型钢水泥土复合搅拌桩支护结构技术

型钢水泥土复合搅拌桩支护结构技术
型钢水泥土复合搅拌桩支护结构技术

型钢水泥土复合搅拌桩支护结构技术

1.7.1 技术内容

型钢水泥土复合搅拌桩是指:通过特制的多轴深层搅拌机自上而下将施工场地原位土体切碎,同时从搅拌头处将水泥浆等固化剂注入土体并与土体搅拌均匀,通过连续的重叠搭接施工,形成水泥土地下连续墙;在水泥土初凝之前,将型钢(预制混凝土构件)插入墙中,形成型钢(预制混凝土构件)与水泥土的复合墙体。型钢水泥土复合搅拌桩支护结构同时具有抵抗侧向土水压力和阻止地下水渗漏的功能。

近几年水泥土搅拌桩施工工艺在传统的工法基础上有了很大的发展,TRD工法、双轮铣深层搅拌工法(CSM工法)、五轴水泥土搅拌桩、六轴水泥土搅拌桩等施工工艺的出现使型钢水泥土复合搅拌桩支护结构的使用范围更加广泛,施工效率也大大增加。

其中TRD工法(Trench-Cutting& Re-mixing Deep Wall Method)是将满足设计深度的附有切割链条以及刀头的切割箱插入地下,在进行纵向切割横向推进成槽的同时,向地基内部注入水泥浆以达到与原状地基的充分混合搅拌在地下形成等厚度水泥土连续墙的一种施工工艺。该工法具有适应地层广、墙体连续无接头、墙体渗透系数低等优点。

双轮铣深层搅拌工法(CSM工法),是使用两组铣轮以水平轴向旋转搅拌方式、形成矩形槽段的改良土体的一种施工工艺。该工法的性能特点有:(1)具有高削掘性能,地层适应性强;(2)高搅拌性

能;(3)高削掘精度;(4)可完成较大深度的施工;(5)设备高稳定性;(6)低噪声和振动;(7)可任意设定插入劲性材料的间距;(8)可靠施工过程数据和高效的施工管理系统;(9)双轮铣深层搅拌工法(CSM工法)机械均采用履带式主机,占地面积小,移动灵活。

1.7.2 技术指标

(1)型钢水泥土搅拌墙的计算与验算应包括内力和变形计算、整体稳定性验算、抗倾覆稳定性验算、坑底抗隆起稳定性验算、抗渗流稳定性验算和坑外土体变形估算;

(2)型钢水泥土搅拌墙中三轴水泥土搅拌桩的直径宜采用650mm、850mm、1000mm,内插H形钢或预制混凝土构件;

(3)水泥土复合搅拌桩28d无侧限抗压强度标准值不宜小于0.5MPa;

(4)搅拌桩的入土深度宜比型钢的插入深度深0.5~1.0m;

(5)搅拌桩体与内插型钢的垂直度偏差不应大于1/200;

(6)当搅拌桩达到设计强度,且龄期不小于28d后方可进行基坑开挖;

(7)TRD工法等厚度水泥土搅拌墙28d龄期无侧限抗压强度不应小于设计要求且不宜小于0.8MPa;水泥宜采用强度等级不低于P.O 42.5级的普通硅酸盐水泥,水泥土搅拌墙正式施工之前应通过现场试成墙试验以确定具体施工参数(材料用量和水灰比等)。

(8)双轮铣深层搅拌工法(CSM工法)成槽设备在施工过程中采用泥浆护壁来防止槽壁坍塌;膨润土泥浆的配合比通常为

70~90kg/m3(取决于膨润土的质量),泥浆密度约为1.05kg/cm3,粘度要超过40s(马氏漏斗粘度)。

主要参照标准:《型钢水泥土搅拌墙技术规程》JGJ/T199、《建筑基坑支护技术规程》JGJ120等。

1.7.3 适用范围

该技术主要用于深基坑支护,可在粘性土、粉土、砂砾土使用,目前在国内主要在软土地区有成功应用。

1.7.4 工程案例

上海静安寺下沉式广场、国际会议中心、地铁陆家嘴车站、地铁2号线龙东路延伸段、上海梅山大厦、天津地铁二、三号线工程、天津站交通枢纽工程。TRD工法已在上海、天津、武汉、南昌等多个深大基坑工程中成功应用,超深可达60m;双轮铣深层搅拌工法(CSM工法)在天津医院、地铁2号线红旗路站联络线工程、世纪广场、华润紫阳里停车场等工程中应用。

