials choice;post-processing 快速成型技术是利用三维CAD 数据,通过快速成型机,将材料堆积成实体原型的技术,可以自动、快速、直接、精确地将设计思想物化为具有一定功能的原型或制造零件。根据成型方法可分为两类:基于激光及其他光源的成型技术(Laser Technology)和基于喷射的成型技术(Jetting Technology) [1] 。 三维快速成型打印机(three dimensional printing, 3DP)技术作为目前快速成形行业中最有生命力之一 的技术,主要是将原来只有XY 方向上的打印增加了Z 方向的纵向移动,最后将Z 向的各个截面结合起来 得到立体模型。此技术具有设备简单、材料便宜、材料类型广泛、工作过程中无污染、成形速度快等优点,制作速度比其他技术快5~10倍,不需要制作支承,成本远低于其他快速成型技术,广泛应用于成型工业、建筑设计、医用器械制备、气象等方面[2]。 3DP 技术由麻省理工学院Emanual Sachs 等人开 发,近几年在国外得到了迅猛发展。美国Z Cop 公司与日本Riken Institute 于2000年研制出基于喷墨打印技术的、能够做出彩色原型件的三维打印快速成型机。2000年以色列的Object Geometries 公司推出了基于结合3Dink -Jet 与光固化工艺的三维打印快速成型机Quadra 。美国3D System 、荷兰TNO 以及德国BMT 公司等都生产出自己研制的3DP 设备,但是此项技术在国内还处于研发阶段,打印机和原料均需进口,成本非常昂贵,因此,有很大发展潜力[3~5]。 13D 快速成型打印机原理 三维快速打印技术是使用喷头喷出粘结剂,选择性地将零件的截面“印刷”在材料粉末上面,最后层层将各个截面粘结起来。可用于制造复杂形状的模型、中空模型,或者制造复合材料或非均匀材料的模型等[6~7]。 图1是三维打印成型机的剖面示意图。其工艺是先由铺粉辊从左往右移动,将供粉缸里的粉末在成型缸上均匀铺上一层,然后按照计算机上设计好的零件模型,由打印头在第一层粉末上喷出零件底层截面的形状,然后成型缸平台向下移动一定距离,再由铺粉辊从供粉缸中平铺一层粉末到刚才打印完的粉末层上,然后再由打印头按照第二层截面的形状喷洒粘结剂,层层递进,最后得到的零件整体是由各个横截面层层重叠起来的。这种技术将原本只能在成型车间才能进行的工艺搬到了普通办公室,增加了应用面。 收稿日期:2011-05-17;修订日期:2011-06-26 作者简介:王 位(1986-),重庆人,硕士研究生.主要从事3D 快速 成型技术材料研究. 图1三维快速打印技术工作原理示意图 Fig.1The working principle schematic of 3DP 铸造技术 FOUNDRY TECHNOLOGY Vol.33No.1Jan.2012 103··

快速成型

快速成型 快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。 目录 快速原型制造技术,又叫快速成形技术,(简称RP技术); 英文:RAPID PROTOTYPING(简称RP技术),或 RAPID PROTOTYPING MANUFACTURING,简称RPM。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。形象地讲,快速成形系统就像是一台"立体打印机"。

它可以在无需准备任何模具、刀具和工装卡具的情况下,直接接受产品设计(CAD)数据,快速制造出新产品的样件、模具或模型。因此,RP 技术的推广应用可以大大缩短新产品开发周期、降低开发成本、提高开发质量。由传统的"去除法"到今天的"增长法",由有模制造到无模制造,这就是RP技术对制造业产生的革命性意义。 具体是如何成形出来的呢? 形象地比喻:快速成形系统相当于一台"立体打印机"。 它可以在没有任何刀具、模具及工装卡具的情况下,快速直接地实现零件的单件生产。根据零件的复杂程度,这个过程一般需要1~7天的时间。换句话说,RP技术是一项快速直接地制造单件零件的技术。 RP系统的基本工作原理 RP系统可以根据零件的形状,每次制做一个具有一定微小厚度和特定形状的截面,然后再把它们逐层粘结起来,就得到了所需制造的立体的零件。当然,整个过程是在计算机的控制下,由快速成形系统自动完成的。不同公司制造的RP系统所用的成形材料不同,系统的工作原理也有所不同,但其基本原理都是一样的,那就是"分层制造、逐层叠加"。这种工艺可以形象地叫做"增长法"或"加法"。 每个截面数据相当于医学上的一张CT像片;整个制造过程可以比喻为一个"积分"的过程。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。RP技术的基本原理

几种常见快速成型工艺的比较

几种快速成型方式的比较 几种常见快速成型工艺的比较 在快速领域里一直站主导地位快速成型工艺主要包括:FDM, SLA, SLS, LOM等工艺,而这几种工艺又各有千秋,下面我们在主 要看一下这几种工艺的优缺点比较: FDM(fused deposition Modeling)丝状材料选择性熔覆快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材(如工程塑料、聚碳酸酯)加热熔化进而堆积成型方法,简称丝状材料选择性熔覆. 原理如下:加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作平面运动,热塑性丝状材料由供丝机构送至热熔喷头,并在喷头中加热和熔化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层画出截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料可供选用,如工程塑料;聚碳酸酯、工程塑料PPSF: 以及ABS 与PC的混合料等。这种工艺干净,易于操作,不产生垃圾,并可安全地用于办公环境,没有产生毒气和化学污染的危险。适合于产品设计的概念建模以及产品的形状及功能测试。专门开发的针对医用的材料ABS-i: 因为其具有良好的化学稳定性,可采用伽码射线及其他医用方式消毒,特别适合于医用。 FDM快速原型技术的优点是: 制造系统可用于办公环境,没有毒气或化学物质的污染;1次成型、易于操作且不产生垃圾;独有的水溶性支撑技术,使得去除支撑结构简单易行,可快速构建瓶状或中空零件以及一次成型的装配结构件; 原材料以材料卷的形式提供,易于搬运和快速更换。 可选用多种材料,如各种色彩的工程塑料以及医用ABS等 快速原型技术的缺点是:成型精度相对国外先进的SLA工艺较低,最高精度、成型表面光洁度不如国外 SLA:成型速度相对较慢光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺的简称,是最早出现的一种快速成型技术。在树脂槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的树脂薄片。然后,工作台下降一层

