基于Simulink控制系统的稳态误差分析

基于Simulink控制系统的稳态误差分析
基于Simulink控制系统的稳态误差分析

基于Simulink 控制系统的稳态误差分析

一、实验目的

1.掌握使用Simulink 仿真环境进行控制系统稳态误差分析的方法。

2.了解稳态误差分析的前提条件是系统处于稳定状态。

3.研究系统在不同典型输入信号作用下,稳态误差的变化。

4.分析系统在扰动输入作用下的稳态误差。

5.分析系统型次及开环增益对稳态误差的影响。

二、实验设备和仪器

1.计算机

2. MATLAB 软件

三、实验原理

1.误差的意义: a) 给定信号作用下的稳

态误差表征系统输出跟随输入信号的能力。

b) 系统经常处于各种扰动作用下。如:负载力矩的变化,电源电压和频率的波动,环境温度的变化等。因此系统在扰动作用下的稳态误差数值,反映了系统的抗干扰能力。

注意:系统只有在稳定的前提下,才能对稳态误差进行分析。 定义式法求稳态误差:

[]

lim ()lim ()lim ()()lim ()lim ()

ss r d t s s r d s s ssr ssd

e e t sE s s E s E s sE s sE s e e →∞→→→→===+=+=+

2. 给定信号作用下的误差E )()1R s =

+扰动信号作用下的误差()d E s )()1(G D s G -=

+R(s)是给定输入信号(简称给定信号)

;D(s)是扰动输入信号(简称扰动信号);()()G s H s 是开环传递函数。

3. 静态误差系数法(只能用于求给定信号作用下误差)

这种简便的求解给定信号稳态误差

ssr e 的方法叫做静态误差系数法,首先给出系统在不同输入信号下的误差系数的定义:

当()0R

R s s

=时,定义静态位置误差

系数为:0

lim ()()

p s K G s H s →=

R

当(

)

2

v R s s =

时,定义静态速度误差系数为:0lim ()()v s K s G s H s →=

当()0

3a R s s

=时,定义静态加速度误差系数为:20lim ()()a s K s G s H s →=

表5-1 给定信号作用下系统稳态误差ssr e

系统型

号 阶跃信号输入()0R R s s = 速度信号输入()02v R s s = 加速度信号输入

()0

3

a R s s = 0 0

1p

R K + ∞ ∞ Ⅰ 0 0

v

v K ∞

a

a K 四、实验内容

1.对比“给定信号作用下系统稳态误差ssr e 表”分析发现,影响系统稳态误差ssr e 有以下2个方面:

a) 系统的结构参数 b) 输入信号

2.分析系统在给定输入作用下的稳态误差,验证上面的结论。

构建如下图所示的2个稳定的单位负反馈系统,仿真运行后,将实验结果填入下表:

图5-1 实验对象Simulink 连接图 表5-2 图5-1给定信号作用下系统

Step Response

Time (sec)

A m p l i t u d e

0型系统单位斜坡

Step Response

Time (sec)

A m p l i t u d

e

1型系统单位斜坡

Step Response

Time (sec)

A m p l i t u d e

From: untitled/In1 (1) To: untitled/Sum (1)

单位阶跃的1型

Step Response

Time (sec)

A m p l i t u d e

From: untitled/In1 (1) To: untitled/Sum (1)

单位阶跃的0型系统

3.分析系统在扰动输入作用下的稳态误差。

构建如下图所示的单位负反馈系统,若输入信号()1()r t t = ,扰动信号 ()0.11()n t t =?,仿真运行后,得到给定信号作用下稳态误差ssr e = 0 ,

扰动信号作用下稳态误差ssn e = -0.1 ,总的稳态误差ss ssr ssn e e e =+= -0.1 。

Transfer Fcn1Transfer Fcn

Scope

Ramp

Gain

Step Response

Time (sec)

A m p l i t u d e

From: In(1)

T o : O u t (1)

T o : O u t (2)

T o : O u t (3

)

From: In(2)

五、实验心得与体会

通过本次试验,我学会了怎样用Simulink 进行仿真实验,并能够通过简单的仿真对影响系统稳态误差的因素进行分析。在不同的输入信号下,系统的稳态

误差也有不同的变化,通过对系统的分析,可以通过改变因素来使系统达到稳定。

自动控制系统的稳定性和稳态误差分析

实验三 自动控制系统的稳定性和稳态误差分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递函数为 0.2( 2.5) ()(0.5)(0.7)(3) s G s s s s s += +++,用MATLAB 编写程序来判断闭环系统的稳定 性,并绘制闭环系统的零极点图。 在MATLAB 命令窗口写入程序代码如下: z= p=[0,,,-3] k= Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) 运行结果如下: Transfer function: s + --------------------------------------- s^4 + s^3 + s^2 + s +

s^4 + s^3 + s^2 + s + 是系统的特征多项式,接着输入如下MATLAB程序代码: den=[1,,,,] p=roots(den) 运行结果如下: p = + - p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。 下面绘制系统的零极点图,MATLAB程序代码如下: z= p=[0,,,-3] k= Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) [z,p,k]=zpkdata(Gctf,'v') pzmap(Gctf) grid 运行结果如下: z = p = + -