型钢水泥土复合搅拌桩支护结构技术应用实例

型钢水泥土复合搅拌桩支护结构技术应用实例 发表时间:2018-12-26T10:18:56.500Z 来源:《防护工程》2018年第28期作者:朱恺杨接陈绍伟廖程 [导读] 本文分析了型钢(加芯)水泥土复合搅拌支护桩在软土地质条件下的工程应用实例特征。 中国建筑第二工程局有限公司西南分公司昆明 650100 摘要:近年来水泥土搅拌桩施工工艺在传统的工法基础上有了很大的发展,TRD工法、双轮铣深层搅拌工法(CSM工法)、三轴水泥土搅拌桩、五轴水泥土搅拌桩等施工工艺的出现使型钢水泥土复合搅拌桩支护结构的使用范围更加广泛,施工效率也大大增加。本文分析了型钢(加芯)水泥土复合搅拌支护桩在软土地质条件下的工程应用实例特征。 关键词:型钢水泥土复合搅拌桩;支护结构;应用实例 1.型钢水泥土复合搅拌桩特点分析 型钢水泥土复合搅拌桩是指,通过特制的多轴深层搅拌机自上而下将施工场地原位土体切碎,同时从搅拌头处将水泥浆等固化剂注入土体并与土体搅拌均匀,通过连续的重叠搭接施工,形成水泥土地下连续墙;在水泥土初凝之前,将型钢插入桩体,形成型钢与水泥土的复合墙体。型钢水泥土复合搅拌桩支护结构同时具有抵抗侧向土水压力和阻止地下水渗漏的功能。 该工艺适用于软弱粘土地基。在沿江、沿海地区,广泛分布着含水率较高、强度低、压缩性较高、垂直渗透系数较低、层厚变化较大的软粘土,地表下浅层存在有承载力较高的土层。采用传统的单一的地基处理方式或常规钻孔灌注桩,往往很难取得理想的技术经济效果,型钢水泥土复合搅拌桩是适用于这种地层的有效方法之一。 2.型钢水泥土复合搅拌桩支护结构应用实例 2.1、工程情况简介 昆明市西山区某大型文化旅游城酒店群项目,地属原滇池回填区,根据地勘报告显示,场地内土质情况复杂,土质松散多呈软塑-流塑状态,且土层内分布大量泥炭质土,含水率高,干强度低。本工程基坑面积1.21万平米,设计基坑开挖深度4.96-5.76米,基坑支护体系包含自然放坡、三轴水泥土搅拌桩止水帷幕+插入式H型钢支护、钢管土钉墙、面层挂网喷锚混凝土等,支护形式复杂多样,其中型钢水泥土复合搅拌桩施工为确保深基坑支护结构稳定及影响施工进度的关键工序。 2.2、型钢水泥土复合搅拌桩施工重难点分析 本工程基坑北侧、西侧需进行三桩水泥加芯搅拌桩施工,但本工程的工程桩施工需同步进行才能满足业主制定的节点要求,工程桩采用预应力高强混凝土管桩,产生的挤土效应对基坑围护结构会造成影响。对此项目先进行工程桩施工,合理安排支护桩插入施工时间,使工程桩与支护桩流水施工,使工程桩挤土效应基本消除后再进行支护桩施工,以减少工程桩挤土效应对基坑围护结构造成的影响。 2.3、型钢水泥土复合搅拌桩施工工艺 (1)施工准备 本场地为原有苗圃种植区,场地条件泥泞松软,机械进场前应对打桩机的施工面进行400mm厚砖渣铺填,保证地基耐力满足打桩机荷载。施工前合理布设现场设施,确保正常施工。三轴水泥加芯搅拌桩实桩设计长度为12m,空桩段的长度为3.0m。(2)测量放线 根据甲方提供坐标基准点、总平面布置图、围护结构施工图,按图放出桩位控制线,设立临时控制点位,做好技术复核。(3)桩机就位 由专业信号工人统一指挥桩机就位,桩机下铺设砖渣,移动前看清上、下、左、右各方面的情况,发现有障碍物应及时清除,移动结束后检查定位情况并及时纠正;桩机应平稳、平正,并用经纬仪或线锤进行观测以确保钻机的垂直度;桩机定位偏差不超过50mm,桩身垂直度误差不超过0.5%。 (4)钻进搅拌 三轴水泥搅拌桩在下沉和提升过程中均应注入水泥浆液,同时严格控制下沉和提升速度,本项目三轴水泥搅拌桩采用四喷四搅工艺,施工时使水泥土搅拌均匀,并保证相邻搅拌桩互相咬合。 喷浆搅拌时钻杆下沉、提升速度应控制在0.8m/min,转速60转/min。在桩底部分重复搅拌1分钟注浆,提升速度减慢,避免出现真空负压、孔壁塌方等引起周边地基沉降。按照设计图纸要求,三轴水泥土搅拌桩采用全断面套打的方式,桩径φ600@450mm,纵横向搭接长度为150mm。 (5)加芯H型钢插入法施工 在每组三轴水泥土搅拌桩施工完成,在搅拌桩水泥浆初凝之前,进行加芯H型钢插入施工,H型钢型号为H200×200×8×21,其中基坑北侧,加芯H型钢长度为12.00m,其余基坑支护剖面加芯H型钢长度为9.00m。 插入工法搅拌桩内的H型钢要确保垂直度,型钢垂直度允许偏差≤1/200,插入时采用25T汽车吊与人工配合施工,插入时应利用经纬仪或线锤进行垂直度控制,缓慢插入至H型钢端头高出搅拌桩地表桩顶标高500mm,当加芯H型钢不再下沉时停止插入施工。在后续的土方开挖过程中,应将超出桩顶设计标高500mm的H型钢割除。 按照设计要求H型钢宜采用整材。但因本工程采用地表打桩,H型钢需考虑分段焊接,应采用坡口焊接。焊缝质量等级不低于二级。单根型钢中焊接接头不宜超过2个,H型钢对接接头位于开挖面以下2m。相邻型钢的接头竖向位置应相互错开,错开距离不宜小于1.0m。H型钢插入时可涂刷适量减摩剂。 (6)清洗管路、喷头及桩机移位 将集料斗中加入适量清水,开启灰浆泵,清洗压浆管道及其它所用机具,然后移位再进行下一根桩的施工。(7)水泥土配合比 根据三轴水泥土搅拌桩的施工特点,水泥土配比的技术要求如下:

水泥土搅拌桩施工工艺

2水泥土搅拌桩施工工艺 2.1适用范围 适用于变电站工程软弱地基处理。 2.2 施工流程 施工流程见图2-1 图2-1施工流程图2.3流程说明及主要质量控制要点 2.3.1施工准备 (1)技术准备

1)图纸会检:严格按照国家电网公司《电力建设工程施工技术管理导则》(以下简称导则)的要求做好图纸会检工作。 2)技术交底:应按照导则规定每个分项工程必须分级进行施工技术交底。技术交底内容要充实,具有针对性和指导性,全体参加施工的人员都要参加交底并签名,形成书面交底记录。 (2)水泥进场,检查出厂检验报告,按规范规定取样复验。搅拌的水泥土进行配合比试验,确定所用水泥的掺入量、水灰比和外加剂。(3)场地应先平整,清除桩位处地上、地下一切障碍物(包括块石、树根和生活垃圾等)。遇有水沟、池塘及洼地时应抽水或清淤,回填粘性土料并压实,不得回填杂填土或生活垃圾。 (4)施工前应仔细检查机械设备、送气(粉)管路、阀门的密封性和可靠性,检查机械设备性能是否完好。搅拌机必须有深度和固化剂用量的计测装置,搅拌头的翼片的枚数、长度、高度、倾斜角度、搅拌头的转数、提升速度应互相匹配,必须保证加固深度范围内任何一点的土体能经过翼片20次的有效搅拌。搅拌头的直径应定期检查,其磨耗量不得大于10mm。 (5)施工过程中固化剂应严格按照设计提供的配合比拌制,现场设专人负责水泥浆的拌制工作,在使用水泥浆过程中要保持不停地搅动,并控制搅拌时间和间隔时间,以防止水泥浆离析。 2.3.2测量定位 按照桩位布置图进行测量放线,设置标高控制点和轴线控制网。2.3.3 湿法施工(深层搅拌法)

(1)深层搅拌机就位:将搅拌机停于已测放好的桩位上,再调整使搅拌头与桩位标志物在同一直线上。 (2)预搅下沉: 1)施工时,先将深层搅拌机用钢丝绳吊挂在起重机上,用输浆胶管将贮料罐水泥浆泵与深层搅拌机联通,开动电动机,搅拌机叶片相向而转,借设备自重,以一定的速度沉至设计要求加固深度。深层搅拌机要做到基本垂直于地面,要保证平整度和导向架垂直度。 2)搅拌机下沉时,不宜冲水;当遇到较硬土层下沉太慢时,方可适量冲水,但应严格控制冲水量,以免影响桩身强度。 (3)喷浆搅拌、提升:再以一定速度提起搅拌机,与此同时开动水泥浆泵将水泥浆从深层搅拌中心管不断压入土中,由搅拌叶片将水泥浆与深层处的软土搅拌,边搅拌边喷浆直至提至地面,即完成一次搅拌过程,见图2-2。搅拌机起吊时要保证起吊设备的平整度和导向架的垂直度,成桩要控制搅拌机的提升速度和次数,保证连续均匀,以控制注浆量,保证搅拌均匀,同时泵送必须连续。 图2-2喷浆搅拌、提升