快速成型试题汇编

1、20世纪80年代末期出现了快速成形技术,它涉及CAD/CAM技术、数据处理技术、材料技术、激光技术和计算机软件技术等,是各种高技术的综合。 2、快速成形主要的成形工艺有四种:液态光敏聚合物选择性固化(SLA)、薄型材料选择性切割(LOM)、粉末材料选择性激光烧结(SLS)、丝状材料选择性熔融沉积。 3、快速成形技术、数字原型技术和虚拟原型技术一起,都是产品创新和快速开发的重要手段,他们已成为先进制造技术群的重要组成部分。 4、快速成形技术彻底摆脱了传统的“去除式”加工法,而采用全新的“添加式”加工法。 5、快速成形不必采用传统的加工机床和模具,快速成形建立产品样品或模具的时间和成本中有传统加工方法的10%-30%和20%-35%。 6、三维模型的构造,计算机在描述实体时常用的四种方法:构造实体几何法(CSG)、边界表达法(B-rep)、参量表达法、单元表达法。 7、模型输出常用的文件格式有多种,常用的有IGES、HPGL、STEP、DXF、STL等。 8、IGES是大多数CAD系统采用的一种美国标准,可以支持不同文件格式间的转换。 9、HPGL是HP公司开发的一种用来控制自动绘图机的语言格式,它以被广泛地接受,成为一项事项标准。这种表达格式的基本构成是描述图形的矢量,用X和Y坐标来表示矢量的起点和终点,以及绘图笔相应的抬起或放下。一些快速成型系统也用HPGL来驱动它们的成形头。10、STEP是一种正在逐步国际标准化的产品数据交换标准。目前,典型的CAD系统都能输出STEP格式文件,有些快速成形技术的研究者正试图借助STEP格式,不经STL格式的转换,直接对三维CAD模型进行切片处理,以便提高快速成形的精度。 11、DXF是用于AutoCAD输出的一种格式 12、STL格式是快速成形系统经常采用的一种格式 13、常用的扫描机有传统的坐标测量机、激光扫描机、零件断层扫描机、CT扫描机、磁共振扫描机等。 14、STL文件格式的规则有:共定点规则、取向规则、取值规则、充满规则 15、迄今为止,在国际市场上出现了很多与逆向工程相关的,主要有Imageware、Geomagic Studio、CopyCAD和RapidForm四大软件。 16、Geomagic Studio主要包括Quality、Shape、Wrape、Decimate、Capture五个模块。 17、RP 扫描填充方式发展到现在,主要有以下几种方式:单向扫描,多向扫描,十字网格扫描,Z 字型扫描和沿截面轮廓偏置扫描等。 18、快速成型的全过程包括三个阶段:前处理、自由成型、后处理。 19、光固化成型工艺中用来刮去每层多余树脂的装置是刮刀。 20、用于FDM的支撑的类型为:水溶性支撑和易剥离性支撑 21、快速成型技术建立在新材料技术、计算机技术、激光技术和数控技术四大技术之上的。 22、叠层实体制造工艺涂布工艺包括涂布形状和涂布厚度 叠层实体制造工艺常用激光器为CO2激光器 四种成型工艺不需要激光系统的是FDM。四种成型工艺不需要支撑结构系统的是SLS 光固化成型工艺树脂发生收缩的原因主要是树脂固化收缩和热胀冷缩。 就制备工件尺寸相比较,四种成型工艺制备尺寸最大的是LOM SLS周期长是因为有预热段和后冷却时间。(√)SLA过程有后固化工艺,后固化时间比一次固化时间短。(×)SLS工作室的气氛一般为氧气气氛。(×)SLS在预热时,要将材料加热到熔点以下。(√)LOM胶涂布到纸上时,涂布厚度厚一点效果会更好。(×)

快速成型技术的现状和发展趋势

快速成型技术的现状和发展趋势 1 快速成型技术的基本成型原理 近十几年来,随着全球市场一体化的形成,制造业的竞争十分激烈。尤其是计算机技术的迅速普遍和CAD/CAM技术的广泛应用,使得快速成型技术 (Rapid Prototyping简称RP)得到了异乎寻常的高速发展,表现出很强的生命力和广阔的应用前景。 传统的加工技术是采用去材料的加工方式,在毛坯上把多余的材料去除,得到我们想要的产品。而快速成型技术基本原理是:借助计算机或三维扫描系统构建目标零件的三维数字化模型,之后将该信息传输到计算机控制的机电控制系统,计算机将模型按一定厚度进行“切片”处理,即将零件的3D数据信息离散成一系列2D轮廓信息,通过逐点逐面的增材制造方法将材料逐层堆积,获得实体零件,最后进行必要的少量加工和热处理,使零件性能、尺寸等满足设计要求。。它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。 目前,快速成形的工艺方法已有几十种之多,大致可分为7大类,包括立体印刷、叠层实体制造、选择性激光烧结、熔融沉积成型、三维焊接、三维打印、数码累积成型等。其基本的原理如下图所示。 图1 快速成型原理示意图 2 快速成型技术在产品开发中的应用 不断提高RP技术的应用水平是推动RP技术发展的重要方面。目前,交通大学机械学院,快速成型国家工程研究中心,教育部快速成型工程研究中心快速成