激光测量系统误差分析

激光测量系统误差分析 1. 激光测量系统误差源的分析 激光测量系统会受到多种误差的影响,有系统误差和偶然误差,系统误差会给激光测量点云坐标带来系统偏差。激光测量系统的误差按照其产生的来源可分为四类: (1) 定位误差:GPS 定位误差; (2) 姿态误差:GPS/INS 姿态误差; (3) 测距误差:激光扫描仪测距误差; (4) 集成误差:系统集成误差; (1) 定位误差 GPS 动态定位误差主要包括卫星轨道误差、卫星钟钟差、接收机钟钟差、多路径效应、 相位中心不稳定,还有卫星星座、观测噪声等。[1]GPS 定位误差不容易消除或者模型化,通 常为了削弱GPS 定位误差的影响,采用的方法是在测区内建立多个分布均匀的基准站,保证GPS 动态定位解算时离基准站不会太远。 (2) 姿态误差 姿态误差是影响定位精度的最主要原因。主要包括设备的安置误差、加速度计误差、陀螺仪漂移、测量噪声等,对于INS 姿态测量误差,可以适当降低飞行高度,以削弱其对定位的影响。 (3) 测距误差 激光扫描仪的每一个工作过程都会带来一定的误差,但起主要作用的是电子光学电路对经过地面散射和空间传播后的不规则激光回波信号进行处理来确定时间延迟带来的误差,分别为时延估计误差和时间测量误差两类。此外还有反光镜的旋转、震动误差、脉冲零点误差等。 激光脉冲信号照射地面物体时,由于地表物理特征的不同而产生不同的反射,当信号发生漫反射时,出现大量反射信号被接收,会形成较大的接收噪声;当信号照射到光滑物体表面,便形成镜面反射,可能会造成激光测距信号丢失。另外,有的信号可能经过计策反射后反射回去,这样测定的时间延迟不能代表真正的时间延迟。激光测距的精度还与地面粗糙程度、地面坡度、地面物体的干扰等有关。另外,被水域覆盖的地方,红外激光大部分被吸收,只有少量被反射,如果碰到静止的水面,就形成镜面反射,信号反射不回去;地表不连续以及移动物体,如行人、车辆、动物等都会影响激光测距精度。 (4) 系统集成误差 系统集成误差主要包括激光扫描仪脉冲感应参考中心与GPS 天线相位中心偏心向量的测定误差、系统安置误差、位置内插误差(线性内插)、时间同步误差、地面参考站间位置误差、坐标系间的转换误差、GPS/INS 组合滤波模型误差等。 由于GPS 数据采样频率一般为1~20Hz ,INS 数据采样频率一般为20~几百Hz ,而激光测距的频率为几十~几千Hz (现有70Hz ),采样率不同,最后要根据采样率低的GPS/INS 数据内插出每个激光点的姿态和位置,内插过程中会产生内插误差。 2.激光测量系统误差的定性定量分析 (1)测距误差 测距误差同多种因素有关,包括系统和随机的两部分。这里只考虑系统误差部分ρ?,其大小取决于不同的系统、反射介质及地形条件等外界条件。相应测得的距离就是ρρ+?。即(0,0,)T r r ρρ+?=+?。其中r ?为测距误差引起的激光扫描点在瞬时激光束坐标系中

计算机控制系统的稳态误差

计算机控制系统报告 --计算机控制系统的稳态误差 在计算机控制系统中存在稳态误差。怎样计算稳态误差呢? 在连续系统中,稳态误差的计算可以通过两种方法计算:一是建立在拉氏变换中值定理基础上的计算方法,可以求出系统的终值误差;另一种是从系统误差传递函数出发的动态误差系数法,可以求出系统动态误差的稳态分量。 在离散系统中,根据连续系统稳态误差的两种计算方法,在一定的条件下可以推广到离散系统。又由于离散系统没有唯一的典型结构形式,离散系统的稳态误差需要针对不同形式的离散系统来求取。 书上主要介绍了利用z 变换的终值定理方法,求取误差采样的离散系统在采样瞬时的终值误差。 设单位反馈误差采样系统如图4.12所示。 图4.12 单位反馈误差采样反馈系统 系统误差脉冲传递函数为 (4.1) 若离散系统是稳定的,则可用z 变换的终值定理求出采样瞬时的终值误差 (4.2) Φ==+e ()1()()1()E z z R z G z )](1[)()1(lim )()1(lim )(lim )(1111*z G z R z z E z t e e z z t +-=-==∞-→-→∞ →

(4.2)式表明,线性定常离散系统的稳态误差,不但与系统本身的结构和参数有关,而且与输入序列的形式及幅值有关。除此之外,离散系统的稳态误差与采样系统的周期的选取也有关。上式只是计算单位反馈误差采样离散系统的基本公式,当开环脉冲传递函数G(z)比较复杂时,计算e(∞)仍然有一定的计算量,因此希望把线性定常连续系统中系统型别及静态误差系数的概念推广到线性定常离散系统,以简化稳态误差的计算过程。 在离散系统中,把开环脉冲传递函数G(z)具有z=1的极点数v 作为划分离散系统型别的标准,与连续系统类似地把G(z)中 v=0,1,2,…的系统,称为0型,Ⅰ型和Ⅱ型离散系统等。下面讨论不同类别的离散系统在三种典型输入信号作用下的稳态误差,并建立离散系统静态误差系数的概念。 1.单位阶跃输入时的稳态误差 对于单位阶跃输入r(t)=1(t),其z 变换函数为 (4.3) 得单位阶跃输入响应的稳态误差 (4.4) 上式代表离散系统在采样瞬时的终值位置误差。式中 (4.5) 称为静态位置误差系数。若G(z)没有z=1的极点,则Kp ≠∞,从而e(∞)≠0;若G(z)有一个或一个以上z=1的极点,则Kp= ∞,从1 11)(--=z z R →∞==+1p 11()lim 1()z e G z K →=+p 1lim[1()]z K G z