水泥土搅拌桩施工方案

目录 §1工程概况 §2 编制依据 §3 工程地质情况 §4 项目施工管理组织机构 §5 三轴水泥搅拌施工流程和施工方法§6 质量保证措施 §7 安全生产措施 §8技术管理措施 §9 应急措施 §10 施工进度计划

§1 工程概况 §1.1项目概况 1、建筑名称:嘉悦中心·梓园商住项目 2、项目位置:诸暨市人民北路东侧、荷花路西侧 3、建设单位:浙江嘉城置业有限公司 4、围护设计单位:浙江省建筑设计研究院 5、监理单位:绍兴市城建监理有限公司 6、施工单位:浙江万达建设集团有限公司 §1.2基坑概况 场地地面高程±0.000相当黄海高程9.500。场地原为诸暨市毛纺厂厂区,拆除后进行场地平整,场地局部堆积大量建筑垃圾,场地内有一条污水管道通过,场地环境条件较差。 §2 编制依据 2.1 本工程基坑围护设计图纸;本工程岩土勘察报告。 2.2 国家标准《建筑地基基础工程施工质量验收规范》(GB50202-2002); 2.3 国家标准《建筑工程施工质量验收统一标准》(GB50300-2001); 2.4 国家标准《建筑地基基础设计规范》(GB50007-2011); 2.5 国家标准《工程测量规范》(GB50026-2007); 2.6 浙江省标准《建筑基坑工程技术规程》(DB33/T1008-2000) 2.7 《建筑基坑工程技术规范》(YB9258-97) 2.8《建筑机械使用安全技术规程》(JGJ33-2012) 2.9《施工现场临时用电安全技术规范》(JGJ46-2005) 2.10浙江省工程建设标准《型钢水泥土搅拌墙技术规程》(DB33/T 1082-2011)

浅析型钢水泥土复合搅拌桩支护结构技术在住宅施工中的应用

浅析型钢水泥土复合搅拌桩支护结构技术在住宅施工中的应用 根据2010版建设部十项新技术中的《型钢水泥土复合搅拌桩支护结构技术》行业称为SMW(Soil Mixing Wall)工法桩(以下简称),它是在连续套接的三轴水泥土搅拌桩内插入型钢形成的复合挡土止水结构。本文对杭州市拱墅区金星村R21-12地块农转居公寓工程施工基坑围护采用SMW工法桩,取得了非常好的效果。 标签SMW工法桩;质量控制 1 工程概况 本工程位于杭州市拱墅区半山镇金星村。工程总建筑面积为111305.8m2,地上为18-21层,裙房2层。地下为一层,整体中心地下室面积为20790m2。本工程采用框剪结构。基坑安全等级为二级,设计使用年限按临时结构设计。本工程地下室支护形式采用单排650三轴SMW工法水泥土搅拌桩,相邻两桩之间搭接200mm,桩中心距450mm,桩长12.7m-16.2m,搭接形式为全断面套打,水泥采用强度等级P42.5普硅水泥,水泥掺入量20%,水灰比为1.5。搅拌桩内插入H500×300×11×18型钢@450,长度为10.4-15.7m,围护桩顶标高为-3.70, 2 工程地质条件 根据浙江省地矿勘察院提供的工程勘察报告,基坑底开挖层为4-3层粉质粘土且全场地分布,且承压水埋深较深。对工程影响较小。 3 SMW施工方法 SMW工法的施工原理是利用多轴搅拌机,以水泥作为固化剂与地基土进行原位强制搅拌,按照一定间距插入H型钢,待水泥土固化后形成具有一定强度的连续桩墙,达到围护和止水效果。 3.1 施工准备 由于该工艺需连续作业,所以设备进场前,场地必须达到“三通一平”,桩机行走路线软弱地面必须加垫料夯实、夯平。所有原材料要准备充分,同时现场必须准备一台50KW的柴油发电机。按图纸要求进行测量放线,先采用挖机挖出导槽。 3.2 施工顺序 SMW工法深层搅拌桩按设计图纸和专项施工方案顺序施工,其中部分重复套钻,保证墙体的连续性和接头的施工质量,三轴水泥搅拌桩的搭接以及施工设