型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。并且随着这一技术本身的发展,其应用领域将不断拓展。RP技术的实际应用主要集中在以下几个方面: 2.1 用于新产品的设计与试制。 (1)CAID应用: 工业设计师在短时间得到精确的原型与业者作造形研讨。 (2)机构设计应用: 进行干涉验证,及提早发现设计错误以减少后面模具修改工作。 (3)CAE功效:快速模具技术以功能性材料制作功能性模具,以进行产品功能性测试与研讨。 (4)视觉效果:设计人員能在短时间之便能看到设计的雛型,可作为进一步研发的基石。 (5)设计确认:可在短时间即可完成原型的制作,使设计人员有充分的时间对于设计的产品做详细的检证。 (6)复制于最佳化设计:可一次制作多个元件,可使每个元件针对不同的设计要求同时进行测试的工作,以在最短时间完成设计的最佳化。 (7)直接生产: 直接生产小型工具,或作为翻模工具 2.2 快速制模及快速铸造 快速模具制造传统的模具生产时间长,成本高。将快速成型技术与传统的模具制造技术相结合,可以大大缩短模具制造的开发周期,提高生产率,是解决模具设计与制造薄弱环节的有效途径。快速成形技术在模具制造方面的应用可分为直接制模和间接制模两种,直接制模是指采用RP技术直接堆积制造出模具,间接制模是先制出快速成型零件,再由零件复制得到所需要的模具 2.3 机械制造 由于RP技术自身的特点,使得其在机械制造领域,获得广泛的应用,多用于制造单件、小批量金属零件的制造。有些特殊复杂制件,由于只需单件生产,或少于50件的小批量,一般均可用RP技术直接进行成型,成本低,周期短。2.4 医疗中的快速成形技术 在医学领域的应用近几年来,人们对RP技术在医学领域的应用研究较多。以医学影像数据为基础,利用RP技术制作人体器官模型,对外科手术有极大的应用价值。 2.5 三维复制 快速成形制造技术多用于艺术创作、文物复制、数字雕塑等。 2.6 航空航天技术领域 航空航天产品具有形状复杂、批量小、零件规格差异大、可靠性要求高等特点,产品的定型是一个复杂而精密的过程,往往需要多次的设计、测试和改进,耗资大、耗时长,而快速成型技术以其灵活多样的工艺方法和技术优势而在现代航空航天产品的研制与开发中具有独特的应用前景。

几种常见快速成型工艺优缺点比较

几种常见快速成型工艺优缺点比较 FDM 丝状材料选择性熔覆(FusedDepositionModeling)快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。 丝状材料选择性熔覆的原理室,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。热塑性丝状材料(如直径为1.78mm的塑料丝)由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。但仍需对整个截面进行扫描涂覆,成型时间长。适合于产品设计的概念建模以及产品的形状及功能测试。由于甲基丙烯酸ABS(MABS)材料具有较好的化学稳定性,可采用加码射线消毒,特别适用于医用。但成型精度相对较低,不适合于制作结构过分复杂的零件。 FDM快速原型技术的优点是: 1、制造系统可用于办公环境,没有毒气或化学物质的危险。 2、工艺干净、简单、易于材作且不产生垃圾。 3、可快速构建瓶状或中空零件。 4、原材料以卷轴丝的形式提供,易于搬运和快速更换。 5、原材料费用低,一般零件均低于20美元。 6、可选用多种材料,如可染色的ABS和医用ABS、浇铸用蜡和人造橡胶。

FDM快速原型技术的缺点是: 1、精度较低,难以构建结构复杂的零件。 2、垂直方向强度小。 3、速度较慢,不适合构建大型零件。 SLA 敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速原型技术。 在树脂液槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的塑料薄片。然后,工作台下降一层薄片的高度,以固化的塑料薄片就被一层新的液态树脂所覆盖,以便进行第二层激光扫描固化,新固化的一层牢固的粘结在前一层上,如此重复不已,知道整个产品成型完毕。最后升降台升出液体树脂表面,即可取出工件,进行清洗和表面光洁处理。 光敏树脂选择性固化快速原型技术适合于制作中小形工件,能直接得到塑料产品。主要用于概念模型的原型制作,或用来做装配检验和工艺规划。它还能代替腊模制作浇铸模具,以及作为金属喷涂模、环氧树脂模和其他软模的母模,使目前较为成熟的快速原型工艺。 SLA快速原型技术的优点是: 1、系统工作稳定。系统一旦开始工作,构建零件的全过程完全自动运行,无需专人看管,直到整个工艺过程结束。 2、尺寸精度较高,可确保工件的尺寸精度在0.1mm以内。 3、表面质量较好,工件的最上层表面很光滑,侧面可能有台阶不平及不同层面间的曲面不平。