机械工程及自动化专业毕业设计论文基于MSA方法的测量系统误差分析研究

1绪论 1.1 测量系统分析介绍 测量系统分析,简称MSA(全称为Measurement System Analysis),使用数理统计和图表的方法对测量系统的分辨率和误差进行分析,以评估测量系统的分辨率和误差对于被测量的参数来说是否合适,并确定测量系统误差的主要成分。 测量系统的误差由稳定条件下运行的测量系统多次测量数据的统计特性:偏倚和方差来表征。偏倚指测量数据相对于标准值的位置,包括测量系统的偏倚、线性和稳定性;而方差指测量数据的分散程度,也称为测量系统的R&R,包括测量系统的重复性和再现性。 1.1.1 MSA的术语 (1)测量系统(Measurement System) 测量系统是对测量单位进行量化或对被测的特性进行评估,其所使用的仪器或量具、标准、操作、方法、夹具、软件、人员、环境及假设的集合;也就是说,用来获得测量结果的整个过程。 测量系统可分为两类分别为“计量型”测量系统分析和“计数型”测量系统分析。前者测量后能够给出具体的测量数值;后者只能定性地给出测量结果。 “计量型”测量系统分析通常包括五类的分析和评价,它们分别为:“偏倚”、“稳定性”、“线性”、“重复性”和“再现性”。在测量系统分析的实际运作过程中,可以分别进行,也可以同时进行,根据具体使用情况而定。 (2)偏倚(Bias) 偏倚是指对相同零件上同一特性的观测平均值与真值(参考值)的差异,是测量系统的系统误差所构成。 (3)稳定性(Stability) 稳定性(或漂移)是指经过一段长期时间下,用相同的测量系统对同一基准或零件的同一特性进行测量所获得的总变差。也就是说,稳定性是整个时间的偏倚变化。 (4)线性(Linearity) 线性是在测量设备预期的工作(测量)量程内,偏倚值的差异。线性可被视为偏倚对于量程大小不同所发生的变化。 (5)重复性(Repeatability) 传统上将重复性称为“评价人内部”的变异。重复性是用一个评价人使用相同的测量仪器对同一零件上的同一特性,进行多次测量所得到的测量变差;它是设备本身的固有的变差或能力。 (6)再现性(Reproducibility)

基于Simulink控制系统的稳态误差分析

基于Simulink 控制系统的稳态误差分析 一、实验目的 1.掌握使用Simulink 仿真环境进行控制系统稳态误差分析的方法。 2.了解稳态误差分析的前提条件是系统处于稳定状态。 3.研究系统在不同典型输入信号作用下,稳态误差的变化。 4.分析系统在扰动输入作用下的稳态误差。 5.分析系统型次及开环增益对稳态误差的影响。 二、实验设备和仪器 1.计算机 2. MATLAB 软件 三、实验原理 1.误差的意义: a) 给定信号作用下的稳 态误差表征系统输出跟随输入信号的能力。 b) 系统经常处于各种扰动作用下。如:负载力矩的变化,电源电压和频率的波动,环境温度的变化等。因此系统在扰动作用下的稳态误差数值,反映了系统的抗干扰能力。 注意:系统只有在稳定的前提下,才能对稳态误差进行分析。 定义式法求稳态误差: 2. 给定信号作用下的误差 E 扰动信号作用下的误差()d E s R(s)是给定输入信号(简称给定信号) ;D(s)是扰动输入信号(简称扰动信号);()()G s H s 是开环传递函数。 3. 静态误差系数法(只能用于求给定信号作用下误差) 这种简便的求解给定信号稳态误差 ssr e 的方法叫做静态误差系数法,首先给出系统在不同输入信号下的误差系数的定义: 当()0R R s s =时,定义静态位置误差 系数为:0 lim ()()p s K G s H s →= 当()0 2v R s s = 时,定义静态速度误差系数为:0lim ()()v s K s G s H s →=g 当()0 3a R s s =时,定义静态加速度误差系数为:20lim ( )()a s K s G s H s →=g 表5-1 给定信号作用下系统稳态误差e R

稳态误差的总结分析和例解

稳态误差的总结分析和例解 控制系统稳态误差是系统控制准确度的一种度量,通常称为稳态性能。只有当系统稳定时,研究稳态误差才有意义,对不能稳定的系统,根本不存在研究稳态误差的可能性。 一、 误差与稳态误差 1、输入端的定义: 对图一,比较输出得到: E(s)=R(s)-H(s)*Y(s) 称E(s)为误差信号,简称误差 图一 2、输出端的定义: 将图一转换为图二,便可定义输出端的稳态误差,并且与输入端的稳态误差有如下关系: E ’(s)=E(s)/H(s) 输入端定义法可测量实现,输出端定义法常无法测量,因此只有数学意义,以后在不做特别说明时,系统误差总是指输入端定义误差。 图二 再有误差的时域表达式: 也有: e(t)= [E(S)]= [Φe (s)*R(S)] 其中Φe (s)是误差传递函数,定义为: Φe (s)= = 根据拉氏变换终值定理,由上式求出稳态误差:(T j s+1) e ss (∞)= = 二、 系统类型 一般的,定义一个分子为m 阶次,分母为n 阶次的开环传递函数为: []1()()()() ts ss e t L E s e t e t -==+

G(S)H(S)= K为开环增益,ν表示系统类型数,ν=0,表示0型系统;ν=1表示Ⅰ型系统;当ν大于等于2时,除了符合系统外,想使得系统稳定相当困难。 四、阶跃输入下的e ss (∞)与静态位置误差系数Kp r(t)=R*1(t),则有:e ss (∞)= ν ν 用Kp表示静态位置误差系数:e ss (∞)==其中: Kp= 且有一般式子:Kp= ν∞ν 五、斜坡输入下的e ss (∞)与静态速度误差系数Kv r(t)=Rt,则有:e ss (∞)= ν 用Kv表示静态速度误差系数:e ss (∞)==其中: Kv= 六、加速度输入下的e ss (∞)与静态加速度误差系数Ka r(t)=Rt2/2,则有: e ss (∞)= ν、 用Kv表示静态速度误差系数: e ss (∞)== 其中: Kv= 且有: Ka= 、 七、扰动状况下的稳态误差 系统的模型如图三所示对扰动状况下的稳态误差仍然有输入端与输出端的两种定义: 图三