型钢水泥土复合搅拌桩支护结构施工

型钢水泥土复合搅拌桩支护结构施工 [摘要] 本文主要介绍了型钢水泥土复合搅拌桩支护结构在深基坑支护中的应用,从施工原理、操作要求、注意事项、施工关键技术措施等方面的技术要点和质量控制措施进行了总结。 [关键词] 型钢水泥土复合搅拌桩支护结构施工SMW工法深基坑H型钢插拔 1、工程概况 南昌市某工程,总建筑面积为20万㎡,基坑深度为12.5m。施工场地内土层主要有:①素填土,层厚0.3~1.90m。 ②粉质粘土,层厚 1.9~5.50m。③细砂,层厚 2.6~6.50m。④中砂,层厚 1.1~4.30m。⑤砾砂,层高5.2~9.20m。⑥强风化泥质粉砂岩,层高1.5~ 2.60m。 ⑦中风化泥质粉砂岩(Ⅲ),厚度7.7~14.50m。场地地下水按地层渗透性属强透水土层中地下水,场地初见水位埋深约为2.8~5.8m,稳定埋深约为1.6~2.6m。 由于本工程地处南昌市中心,施工场地小、周边重要建筑物多,紧靠赣江,给施工带来极大的影响。为减少对相邻建筑地基的扰动和土方开挖,本工程采用型钢水泥土复合搅拌桩支护结构(下文简称为SMW工法桩)做为基坑支护,并兼具挡水作用。既采用一道钢筋混凝土支撑(截面600mm×600mm)加筋水泥土围护结构,施做三层搅拌桩,厚度接近2.0m,间隔1m插入大型截面超薄型H 型钢,利用水泥土搅拌桩的侧限保证其腹板和翼缘的稳定性。 2、基本原理、特点、适用范围和应用前景 型钢水泥土复合搅拌桩支护结构同时具有抵抗侧向土水压力和阻止地下水渗漏的功能主要用于深基坑支护。其制作工艺是:通过特制的多轴深层搅拌机自上而下将施工场地原土体切碎,同时从搅拌头处将水泥浆等固化剂注入土体并与土体搅拌均匀,通过连续的重叠搭接施工,形成水泥土地下连续墙;在水泥土硬凝之前,将断面较大H型钢插入墙中,形成型钢与水泥土的复合墙体,主要利用型钢承受水土侧压力,水泥土墙仅作为止水帷幕,基本不考虑水泥土的承载作用和与型钢的共同工作,型钢一般需要涂抹隔离剂,待基坑工程结束之后将H 型钢拔除,以节省钢材。 该技术具有以下技术特点:施工时对邻近土体扰动较少,故不至于对周围建筑物、市政设施造成危害;可做到墙体全长无接缝施工、墙体水泥土渗透系数K 可达10~7 cm/s,因而具有可靠的止水性;成墙厚度可低至550mm,故围护结构占地和施工占地大大减少;废土外运量少,施工时无振动、无噪声、无泥浆污染;具有地下连续墙和钻孔灌注桩加隔水帷幕作为围护结构不可比拟的优势。

水泥土搅拌桩施工工艺

水泥土搅拌桩施工工艺1.1适用范围 适用于变电站工程软弱地基处理。 1.2施工流程 施工流程图见图2-1。 1.3工艺流程说明及主要质量控制要点 1.3.1 施工准备 (1)技术准备。 1)图纸会检:严格按照国家电网公司《电力建设工程施工技术管理 导则》(简称导则)的要求做好图纸会检工作。 2)技术交底:应按照导则规定,每个分项工程必须分级进行施工技 术交底。技术交底内容要充实,具有针对性和指导性,全体参加施工的人员都要参加交底并签名,形成书面交底记录。 (2)水泥进场时,应检查出厂检验报告,并按规范规定取样复检。搅 伴的水泥土进行配合比试验,确定所用水泥的掺人量、水灰比和外掺剂,水泥的外掺剂应通过试验确定。 (3)场地应先平整,清除桩位处地上、地下一切障碍物(包括块石、 树根和生活垃圾等)。遇有水沟、池塘及洼地时应抽水或清歡,回填薪性土料并予以压实,不得回填杂填土或生活垃圾。