快速成型技术

快速成型技术(RPM) 快速成型技术(RPM)是集CAD/CAM技术、激光加工技术、数控技术和新材料等技术领域的最新成果于一体的零件原型制造技术。它不同于传统的用材料去除方式制造零件的方法,而是用材料一层一层积累的方式构造零件模型。它利用所要制造零件的三维CAD模型数据直接生成产品原型,并且可以方便地修改CAD模型后重新制造产品原型。由于该技术不像传统的零件制造方法需要制作木模、塑料模和陶瓷模等,可以把零件原型的制造时间减少为几天、几小时,大大缩短了产品开发周期,减少了开发成本。随着计算机技术的决速发展和三维CAD软件应用的不断推广,越来越多的产品基于三维CAD设计开发,使得快速成型技术的广泛应用成为可能。快速成形技术已广泛应用于宇航、航空、汽车、通讯、医疗、电子、家电、玩具、军事装备、工业造型(雕刻)、建筑模型、机械行业等领域。 快速成型制造技术(Rap id Prototyp ingManufac2turing, RPM) ,就是根据零件的三维模型数据,迅速而精确地制造出该零件。它是在20世纪80年代后期发展起来的,被认为是最近20年来制造领域的一次重大突破,是目前先进制造领域研究的热点之一。快速成型制造技术是集CAD技术、数控技术、激光加工、新材料科学、机械电子工程等多学科、多技术为一体的新技术。传统的零件制造过程往往需要车、钳、铣、磨等多种机加工设备和各种夹具、刀具、模具,制造成本高,周期长,对于一个比较复杂的零件,其加工周期甚至以月计,很难适应低成本、高效率的加工要求。快速成型制造技术能够适应这种要求,是现代制造技术的一次重大变革 1. 快速成型技术原理与特点 随着CAD建模和光、机、电一体化技术的发展,快速成型技术的工艺方法发展很快。目前已有光固法( SLA ) 、层叠法(LOM ) 、激光选区烧结法( SLS) 、熔融沉积法( FDM) 、掩模固化法( SGC) 、三维印刷法( TDP) 、喷粒法(BPM)等10余种。 互联网会议PPT资料大全 技术大会产品经理大会网络营销大会交互体验大会 2. 光固化立体造型( Stereolithography, SLA) 该技术以光敏树脂为原料,将计算机控制下的紫外激光,以预定零件各分层截面的轮廓为轨迹,对液态树脂逐点扫描,由点到线到面,使被扫描区的树脂薄层产生聚合反应,从而形成零件的一个薄层截面。当一层固化完毕,升降工作台移动一个层片厚度的距离,在原先固化好的树脂表面再覆盖一层新的液态脂以便进行新一层扫描固化。新固化的一层牢固地粘合在前一层上,如此重复直到整个零件原型制造完毕。SLA法是第一个投入商业应用的RPM技术,其方法特点是精度高、表面质量好、原材料利用率将近100%,可以制造形状特别复杂、外观特别精细的零件。 2.1.2 层片叠加制造( Lam ina ted ObjectManufac2tur ing, LOM ) 层片叠加制造工艺是将单面涂有热溶胶的箔材(涂覆纸———涂有粘接剂覆层的纸、涂覆陶瓷箔、金属箔等)通过热辊加热粘接在一起,位于上方的激光器按照CAD分层模型所获数据,用激光束将箔材切割成所

快速成型件

样品、CNC加工中心手板、快速成型件的概念 --Mission Vision Mold & Plastic (MVMP; Sino Vision Vehicle & Service Co., Limited)米微模具塑料厂转摘Date: 20091010 关键词:金属铸造件、塑料件;什么是快速成型件;什么是CNC加工手板;手板种类;快速成型件的优势 在产品的设计过程中,我们完成了设计图纸以后,最想做的一件事便是想知道自己设计的东西做成实物什么样、外观和自己的设计思想是否吻合、结构设计是否合理等等?手板制造便是应这种需求而产生的。通俗点讲,手板就是在没有开模具的前提下,根据产品外观图纸或结构图纸先做出的一个或几个,用来检查外观或结构合理性的功能样板。 手板的分类 早期的手板因为受到各种条件的限制,主要表现在其大部分工作都是用手工完成的,使得做出的手板工期长而很难严格达到外观和结构图纸的尺寸要求,因而其检查外观或结构合理性的功能也大打折扣。 随着科技的进步,CAD和CAM技术的快速发展,为手板制造提供了更加好的技术支持,使得手板的精确成为可能。 另一方面,随着社会竞争的日益激烈,产品的开发速度日益成为竞争的主要矛盾,而手板制造恰恰能有效地提高产品开发的速度。 正是在这种情况下,手板制造业便脱颖而出,成为一个相对独立的行业而蓬勃发展起来。 手板按照制作的手段分,可分为手工手板和数控手板: (1)手工手板:其主要工作量是用手工完成的。 (2)数控手板:其主要工作量是用数控机床完成的,而根据所用设备的不同,又可分为激光快速成形(RP,Rapid Prototyping)手板和加工中心(CNC)手板。 A: RP手板:主要是用激光快速成型技术生产出来的手板。 B: CNC手板:主要是用加工中心生产出来的手板。 RP手板同CNC手板相比较各有千秋: RP手板的优点主要表现在它的快速性上,但是它主要是通过堆积技术成型,因而RP手板一般相对粗糙,而且对产品的壁厚有一定要求,比如说壁厚太薄便不能生产。 CNC手板的优点体现在它能非常精确的反映图纸所表达信息,而且CNC 手板表面质量高,尤其在其完成表面喷涂和丝印后,甚至比开模具后生产出来的产品还要光彩照人。因此,CNC手板制造愈来愈成为手板制造业的主流手板按照制作所用的材料分,可分为塑胶手板和金属手板: (1)塑胶手板:其原材料为塑胶,主要是一些塑胶产品的手板,比如电视机、显示器、电话机等等。 (2)金属手板:其原材料为铝镁合金等金属材料,主要是一些高档产品的手板. 比如笔记本电脑、高级单放机、MP3播放机、CD机等等。