控制系统的稳态误差

3.5 控制系统的稳态误差 3.5 控制系统的稳态误差 描述控制系统的微分方程 (3.73 ) 式(3.73)是一个高阶微分方程,方程的解可以表示为 (3.74) 式中,前两项是方程的通解,而是方程的一个特解。随时间的增大,方程 的通解逐渐减小,方程的解y(t)越来越接近特解。当时,方程的通 解趋于零 这时系统进入了稳定状态。特解是由输入量确定的,反映了控制的目标和要 求。系统进入稳态后,能否达到预期的控制目的,能否满足必要的控制精度,要解决这个问题,就必须对系统的稳态特性进行分析。稳态特性的性能指标就是稳态误差。 3.5.1 稳态误差 控制系统的误差可以表示为 (3.75) 式中是被控制变量的期望值,y(t)是被控制变量的实际值,即控制系统的 输出。 稳定的控制系统,在输入变量的作用下,动态过程结束后,进入稳定状态的误差,称为稳态误差

图3.23 单位反馈和非单位反馈系统 (a)单位反馈系统;(b)非单位反馈系统 在控制工程中,常用控制系统的偏差信号来表示误差。对图 3.23(a)所示的单位反馈系统,误差与偏差的含义是相同的,即 (3.76) 式中r(t)为系统的给定值,也就是输出y(t)的期望值。单位反馈系统的稳态误差为: (3.77) 对图3.23(b)所示的非单位反馈系统,因为反馈变量f(t)并不与输出变量y(t)完全相同,所以给定值与反馈变量之差,即偏差并不是(3.75)式意义上的误差。但如果反馈环节H(s)不含有积分环节,在时,由于暂态项的消失,反馈 量与输出量之间就只差一个比例系数我们认为反馈量可以代表输出 量,于是,定义非单位反馈系统的误差为 (3.78) 式中r(t)是非单位反馈系统的给定值,f(t)是反馈信号。根据图3.23(b)非单位反馈系统各环节间信号的关系,可得 (3.79)

稳态误差分析

3-7 稳态误差分析 控制系统在输入信号作用下,其输出信号中将含有两个分量。其中一个分量是暂态分量。它反映控制系统的动态性能,是控制系统的重要特性之一。对于稳定的系统,暂态分量随着时间的增长而逐渐消失,最终将趋于零。另一个分量称为稳态分量。它反映控制系统跟踪输入信号或抑制扰动信号的能力和准确度,它是控制系统的另一个重要特性。对于稳定的系统来说,稳态性能的优劣一般是根据系统反应某些典型输入信号的稳态误差来评价的。因此,本节着重建立有关稳态误差的概念。 一、误差和稳态误差 设)(s C r 是控制系统输出(被控量)的希望值,)(s C 是控制系统的实际输出值。我们定义系统输出的希望值与输出的实际值之差为控制系统的误差,记作)(s E ,即 )()()(s C s C s E r -= (3-40) 对于如图3-36(a)所示单位反馈系统,输出的希望值就是系统的输入信号。因此,系统的误差为 )()()(s C s R s E -= (3-40a ) 可见, 单位反馈系统的误差就是偏差)(s ε。 但对于如 图 3-36(b)所示的非单位反馈系统,输出的希望值与输入信号之间存在一个给定的函数关系。这是因为,系统反馈传递函数)(s H ,通常是系统输出量反馈到输入端的测量变换关系。因此,在一般情况下,系统输出的希望值与输入之间的关 系为) ()()(s H s R s C r =,所以系统误差为 )()( )(1)(s C s R s H s E -= (3-40b) 显然,在非单位反馈系统中,误差与偏差是有差别的。由图 3-36(b)和式(3-40b)不难看出,它们之间存在如下简单关系 )() (1)(s s H s E ε= (3-40c) 所谓稳态误差,是指系统在趋于稳态后的输出希望值 )(∞r c 和实际输出的稳态值)(∞c 之差,即 )()(∞-∞=c c e r ss 下面举二个例子说明稳态误差究竟是如何产生的?它与 哪些因素有关? 1.随动系统如图1-7所示随动系统,要求输出角c θ以一定精度跟踪输入角r θ,显然这时输出的希望值就是系统的输入角度。故这个随动系统的偏差就是系统的误差。 若系统在平衡状态下,c r θθ=,即0=-=c r e θθθ,0=e u ,电机不转。假定在0=t 时,输

测量系统分析指导书

测量系统分析指导书 1目的 本规定具体明确进行“测量系统分析”的方法,以确定测量系统是否具有恰当的统计特性,并根据对研究结果的分析来评估所使用的量具或设备的测量能力是否能达到预期的要求。 2 适用范围: 本规定适用于由控制计划规定的量具或测试设备并指出其相对应的关键特性。 3 术语或缩语 3.1重复性Repeatability:是用一个评价人,使用相同测量仪器,对同一零件上的同一特性进行多次测量所得到的测量变差。 3.2再现性Reproducibility:是用不同的评价人,使用相同的测量仪器,对同一零件上的同一特性进行测量所得的平均值的变差。 3.3重复性和再现性(GRR):测量系统重复性和再现性联合估计值。 3.4Cg:检具能力指数。 4 程序 4.1流程图