(4)机械设备进场,检查机械设备性能是否完好。搅拌机必须有深度和固化剂用量的计测装置,搅拌头翼片的枚数、长度、高度、倾斜角度、搅拌头的转数、提升速度应互相匹配,必须保证加固深度范围内任何一点的土体能经过翼片20次的有效搅拌。搅拌头的直径应定期检査,其磨耗量不得大于10mm。 (5)施工过程中固化剂应严格按照设计提供的配合比拌制,现场设专人负责水泥桨的拌制工作,在使用水泥架过程中要保持不停地搅动,并控制搅拌时间和间隔时间,以防止水泥浆离析。 1.3.2测量定位 按照桩位布置图布置进行测量放线,设置标高控制点和轴线控制网。 1.3.3湿法施工(深层撞拌法) (1)深层搅伴机就位。将搅拌机停于已测放好的桩位上,再调整使搅拌头与桩位标志物几乎在同一直线上。 (2)预搅下沉。 1)施丁时,先将深层搅拌机用钢丝绳吊挂在起重机上,用输浆胶管将r:料罐水泥浆泵与深层搅伴机联通,开动电动机,搅拌机叶片相向而转,借设备自重,以一定的速度沉至设计要求加固深度。深层搅拌机要做到基本垂直于地面,要保证平整度和导向架垂直度。 2)搅拌机下沉时,不宜冲水;当遇到较硬土层下沉太慢时,方可适量冲水,但应严格控制冲水量,以免影响桩身强度。 (3)喷浆搅拌、提升。再以一定速度提起搅拌机,与此同时开动水泥桨菜将水泥桨从深层搅拌中心管不断压人土中,由搅拌叶片将水泥浆与深层处的软土搅拌,边搅拌边喷浆直至提至地面,即完成一次搅拌过程,见图2-2。搅拌机起吊时要保证起吊设备的平整度和导向架的垂直度,成桩要控制搅伴机的提升速度和次数,保证连续均匀,以控制注浆量,保证搅拌均匀,同时泵送必须连续。 图2-2喷桨搅拌、提升 (4)重复搅拌下沉、喷浆搅拌、提升:用(1)?(3)再一次重复搅拌下沉和重复搅拌喷浆上升,即完成一根柱状加固体。每天施工完毕,应用水清洗储料罐、水泥浆菜、深层搅拌机及相应管道,以备再用。 (5)湿法施工注意事项:

水泥搅拌桩(内插型钢)施工方案

水泥搅拌桩施工方案 、工程概况 本工程为西南分区XXX 工程2 标段土建项目,包括25~43# 楼、47~48# 楼及51# 楼,共22 幢单体,为11~18F 高层建筑及4F 多层建筑,总建筑面积为141665.60 讥地上面积103223m2,地下面积为38442m 2, 基坑面积为34990.46 m20结构形式为框架与框剪结构。工程设计土0.000 相当于黄海标高5.900m 。 工程相关责任主体: 建设单位:浙江XXX 有限公司; 监理单位:浙江XXX 有限公司 设计单位:浙江XXX 建筑设计院有限公司; 勘察单位:核工业XXX 工程勘察院; 施工单位:浙江XXX 集团建设有限公司;二、水泥搅拌桩设计概况 1、基坑的西面、北面、南面及东面的G~Q轴采用? 700水泥搅拌 桩搭接200mm ,作止水帷幕,在靠近基坑内侧的水泥搅拌桩内,插HN200 X 100 ( Q345B )型钢,隔一插一,型钢长度8m。基坑东南侧G~A轴 交40~45 轴范围内,采用单排? 700 水泥搅拌桩搭接200mm ,作止水帷幕。 2、电梯井部位坑中坑加固采用双轴?500 水泥搅拌桩搭接150mm。 3、水泥搅拌桩采用P42.5 级普通硅酸盐水泥,水灰比为不大于0.55,添加适量早强剂,水泥掺量为18%,桩顶超喷0.5m。 4、水泥搅拌桩工艺:第一次预搅下沉至设计标高,喷浆提升;第 二次下沉至设计标高,喷浆提升复搅,提升速度控制在0.6m/min 以内。 搅拌桩成桩均匀、持续、无颈缩和断层,严禁在提升喷浆过程中断浆, 特殊情况造成断浆应重新成桩施工,搅拌桩垂直偏差〉L/150(L为桩长)o 示意图如下:

型钢水泥土搅拌墙

一、型钢水泥土搅拌墙 (一)总则 <1>为了在型钢水泥土搅拌墙基坑支护工程中做到安全可靠、技术先进、经济合理、确保质量及保护环境,制定本规程。 <2>本规程适用于填土、搬泥质土、韩性土、粉土、砂性土、饱和黄土等地层建筑物(构筑物)和市政工程基坑支护中型钢水把土搅拌墙的设计、施工和质量检查与验收。对淤泥、泥炭土、有机质土以及地下水具有腐蚀性和元工程经验的地区,必须通过现场试验确定其适用性。 <3>型钢水泥土搅拌墙的设计与施工应综合考虑工程地质与水文地质、周边环境条件与要求;重视地方经验,因地制宜,并与地基加固、基坑降水和土方开挖等相结合,合理选择型钢水泥土搅拌墙的工艺参数;强化施工质量控制与管理,确保基坑和主体结构施工的安全,并满足周边环境保护的要求。 <4>本规程规定了型钢水泥土搅拌墙的设计、施工和质量检查与验收的基本技术要求。当本规程与国家法律、行政法规的规定相抵触时,应按国家法律、行政法规的规定执行。 <5>型钢水泥土搅拌墙的设计、施工及质量检查与验收除应符合本规程外,尚应符合国家现行有关标准的规定。 (二)术语 <1>基坑支护:为保证地下主体结构施工和基坑及周边环境的安全,对基坑采取的临时性支挡、加固与地下水控制等措施。 <2>型钢水泥土搅拌墙:在连续套接的三轴水泥土搅拌桩内插入型钢形成的复合挡土截水结构。 <3>三轴水泥土搅拌桩:以水泥作为固化主剂,通过三轴搅拌机将固化剂和地基土强制搅拌,使地基土硬化成具有连续性、抗渗性和一定强度的桩体。

<4>截水帷幕:用于阻隔或减少地下水通过基坑侧壁与基底流入基坑而设置的幕墙状坚向截水体。 <5>套接一孔法施工:在三轴水呢土搅拌桩施工中,先施工的搅拌桩与后施工的搅拌桩有一孔重复搅拌搭接的施工方式。 <6>减摩材料:当型钢水泥土搅拌墙中型钢需回收时,为减少拔除时的摩阻力而涂抹在内插型钢表面的材料。 <7>外加剂:为改善水泥土搅拌桩水泥土的性能或保证施工质量,在水把浆班中掺加的化学物质。 (三)基本规定 <1>型钢水泥土搅拌墙作为基坑支护结构,其设计原则、勘察要求、荷载作用、承载力与变形计算和稳定性验算等应符合现行行业标准《建筑基坑支护技术规程》JGJ120的有关规定。 <2>型钢水呢土搅拌墙的水泥土搅拌桩所用水泥宜采用普通硅酸盐水呢。内插型钢可采用焊接型钢或轧制型钢。 <3>型钢水泥土搅拌墙施工前应掌握施工区域的地质资料,查明周边环境、不良地质现象及地下障碍物,并应编制施工组织设计。 <4>型钢水泥土搅拌墙应分阶段进行质量检验,检验程序和组织应符合现行国家标准《建筑工程施工质量验收统一标准》GB50300的有关规定;质量检验标准除应符合本规程有关规定外,尚应符合现行国家标准《建筑地基基础工程施工质量验收规范》GB50202的有关规定。 <5>型钢水泥土搅拌墙基坑工程施工期间,包括内插型钢拔除时,应对支护结构和周边环境进行监测。监测要求应符合现行国家标准《建筑基坑工程监测技术规范》GB50497的有关规定。