常用快速成型基本方法简介

1前言 快速成型(Rapid Prototyping)是上世纪80年代末及90 年代初发展起来的高新制造技术,是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。它集成了CA D技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下生成几乎任意复杂的零部件,极大地提高了生产效率和制造柔性。 与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件。通过与数控加工、铸造、金属冷喷涂、硅胶模等制造手段相结合,已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。 2 快速成型的基本原理 快速成型技术采用离散/堆积成型原理,根据三维CAD模型,对于不同的工艺要求,按一定厚度进行分层,将三维数字模型变成厚度很薄的二维平面模型。再将数据进行一定的处理,加入加工参数,产生数控代码,在数控系统控制下以平面加工方式连续加工出每个薄层,并使之粘结而成形。实际上就是基于“生长”或“添加”材料原理一层一层地离散叠加,从底至顶完成零件的制作过程。快速成型有很多种工艺方法,但所有的快速成型工艺方法都是一层一层地制造零件,所不同的是每种方法所用的材料不同,制造每一层添加材料的方法不同。

快速成型的基本原理图 快速成型的工艺过程原理如下: (1)三维模型的构造:在三维CAD设计软件中获得描述该零件的CAD文件。一般快速成型支持的文件输出格式为STL模型,即对实体曲面做近似的所谓面型化(Tessellation)处理,是用平面三角形面片近似模型表面。以简化CAD模型的数据格式。便于后续的分层处理。由于它在数据处理上较简单,而且与CAD系统无关,所以很快发展为快速成型制造领域中CAD系统与快速成型机之间数据交换的标准,每个三角面片用四个数据项表示。即三个顶点坐标和一个法向矢量,整个CAD模型就是这样一个矢量的集合。在一般的软件系统中可以通过调整输出精度控制参数,减小曲面近似处理误差。如Pre/1E软件是通过选定弦高值(ch-chordheight)作为逼近的精度参数。 (2)三维模型的离散处理:在选定了制作(堆积)方向后,通过专用的分层程序将三维实体模型(一般为STL模型)进行一维离散,即沿制作方向分层切片处理,获取每一薄层片截面轮廓及实体信息。分层的厚度就是成型时堆积的单层厚度。由于分层破坏了切片方向CAD模型表面的连续性,不可避免地丢失了模型的一些信息,导致零件尺寸及形状误差的产生。切片层的厚度直接影响零件的表面粗糙度和整个零件的型面精度,每一层面的轮廓信息都是由一系列交点顺序连成的折线段构成。所以,分层后所得到的模型轮廓已经是近似的,层与层之间的轮廓信息已经丢失,层厚越大丢失的信息越多,导致在成型过程中产生了型面误差。

快速成型技术与试题---答案

试卷 2. 3.快速成型技术的主要优点包括成本低,制造速度快,环保节能,适用于新产品开发和单间零件生产等 4.光固化树脂成型(SLA)的成型效率主要与扫描速度,扫描间隙,激光功率等因素有关 5. 也被称为:3D打印,增材制造; 6.选择性激光烧结成型工艺(SLS)可成型的材料包括塑料,陶瓷,金属等; 7.选择性激光烧结成型工艺(SLS)工艺参数主要包括分层厚度,扫描速度,体积成型率,聚焦光斑直径等; 8.快速成型过程总体上分为三个步骤,包括:数据前处理,分层叠加成型(自由成型),后处理; 9.快速成型技术的特点主要包括原型的复制性、互换性高,加工周期短,成本低,高度技术集成等; 10.快速成型技术的未来发展趋势包括:开发性能好的快速成型材料,改善快速成形系统的可靠性,提高其生产率和制作大件能力,优化设备结构,开发新的成形能源,快速成形方法和工艺的改进和创新,提高网络化服务的研究力度,实现远程控制等; 11.光固化快速成型工艺中,其中前处理施加支撑工艺需要添加支撑结构,支撑结构的主要作用是防止翘曲变形,作为支撑保证形状; 二、术语解释 1.STL数据模型 是由3D SYSTEMS 公司于1988 年制定的一个接口协议,是一种为快速原型制造技术服务的三维图形文件格式。STL 文件由多个三角形面片的定义组成,每个三角形面片的定义包括三角形各个定点的三维坐标及三角形面片的法矢量。stl 文件是在计算机图形应用系统中,用于表示三角形网格的一种文件格式。它的文件格式非常简单,应用很广泛。STL是最多快速原型系统所应用的标准文件类型。STL是用三角网格来表现3D CAD模型。STL只能用来表示封闭的面或者体,stl文件有两种:一种是ASCII明码格式,另一种是二进制格式。 2.快速成型精度包括哪几部分 原型的精度一般包括形状精度,尺寸精度和表面精度,即光固化成型件在形状、尺寸和表面相互位置三个方面与设计要求的符合程度。形状误差主要有:翘曲、扭曲变形、椭圆度误差及局部缺陷等;尺寸误差是指成型件与CAD模型相比,在x、y、z三个方向上尺寸相差值;表面精度主要包括由叠层累加产生的台阶误差及表面粗糙度等。 3.阶梯误差 由于快速成型技术的成型原理是逐层叠加成型,因此不可避免地会产生台阶效应,使得零件的表面只是原CAD模型表面的一个阶梯近似(除水平和垂直表