4.2 职责 4.2.1 质量保证部负责对本工作规定的建立,保持和归口管理。 4.2.2 使用部门按控制计划要求,编制测量系统分析计划,上报质量保证部批准,使用部门准备样件,实施,提供报告。质量保证部负责结果评价。 4.2.3 人力资源部负责人员培训。 4.2.4 量具使用部门归档保存相应记录。 5 测量系统分析: 5.1 根据客户的要求来确定MSA,现场使用的计量器具,用于大众产品用Cg值来评估,用于通用的产品的用GRR来评估,其余的产品根据客户要求来定,客户无要求的采用GRR分析。 5.2 计量仪器的MSA,采用GRR来分析。测量仪器按对应的测量产品来做评估,但对同一大类的产品,同一种工艺允许只选取一种零件作为代表性的来做GRR分析。 5.2.1 CMM的MSA,可从控制计划中选取具有代表性的零件进行,项目包括位置尺寸、几何尺寸进行GRR分析。 5.2.2 齿轮测量中心的MSA,可根据齿轮加工特性,选取对最终的齿轮精度有影响加工工艺(如插齿、剃齿、珩齿、磨齿、成品)进行GRR分析。项目选取:周节累积误差、相邻齿距误差、平均齿向角度误差、平均齿形角度误差。 5.2.3 圆柱度仪的MSA,在控制计划中涉及到使用圆柱度仪的根据加工特性可分为车加工、磨加工和零件特性分为轴类和盘类,对其分别进行圆度、圆柱度和母线平行度的GRR分析。 5.2.4 轮廓仪的MSA,根据加工特性,可在控制计划中选取具有代表性的如倒角、R圆角、距离等进行GRR分析。 5.2.5 粗糙度仪的MSA,按控制计划中规定的项目(Ra、Rz、Rt),每一类评定标准选一种公差小的,分别进行GRR分析。 5.2.6 卡板的MSA,进行GRR分析。 5.3对在控制计划中出现的万能量具,由使用部门按控制计划组织MSA,对同一类万能量具用于同一大类的产品、同一工艺、同一精度允许只选取一种作为代表性的来做GRR分析分析方法,根据客户要求分为GRR和Cg。 5.4 对带表检具全部实施MSA,但对一台多参数专用检具,允许只对最小公差的检测项进行MSA。分析方法根据客户要求分为GRR和Cg。周期为检具六个月。 5.5对卡板、塞规等专用量具,首次使用前由使用部门按控制计划组织MSA,分析方法为计数型。对同一大类的产品、同一工艺、同一精度允许只选取一种作为代表性的来做GRR分析评估。 5.6专用量检具首次使用前应进行MSA。对用于SPC过程控制点的专用量检具需定期做MSA,原则上参照检定周期。

控制系统的稳定性

3.8 控制系统的稳定性 3.8 控制系统的稳定性 稳定性是控制系统最重要的特性之一。它表示了控制系统承受各种扰动,保持其预定工作状态的能力。不稳定的系统是无用的系统,只有稳定的系统才有可能获得实际应用。我们前几节讨论的控制系统动态特性,稳态特性分析计算方法,都是以系统稳定为前提的。 3.8.1 稳定性的定义 图3.26(a)是一个单摆的例子。在静止状态下,小球处于A位置。若用外力使小球偏离A而到达A’,就产生了位置偏差。考察外力去除后小球的运动,我们会发现,小球从初始偏差位置A',经过若干次摆动后,最终回到A点,恢复到静止状态。图3.26(b)是处于山顶的一个足球。足球在静止状态下处于B位置。如果我们用外力使足球偏离B位置,根据常识我们都知道,足球不可能再自动回到B位置。对于单摆,我们说A位置是小球的稳定位置,而对于足球来说,B则是不稳定的位置。 图 3.26 稳定位置和不稳定位置 (a)稳定位置;(b)不稳定位置 处于某平衡工作点的控制系统在扰动作用下会偏离其平衡状态,产生初始偏差。稳定性是指扰动消失后,控制系统由初始偏差回复到原平衡状态的性能。若能恢复到原平衡状态,我们说系统是稳定的。若偏离平衡状态的偏差越来越大,系统就是不稳定的。 在控制理论中,普遍采用了李雅普诺夫(Liapunov)提出的稳定性定义,内容如下: 设描述系统的状态方程为 (3.131)

式中x(t)为n维状态向量,f(x(t),t)是n维向量,它是各状态变量和时间t的函数。如果系统的某一状态,对所有时间t,都满足 (3.132) 则称为系统的平衡状态。是n维向量。当扰动使系统的平衡状态受到破坏时,系统就会偏离平衡状态,在时,产生初始状态=x。在时,如果对于任一实数,都存在另一实数,使得下列不等式成立 (3.133) (3.134) 则称系统的平衡状态为稳定的。 式中称为欧几里德范数,定义为: (3.135) 矢量的范数是n维空间长度概念的一般表示方法。 这个定义说明,在系统状态偏离平衡状态,产生初始状态以后,即以后,系统的状态将会随时间变化。对于给定的无论多么小的的球域S(),总存在另一个的球域,只要初始状态不超出球域,则系统的状态 的运动轨迹在后始终在球域S()内,系统称为稳定系统。 当t无限增长,如果满足: (3.136) 即系统状态最终回到了原来的平衡状态,我们称这样的系统是渐近稳定的。对于任意给定的正数,如果不存在另一个正数,即在球域内的初始状态,在后,的轨迹最终超越了球域S(),我们称这种系统是不稳定的。 图3.27是二阶系统关于李雅普诺夫稳定性定义的几何说明。