快速成型技术及应用论文

基于激光快速成型技术的金属快速成型技术 摘要:文章详细介绍了金属粉末快速成型的研究现状 ,分析了金属粉末选择性激光烧结的工艺特点,对这些工艺的影响因素进行了讨论。 关键词:选区激光烧结;金属零件;影响因素。 引言 快速制造 (Rapid Manufacturing) 金属零件一直受到国内外的广泛重视 , 是当今快速成型领域的一个重要研究方向。到目前为止 ,用于直接成型金属材料、制备三维金属零件的技术主要有激光近形制造与金属粉末的选择性激光烧结技术。激光近形制造(LENS) ,又称激光熔覆制造或熔滴制造 ,它将激光熔覆工艺与激光快速成型技术相结合 , 利用激光熔覆工艺逐层堆积累加材料,形成具有三维形状的三维结构。在该方面 ,美国的Aeromet、德国的汉诺威激光中心以及清华大学激光加工研究中心等均进行了大量的研究 , 并得到了具有一定形状的三维实体零件。有异于激光近形制造 ,选择性激光烧结则有选择地逐层烧结固化粉末金属得到三维零件。在这一领域,美国的DTM丶德国的汉诺威激光中心等进行了多元金属的烧结研究。就选区激光烧结(SelectiveLaser Sintering , SLS)而言 ,根据成型用金属粉末的不同 , 人们又开发出多种工艺途径来实现金属零件的烧结成型 ,主要有三种途径:一是利用金属粉末与有机粘结剂粉末共混粉体的间接烧结,金属粉末与有机粘结剂粉末均匀共混,烧结中,低熔点的粘结剂粉末熔化并将高熔点的金属粉末粘结,形成原型(“绿件”),经后处理,烧失粘结剂,形成“褐件”,最后通过金属熔渗工艺得到致密的金属件;二是利用金属混合粉末的直接烧结 , 其中一种粉末具有较低的熔点(如铜粉) ,另一种粉末熔点较高 (如铁粉) ,烧结中低熔点的金属粉末铜熔化并将难熔的铁粉粘结在一起 , 这种方法同样需要较大功率激光器;三是利用单一成分金属粉末的直接烧结,这种方法目前主要用于低熔点金属粉末的烧结,对熔点高的金属粉末,需采用大功率激光器。本文分别对上述的间接和直接烧结成型工艺进行了初步的研究。 1 SLS的烧结原理 激光选择性烧结快速成型技术是使用激光束熔化或烧结粉末材料 ,利用分层的思想 ,把计算机中的 CAD 模型直接成型为三维实体零件。它的创新之处在于将激光、光学、温度控制和材料相联系。SLS烧结原理如图1所示,烧结过程可分为三部分: (1)首先在粉体床上铺一薄层粉体 , 并压实 , 可以根据需要 ,在激光烧结前进行预热; (2)激光照射粉体层 ,烧结粉体,形成所设计零件一层的形状;(3) 粉体床下降一个薄层厚度的距离;重复上面的过程 ,直到原型零件完成。 SLS对粉末烧结的明显优势在于: (1) 和其它的加工方法比较,能获得优良的材料性能,同时,它的加工材料范围比较宽 (聚合物、金属、陶瓷、铸造砂等);(2) 易于实现液相烧结 , 烧结周期比较短; (3) 比传统的烧结方法更易得到密实的以粉末金属为原料的产品;(4)工艺比较简单 , 烧结路线、烧结温度便于控制。

几种常见的快速成型技术

几种常见的快速成型技术 一、FDM 丝状材料选择性熔覆(Fused Deposition Modeling)快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。 丝状材料选择性熔覆的原理室,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。热塑性丝状材料(如直径为1.78mm的塑料丝)由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。但仍需对整个截面进行扫描涂覆,成型时间长。适合于产品设计的概念建模以及产品的形状及功能测试。由于甲基丙烯酸ABS(MABS)材料具有较好的化学稳定性,可采用加码射线消毒,特别适用于医用。但成型精度相对较低,不适合于制作结构过分复杂的零件。 FDM快速原型技术的优点是: 1、制造系统可用于办公环境,没有毒气或化学物质的危险。 2、工艺干净、简单、易于材作且不产生垃圾。 3、可快速构建瓶状或中空零件。 4、原材料以卷轴丝的形式提供,易于搬运和快速更换。 5、原材料费用低,一般零件均低于20美元。 6、可选用多种材料,如可染色的ABS和医用ABS、PC、PPSF等。 FDM快速原型技术的缺点是: 1、精度相对国外SLA工艺较低,最高精度0.127mm。 2、速度较慢。 二、SLA 光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速原型技术。 在树脂液槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的塑料薄片。然后,工作台下降一层薄片的高度,以固化的塑料薄片就被一层新的液态树脂所覆盖,以便进行第二层激光扫描固化,新固化的一层牢固的粘结在前一层上,如此重复不已,知道整个产品成型完毕。最后升降台升出液体树脂表面,即可取出工件,进行清洗和表面光洁处理。 光敏树脂选择性固化快速原型技术适合于制作中小形工件,能直接得到塑料产品。主要用于概念模型的原型制作,或用来做装配检验和工艺规划。它还能代替腊模制作浇铸模具,以及作为金属喷涂模、环氧树脂模和其他软模的母模,使目前较为成熟的快速原型工艺。 SLA快速原型技术的优点是: 1、需要专门实验室环境,维护费用高昂。 2、系统工作相对稳定。 3、尺寸精度较高,可确保工件的尺寸精度在0.1mm(但,国内SLA精度在0.1——0.3mm之间,并且存在一定的波动性)。 4、表面质量较好,工件的最上层表面很光滑,侧面可能有台阶不平及不同层面间的曲面不平。 5、系统分辨率较高。

快速成型技术的发展和应用

快速成型技术的发展和应用 摘要:科技飞速发展的今天,人类对制造业也提出了更高的要求,行业竞争也日趋激烈。 快速成型技术也应运而生,并且展现了它强大的生命力和广阔的应用前景。目前,快速成型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。并且随着这一技术本身的发展,其应用领域将不断拓展。 The rapid development of science and technology today, the human is put forward higher requirements on manufacturing, industry competition is increasingly fierce. Rapid prototyping technology also arises at the historic moment, and shows its strong vitality and broad application prospects. At present, the modelling of rapid prototyping technology has been in the industry, machinery manufacturing, aerospace, military, architecture, film and television, home appliances, light industry, medicine, archaeology, cultural art, sculpture, jewelry, and other fields has been widely used. And with the development of the technology itself, and will continue to expand its application field. 关键词:快速成型,堆积法,高集成性、高柔性、高速性,自动、直接、快速、精确。 前言: 21世纪是以知识经济和信息社会为特征的时代,随着科学技术的发展和社会需求的多样化,全球统一市场和经济全球化的逐步形成,产品的竞争更加激烈。在工业化的国家中,60%—80%的财富是由制造业提供的。制造业是衡量一个国家实力水平的重要标志之一,也是创造社会财富和国民经济赖以生存发展的重要支柱产业。 现代制造已不仅仅是机械制造,而且具有大制造,全过程,多科学的新特点。大制造应包括机电产品的制造,工业流程制造,材料科学制造等等,所以它是一个广义的制造概念。 我国在先进制造技术方面和国外有比较大的差距,特别是我国制造业的自动化,信息化水平不高。大力发展和应用先进制造技术,勇气改造传统产业和形成高技术,提升我国制造业得产业结构,产品结构和组织结构,增强其技术创新能力,产品开发,和市场竞争能力。是制造业,特别是机械制造业走出困局的关键性措施。这样才能保证我们世界工厂地位的确立,实现由制造业大国向制造业强国的转变。 快速成型技术的诞生 快速成型技术作为一个专用名词在20世纪80年代末期,美国为了加强其制造业的竞争力与促进国民经济的增长,根据其制造业面临的挑战与机遇,并对其制造业存在的问题进行深刻反省提出来的。快速成型技术是集成制造技术,电子技术,信息技术,自动化技术,能源晕技术,材料科学以及现在管理技术等众多技术的交叉,融合和渗透而发展起来的,涉及到制造业中的产品设计,加工装配,检验测试,经营管理等产品生命周期全过程,已实现优质,高效,低耗,清洁,灵活生产,提高对动态多变,细分的市场的适应能力和竞争能力的一项综合技术。 快速成型技术是顺应这一潮流而出现的先进制造技术,它能自动,直接,快速,精确的将设计思想物转化具有一定功能的原型或直接制造零件,快速成型技术是先进制造技术的重要组成部分,也是制造技术在制造理论的一次革命性飞跃,快速成型技术目前在美国,欧洲,日本等地已被广泛应用,受到制造业界及各类用户的普遍重视。 世界上第一台快速成形机于自1988年诞生于美国。快速成型制造技术是国外20世纪80年