激光测量系统误差分析

激光测量系统误差分析 1.激光测量系统误差源的分析 激光测量系统会受到多种误差的影响,有系统误差和偶然误差,系统误差会给激光测量点云坐标带来系统偏差。激光测量系统的误差按照其产生的来源可分为四类:(1)定位误差:GPS定位误差; (2)姿态误差:GPS/INS姿态误差; (3)测距误差:激光扫描仪测距误差; (4)集成误差:系统集成误差; (1)定位误差 GPS动态定位误差主要包括卫星轨道误差、卫星钟钟差、接收机钟钟差、多路径效应、相位中心不稳定,还有卫星星座、观测噪声等。[1]GPS定位误差不容易消除或者模型化,通常为了削弱GPS定位误差的影响,采用的方法是在测区内建立多个分布均匀的基准站,保证GPS动态定位解算时离基准站不会太远。 (2)姿态误差 姿态误差是影响定位精度的最主要原因。主要包括设备的安置误差、加速度计误差、陀螺仪漂移、测量噪声等,对于INS姿态测量误差,可以适当降低飞行高度,以削弱其对定位的影响。 (3)测距误差 激光扫描仪的每一个工作过程都会带来一定的误差,但起主要作用的是电子光学电路对经过地面散射和空间传播后的不规则激光回波信号进行处理来确定时间延迟带来的误差,分别为时延估计误差和时间测量误差两类。此外还有反光镜的旋转、震动误差、脉冲零点误差等。 激光脉冲信号照射地面物体时,由于地表物理特征的不同而产生不同的反射,当信号发生漫反射时,出现大量反射信号被接收,会形成较大的接收噪声;当信号照射到光滑物体表面,便形成镜面反射,可能会造成激光测距信号丢失。另外,有的信号可能经过计策反射后反射回去,这样测定的时间延迟不能代表真正的时间延迟。激光测距的精度还与地面粗糙程度、地面坡度、地面物体的干扰等有关。另外,被水域覆盖的地方,红外激光大部分被吸收,只有少量被反射,如果碰到静止的水面,就形成镜面反射,信号反射不回去;地表不连续以及移动物体,如行人、车辆、动物等都会影响激光测距精度。 (4)系统集成误差 系统集成误差主要包括激光扫描仪脉冲感应参考中心与GPS天线相位中心偏心向量的测定误差、系统安置误差、位置内插误差(线性内插)、时间同步误差、地面参考站间位置误差、坐标系间的转换误差、GPS/INS组合滤波模型误差等。 由于GPS数据采样频率一般为1~20Hz,INS数据采样频率一般为20~几百Hz,而激光测距的频率为几十~几千Hz(现有70Hz),采样率不同,最后要根据采样率低的GPS/INS 数据内插出每个激光点的姿态和位置,内插过程中会产生内插误差。 2.激光测量系统误差的定性定量分析 (1)测距误差 测距误差同多种因素有关,包括系统和随机的两部分。这里只考虑系统误差部分ρ ?,其大小取决于不同的系统、反射介质及地形条件等外界条件。相应测得的距离就是ρρ +?。即(0,0,)T +?=+?。其中r?为测距误差引起的激光扫描点在瞬时激光束坐标系中r rρρ

仪表测量系统中误差分析及解决方法.

《电信交换》2009年第4期 ●测试与测量 测量系统中的误差分析及解决方法 吴卫民叶瑞芳 (电信科学技术第十研究所陕西西安 710061) 摘要:本文从通信产品生产的实际出发,对仪表测量系统中影响测量结果精确度的原因进行了分析,并对接地、屏蔽、保护等减少测量误差的解决方案作了较 为详细的介绍。 关键词:接地屏蔽保护 在系统参数的测量过程中,测量结果与被测量值之间常常存在着误差。如在仪表和电缆相互连接的测量系统中,仪表和电缆连接处的接触电阻、热电势与载电流之间存在着一些干扰源,它们会影响高质量测量的可靠性。对引起误差的各种因素进行研究和分析,合理地选择仪表的接地、屏蔽、保护和使用不同类型的电缆,可减少误差、提高测量精度。测量精确的程度取决于对这些重要因素的控制。 一、测量系统中的接地 1.理想“地”与实际“地” 一个理想“地”对电流没有电阻,因而沿着地线的不同的点没有电压降。如图1所示,两个环路使用共“地”,沿E1、R3和R1构成的环路,在分压器V1的输出电压不受E2和R2所构成的环路电流的影响,分压输出V1= E1*R1/(R1+R3)。 如图2所示,在实际中,“地”有一个限制电阻。当电流流经“地”时,沿地线不同的点有一个电位差,如果不控制流过的电流,将引起系统测量的误差。通常的处理方法是改变连接“地”,使I2不通过r1;环路I2的分离接“地”不会影响其它环路。 2.供电“地”系统 在典型的实验室环境中,电源分配是沿着一条线路连接每一台设备,于是从电源的火、地线到仪表机壳之间便形成了杂散泄漏电容C1、C2、…C n。仪表1、2、…n的电源初级线圈到铁芯之间形成的泄漏电容所引起的电流流过系统保护“地”,由地线的分配电阻沿地线在每个仪表机壳上产生不同的电位差。在仪表测试系统中,如果信号低端不对地线进行隔离,那么,地电流将引起测量误差。 如图3所示,在系统保护“地”上的电流分两路,其中一路通过信号L0端,形成的电压降加到源信号仪表输出线路上引起测量误差。

控制系统的稳定性分析

自动控制理论实验报告 实验题目控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、系统模拟电路图 系统模拟电路图如图3-1 图3-1 系统模拟电路图R3=0~500K; C=1μf或C=0.1μf两种情况。 四、实验报告 1.根据所示模拟电路图,求出系统的传递函数表达式。 G(S)= K=R3/100K,T=CuF/10

自动控制理论实验报告 2.绘制EWB 图和Simulink 仿真图。 3.根据表中数据绘制响应曲线。 4.计算系统的临界放大系数,确定此时R3的值,并记录响应曲线。