快速成型技术及在我国的发展

科学实践 摘要:快速成型技术兴起于20世纪80年代,是现代工业发展不可或缺的一个重要环节。本文介绍了快速成型技术的产生、技术原理、工艺特点、设备特点等方面,同时简述快速成型技术在国内的发展历程。 关键词:快速成型烧结固化叠加发展服务 0引言 在现代市场经济全球一体化背景下的今天,企业要在竞争日益激烈的市场经济中掌握先机,占据有利地位,需要有技术和产品上的创新,把握并引导市场的发展方向。与此同时,对于市场的需求,企业需要做出快速的响应,切合当前需求,而现有的常规技术手段已经不能对市场的需求做出最快的反应。与此同时快速制造技术的快速发展,体现了现代先进制造技术对全球制造业的支撑,通过应用快速成型技术企业能迅速响应市场需求,最快速度的抢占新兴市场。企业需要通过采用快速成型技术来降低开发、生产成本、缩短研发周期、提高市场快速响应能力,保持强大的市场竞争力。 1快速成形技术的产生 快速原型(Rapid Prototyping,RP)技术,又称快速成形技术,是当今世界上飞速发展的制造技术之一。快速成形技术最早产生于二十世纪70年代末到80年代初,美国3M公司的阿伦赫伯特于1978年、日本的小玉秀男于1980年、美国UVP公司的查尔斯胡尔1982年和日本的丸谷洋二1983年,在不同的地点各自独立地提出了RP的概念,即用分层制造产生三维实体的思想。查尔斯胡尔在UVP的继续支持下,完成了一个能自动建造零件的称之为Stere-olithography Apparatus(SLA)的完整系统SLA-1,1986年该系统获得专利,这是RP发展的一个里程碑。同年,查尔斯胡尔和UVP的股东们一起建立了3D System公司。与此同时,其它的成形原理及相应的成形系统也相继开发成功。1984年米歇尔法伊杰提出了薄材叠层(Laminated Object Manufacturing,以下简称LOM)的方法,并于1985年组建Helisys公司,1992年推出第一台商业成形系统LOM-1015。1986年,美国Texas大学的研究生戴考德提出了选择性激光烧结(Selective Laser Sintering,简称SLS)的思想,稍后组建了DTM公司,于1992年开发了基于SLS的商业成形系统Sinter-station。斯科特科瑞普在1988年提出了熔融成形(Fused Deposi-tion Modeling,简称FDM)的思想,1992年开发了第一台商业机型3D-Modeler。 自从80年代中期SLA光成形技术发展以来到90年代后期,出现了几十种不同的RP技术,但是SLA、SLS和FDM几种技术,目前仍然是RP技术的主流,最近几年LJP(立体喷墨打印)技术发展迅速,以色列、美国、日本等国的RP设备公司都力推此类技术设备。 2快速成型技术特点 RP技术与传统制造方法(即机械加工)有着本质的区别,它采用逐渐增加材料的方法(如凝固、焊接、胶结、烧结、聚合等)来形成所需的部件外型,由于RP技术在制造产品的过程中不会产生废弃物造成环境的污染,(传统机械加工的冷却液等是污染环境的),因此在当代讲究生态环境的今天,这也是一项绿色制造技术。 RP技术集成了CAD、CAM、激光技术、数控技术、化工、材料工程等多项技术,解决了传统加工制造中的许多难题。 RP技术的基本工作原理是离散与堆积,在使用该技术时,首先设计者借助三维CAD或者通过逆向工程所采集的几何数据,建立数 字化模型,这是完成快速成型制造的一项基本条件,借助现有的主流三维设计软件建立三维模型,再经过三维CAD导出相应的文件格式输入快速成型机当中,通过逐点、逐面进行三维的立体堆积,部件完成后,再经过必要的后续处理,使完成的部件在性能、形状尺寸、外观上等方面达到设计要求。 RP技术的特点 从原理上说,应用RP技术来进行产品制造,可以忽略产品部件的外形复杂程度(这也是与传统机械加工方式制造产品的最大区别之一),原材料的利用率接近100%,制造精度最高可达0.01mm。 RP技术的主要特点有: 2.1制造快速 RP技术是并行工程中进行复杂原型或者零件制造的有效手段,能使产品设计和模具生产同步进行,从而提高企业研发效率,缩短产品设计周期,极大的降低了新品开发的成本及风险,对于外形尺寸较小,异形的产品尤其适用。 2.2CAD/CAM技术的集成 设计制造一体化一直来说是现在的一个难点,计算机辅助工艺(CAPP)在现阶段由于还无法与CAD、CAM完全的无缝对接,这也是制约制造业信息化一直以来的难点之一,而快速成型技术集成CAD、CAM、激光技术、数控技术、化工、材料工程等多项技术,使得设计制造一体化的概念完美实现。 2.3完全再现三维数据 经过快速成型制造完成的零部件,完全真实的再现三维造型,无论外表面的异形曲面还是内腔的异形孔,都可以真实准确的完成造型,基本上不再需要再借助外部设备进行修复。 2.4成型材料种类繁多 到目前为止,各类RP设备上所使用的材料种类有很多,树脂、尼龙、塑料、石蜡、纸以及金属或陶瓷的粉末,基本上满足了绝大多数产品对材料的机械性能需求。 2.5创造显著的经济效益 与传统机械加工方式比较,开发成本上节约10倍以上,同样,快速成型技术缩短了企业的产品开发周期,使的在新品开发过程中出现反复修改设计方案的问题大大减少,也基本上消除了修改模具的问题,创造的经济效益是显而易见的。 2.6应用行业领域广 RP技术经过这些年的发展,技术上已基本上形成了一套体系,同样,可应用的行业也逐渐扩大,从产品设计到模具设计与制造,材料工程、医学研究、文化艺术、建筑工程等等都逐渐的使用RP技术,使得RP技术有着广阔的前景。 3现阶段主流的RP工艺方法介绍 3.1SLA(立体光造型技术) 立体光造型技术是典型的逐层制造法,采用光敏树脂(聚丙烯酸脂)为原料,紫外激光在工控机的控制下根据零件的分层截面信息,在光敏树脂等相应材料的液面进行逐点扫描,被扫描区域的树脂经过光聚合反应而固化,形成零件的一个分层截面,一层固化好后工作平台下降一个分层厚的距离,以便在先前固化好的零件分层截面是重新涂抹一层新的液态树脂,然后工控机控制激光再扫描下一分层截面,层与层之间也因此而紧密连接在一起没有缝隙。如此反复直至 快速成型技术及在我国的发展罗庚(贵阳生产力促进中心快速成型服务中心) 第一手的测试数据。树立典型,用第一手的数据和直接的经济效率吸取使用单位,使使用单位对锅炉节能降耗改造工程的作用和意义有更直接的认识,吸引其主动开展改造工程,为以后大规模的节能工作打下坚实的基础。 3.5质监系统应强化对工业锅炉节能降耗工作的监管和技术指导与服务。切实加强锅炉给水水质监管,做好水处理设备投入和水处理人员的培训,保障锅炉给水水质指示达到GB1576《工业锅炉水质》标准要求,防止锅炉结垢。 参考文献: [1]颜曙光.浅析工业锅炉节能减排.中小企业管理与科技.2009.(6). [2]陈听宽.节能原理与技术[M].北京.机械工业出版社.1998. [3]刘茂俊.燃煤工业锅炉节煤实用技术[M].北京.中国电力出版社.2000. (上接第165页) 166

相关文档
最新文档