自动控制理论实验报告

自动控制理论实验报告

自动控制理论实验报告 实验和仿真结果 1.根据表格中所给数据分别进行实验箱、EWB或Simulink实验,并进行实验曲线对比,分析实验箱的实验曲线与仿真曲线差异的原因。 对比: 实验曲线中R3取实验值时更接近等幅振荡,而MATLAB仿真时R3取理论值更接近等幅振荡。 原因: MATLAB仿真没有误差,而实验时存在误差。 2.通过实验箱测定系统临界稳定增益,并与理论值及其仿真结果进行比较 (1)当C=1uf,R3=200K(理论值)时,临界稳态增益K=2, 当C=1uf,R3=220K(实验值)时,临界稳态增益K=2.2,与理论值相近(2)当C=0.1uf,R3=1100K(理论值)时,临界稳态增益K=11 当C=0.1uf,R3=1110K(实验值)时,临界稳态增益K=11.1,与理论值相近 四、实验总结与思考 1.实验中出现的问题及解决办法 问题:系统传递函数曲线出现截止失真。 解决方法:调节R3。 2.本次实验的不足与改进 遇到问题时,没有冷静分析。考虑问题不够全面,只想到是实验箱线路的问题,而只是分模块连接电路。 改进:在实验老师的指导下,我们发现是R3的取值出现了问题,并及时解决,后续问题能够做到举一反三。 3.本次实验的体会 遇到问题时应该冷静下来,全面地分析问题。遇到无法独立解决的问题,要及时请教老师,

控制系统的稳态误差学习资料

控制系统的稳态误差

3.5 控制系统的稳态误差 3.5 控制系统的稳态误差 描述控制系统的微分方程 (3.73) 式(3.73)是一个高阶微分方程,方程的解可以表示为 (3.74) 式中,前两项是方程的通解,而是方程的一个特解。随时间的增大,方程的通解逐渐减小,方程的解y(t)越来越接近特解。当时,方程的通解趋于零 这时系统进入了稳定状态。特解是由输入量确定的,反映了控制的目标和要求。系统进入稳态后,能否达到预期的控制目的,能否满足必要的控制精度,要解决这个问题,就必须对系统的稳态特性进行分析。稳态特性的性能指标就是稳态误差。 3.5.1 稳态误差 控制系统的误差可以表示为

(3.75) 式中是被控制变量的期望值,y(t)是被控制变量的实际值,即控制系统的输出。 稳定的控制系统,在输入变量的作用下,动态过程结束后,进入稳定状态的误差,称为稳态误差 图3.23 单位反馈和非单位反馈系统 (a)单位反馈系统;(b)非单位反馈系统 在控制工程中,常用控制系统的偏差信号来表示误差。对图3.23(a)所示的单位反馈系统,误差与偏差的含义是相同的,即 (3.76) 式中r(t)为系统的给定值,也就是输出y(t)的期望值。单位反馈系统的稳态误差为:

(3.77) 对图3.23(b)所示的非单位反馈系统,因为反馈变量f(t)并不与输出变量y(t)完全相同,所以给定值与反馈变量之差,即偏差并不是(3.75)式意义上的误差。但如果反馈环节H(s)不含有积分环节,在时,由于暂态项的消失,反馈量与输出量之间就只差一个比例系数我们认为反馈量可以代表 输出量,于是,定义非单位反馈系统的误差为 (3.78) 式中r(t)是非单位反馈系统的给定值,f(t)是反馈信号。根据图3.23(b)非单位反馈系统各环节间信号的关系,可得 (3.79) 如果把单位反馈系统看成是一般反馈系统的特殊情况,则(3.79)式就被定义为控制系统误差的拉普拉斯变换表达式。根据拉普拉斯变换的终值定理得 即 (3.80)

自动控制原理实验报告--控制系统的稳定性和稳态误差

本科实验报告 课程名称:自动控制原理 实验项目:控制系统的稳定性和稳态误差实验地点:多学科楼机房 专业班级:学号: 学生姓名: 指导教师: 2012 年5 月15 日

一、实验目的和要求: 1.学会利用MATLAB 对控制系统的稳定性进行分析; 2.学会利用MATLAB 计算系统的稳态误差。 二、实验内容和原理: 1.利用MATLAB 描述系统数学模型 如果系统的的数学模型可用如下的传递函数表示 n n n m m m a s a s b s b s b s U s Y s G ++++++= =-- 11110)() ()( 则在MATLAB 下,传递函数可以方便的由其分子和分母多项式系数所构成的两个向量惟一 确定出来。即 num=[b 0,b 1 ,…, b m ]; den=[1,a 1,a 2 ,…,a n ] 例2-1 若系统的传递函数为 5 234 )(2 3+++= s s s s G 试利用MA TLAB 表示。 当传递函数的分子或分母由若干个多项式乘积表示时,它可由MA TLAB 提供的多项式乘法运算函数conv( )来处理,以获得分子和分母多项式向量,此函数的调用格式为 p=conv(p1,p2) 其中,p1和p2分别为由两个多项式系数构成的向量,而p 为p1和p2多项式的乘积多项式系数向量。conv( )函数的调用是允许多级嵌套的。 例2-2 若系统的传递函数为 ) 523)(1() 66(4)(232++++++=s s s s s s s s G 试利用MA TLAB 求出其用分子和分母多项式表示的传递函数。 2.利用MATLAB 分析系统的稳定性 在分析控制系统时,首先遇到的问题就是系统的稳定性。判断一个线性系统稳定性的一种最有效的方法是直接求出系统所有的极点,然后根据极点的分布情况来确定系统的稳定性。对线性系统来说,如果一个连续系统的所有极点都位于左半s 平面,则该系统是稳定的。 MATLAB 中根据特征多项式求特征根的函数为roots( ),其调用格式为 r=roots(p) 其中,p 为特征多项式的系数向量;r 为特征多项式的根。 另外,MA TLAB 中的pzmap( )函数可绘制系统的零极点图,其调用格式为 [p,z]=pzmap(num,den) 其中,num 和den 分别为系统传递函数的分子和分母多项式的系数按降幂排列构成的系数行向量。 当pzmap( )函数不带输出变量时,可在当前图形窗口中绘制出系统的零极点图;当带有输出变量时,也可得到零极点位置,如需要可通过pzmap(p,z)绘制出零极点图,图中的极点用“×”表示,零点用“o”表示。 例2-3 已知系统的传递函数为 1 22532 423)()()(2 345 234B +++++++++==s s s s s s s s s s R s Y s G

控制系统的稳态误差

控制系统的稳态误差 控制系统的稳态误差 描述控制系统的微分方程 式()是一个高阶微分方程,方程的解可以表示为 式中,前两项是方程的通解,而是方程的一个特解。随时间的增大,方程的通解逐渐减小,方程的解y(t)越来越接近特解。当时,方程的通解 趋于零 这时系统进入了稳定状态。特解是由输入量确定的,反映了控制的目标和要 求。系统进入稳态后,能否达到预期的控制目的,能否满足必要的控制精度,要解决这个问题,就必须对系统的稳态特性进行分析。稳态特性的性能指标就是稳态误差。 3.5.1 稳态误差 控制系统的误差可以表示为 式中是被控制变量的期望值,y(t)是被控制变量的实际值,即控制系统的输出。 稳定的控制系统,在输入变量的作用下,动态过程结束后,进入稳定状态的误差,称为稳态误差

图单位反馈和非单位反馈系统 (a)单位反馈系统;(b)非单位反馈系统 在控制工程中,常用控制系统的偏差信号来表示误差。对图(a)所示的单位反馈系统,误差与偏差的含义是相同的,即 式中r(t)为系统的给定值,也就是输出y(t)的期望值。单位反馈系统的稳态误差为: 对图(b)所示的非单位反馈系统,因为反馈变量f(t)并不与输出变量y(t)完全相同,所以给定值与反馈变量之差,即偏差并不是()式意义上的误差。但如果反馈环 节H(s)不含有积分环节,在时,由于暂态项的消失,反馈量与输出量之间就只差一个比例系数我们认为反馈量可以代表输出量,于是,定义非单位反馈系统的误差为 式中r(t)是非单位反馈系统的给定值,f(t)是反馈信号。根据图(b)非单位反馈系统各环节间信号的关系,可得

如果把单位反馈系统看成是一般反馈系统的特殊情况,则()式就被定义为控制系统误差的拉普拉斯变换表达式。根据拉普拉斯变换的终值定理得 即 式()表明,控制系统的稳态误差不仅仅是由系统本身的特性决定的,还与输入函数有关。同一个系统在输入信号不同时,可能有不同的稳态误差。也就是说控制系统对不同的输入信号,控制精度是不同的。 3.5.2 积分环节对稳态误差的影响 式()中的开环传递函数可以表示为 式中K表示系统的开环放大系数。N表示开环传递函数所包含的积分环节数。在分析控制系统的稳态误差时,我们根据系统开环传递函数所含的积分环节数来对系统进行分类。若N=0,即控制系统开环传递函数不含积分环节,称为0型系统。若N=I,则称为I型系统。N= Ⅱ,称为Ⅱ型系统。现在,我们来讨论不同类型的控制系统在典型输入信号作用下的稳态误差。 1. 单位阶跃函数输入下的稳态误差 单位阶跃函数输入下系统的稳态误差为

系统稳态误差分析

苏州市职业大学实训报告 院系 电子信息工程学院 班级 姓名 学号 实训名称 系统稳态误差分析 实训日期 一、实训目的 1、掌握终值定理求稳态误差的方法; 2、在不同输入信号作用下,观察稳态误差与系统结构参数、型别的关系; 3、比较干扰在不同的作用点所引起的稳态误差。 二、实训内容 1、给定信号输入作用下,系统的稳态误差分析。 已知控制系统的动态结构图如下所示,其中112()21G s K s =?+,24()0.41 G s s =+,反馈通道传递函数()1H s =。 (1)建立上述控制系统的仿真动态结构图;令开环增益为K1=1,分别对系统输入阶跃信号和斜坡信号,用示波器观察系统的响应曲线和误差响应曲线;并分别计算不同输入信号下的稳态误差值 ; (2)改变系统增益K1(自行选取增益值,如K1=10),用示波器观察系统的稳态误差曲线,计算稳态值,分析开环增益变化对稳态误差的影响。 如果前向通道中再串联一个积分环节,(增益值K1值同第三步),用示波器观察系统的响应曲线和误差响应曲线,计算稳态值,分析开环增益变化对稳态误差的影响。 建立如下图1所示的仿真结构图,令开环增益K1=1,输入单位阶跃信号,运行得到单位阶跃响应曲线和单位阶跃误差响应曲线(图2): 图1 单位阶跃信号作用下,K1=1的系统结构图 第 1 页 共 8 页 指导教师签名

苏州市职业大学实训报告 院系电子信息工程学院班级姓名学号 实训名称系统稳态误差分析实训日期 图2 单位阶跃信号作用下,K1=1的仿真曲线 建立如下图3所示的仿真结构图,令开环增益K1=1,输入单位斜坡信号,运行得到单位斜坡响应曲线和单位斜坡误差响应曲线(图4): 图3 单位斜坡信号作用下,K1=1的系统结构图 图4 单位斜坡信号作用下,K1=1的仿真曲线

相关文档
最新文档