水泥土搅拌桩复合地基在沿海地区的使用

水泥土搅拌桩复合地基在沿海地区的使用 发表时间:2016-09-26T15:51:20.113Z 来源:《基层建设》2016年12期作者:刘宪波[导读] 摘要:随着国家经济发展战略向沿海地区的转移,沿海地区建设的不断增多。沿海地区腐蚀环境下软土地基如何使用也成为设计工作的主要内容。 中国石油集团东北炼化工程设计有限公司吉林设计院摘要:随着国家经济发展战略向沿海地区的转移,沿海地区建设的不断增多。沿海地区腐蚀环境下软土地基如何使用也成为设计工作的主要内容。 关键词:水泥土搅拌桩;水泥土搅拌桩复合地基;腐蚀沿海地区的场地多为厚层软土地基,场地地下水位较高,地基土中含有较多的硫酸盐、氯盐等具有腐蚀性的介质。软土地基的加固有多种方法,结合工程实践简要的介绍一下水泥土搅拌桩复合地基的使用。 1.水泥土的加固机理: 水泥土搅拌法加固软土地基是利用水泥、石灰等材料作为固化剂的主剂,通过特制的深层搅拌机械,在地基深处就地将软土和浆液或粉状的固化剂进行强制搅拌,经拌和后的混合物发生一系列物理化学反应,使软土硬结成整体性、水稳性和一定强度的加固体。用水泥加固软土时,水泥颗粒表面的矿物很快与软土中的水发生水解和水化反应,生成氢氧化钙、含水铝酸钙及含水铁酸钙等化合物。水泥矿物成分中的硫酸钙再与水泥土中的水化铝酸钙反应生成一种被称为“水泥杆菌”的化合物 —钙矾石。这种反应迅速,反应结果把大量的自由水以结晶水的形式固定下来,并具有膨胀作用,钙矾石结晶膨胀力达20MPa,这对于高含量的软黏土的强度增长有特殊意义。 碳酸化作用:水泥水化物中游离的氢氧化钙能吸收软土中的水和土孔隙中的二氧化碳,发生碳酸化反应,生成不溶于水的碳酸钙。这种反应能使水泥土强度增加,但增长的速度较慢,幅度也很小。在实际工程中可以不予考虑。 正常情况下,Ca SO4在水泥的成分中存在的比例是有限的,一般不超过5%,水泥的掺入量也在7~20%左右,形成具有膨胀作用的钙矾石也是有限的。但沿海地区场地土中含有大量的硫酸盐,大量的SO42-离子与水泥中的Ca2+离子发生反应,生成硫酸钙,二水石膏(Ca SO4·2H2o)结晶,体积膨胀1.5倍多。硫酸钙继续与水泥土中铝酸三钙化学反应,生成硫铝酸钙(钙矾石)。硫酸盐的存在使生成钙矾石的量不断增多,膨胀作用也不断地加大,但由于水泥掺量有限,这种膨胀力不会像混凝土那样产生不利的膨胀力,这种有限的膨胀作用对软弱土地基的加固却十分有力,大大地提高了软黏土的密实度,加速了优质地基的形成。 沿海地区场地含有硫酸盐的特点,在水泥土搅拌桩复合地基处理中得到充分地利用。这种作用是积极的、有利的,从这一点上水泥土搅拌桩在沿海地区的使用是值得推广的。 但也应该注意硫酸盐与场地土或水中的碳酸盐和水泥水化的产物水化硅酸钙反应,生成无胶结作用的碳硫硅钙石,随着水化硅酸钙的不断消耗,胶凝材料逐渐变成“泥质”,产生酥化现象。 另外,沿海地区的场地也含有一些不利于提高水泥土搅拌桩复合地基的离子。譬如Mg2+离子等。 Mg2+离子的腐蚀:当水泥水解或水化产物处于含有大量镁盐的海水或地下水中,镁盐会与水泥石中的氢氧化钙反应,生成松软无胶凝力的氢氧化镁,易被其它物质带走。而且氢氧化镁溶液碱度低,导致水化产物不稳定而离解,严重时Mg2+还将置换水泥石水化硅酸钙中的Ca2+,使之胶凝性能极大地降低。但离解出来的Ca2+离子可以继续同SO42-离子发生反应,所以说水泥的水化反应是一个复杂的过程。 2.水泥土搅拌桩的设计使用: 根据沿海地区的场地土或水中含有的介质对水泥土搅拌桩的影响,地基处理时应该合理的使用水泥品种及施工方法,确保水泥土的水稳定性和土体强度的提高。 首先应合理选择合适的水泥品种,水泥系固化剂的固化原理使用水泥系固化材料,则因为水泥系固化材料中除水泥以外尚加入了火山灰材料或无机化合物,其固化原理除了水泥的固化外,火山灰掺料(粉煤灰)及无机化合物(硫酸钙等)通过火山灰反应可以生成各种水化物,如硫铝酸钙、钙矾石、碳酸铝酸钙等。这些水化物有助于水泥土的强度增长。这样就可以采用矿渣硅酸盐水泥、粉煤灰水泥等具有防腐性能的硅酸盐水泥,提高水泥土的紧密程度。水泥的强度等级不宜低于42.5,水胶比根据试验确定,尽可能地控制在低值。 其次,施工时应充分地进行搅拌。从水泥加固土的机理分析可见,对软土地基深层搅拌加固技术来说,由于机械的切削搅拌作用,实际上不可避免地会留下一些未被粉碎的大小土团。在拌入水泥后将出现水泥浆包裹土团的现象,而土团之间的大孔隙基本上已被水泥颗粒填满。所以加固后的水泥土中形成一些水泥多的微区,而在大小土团内部则没有水泥。只有经过较长的时间,土团内的土颗粒在水泥水解产物渗透作用下,才逐渐改变其性质。因此水泥土中不可避免地会形成一种独特的水泥土结构。因此可以得出定性的结论:水泥和土之间的强制搅拌越充分,土块被粉碎的得越小,水泥分布土中越均匀,则水泥土结构强度的离散性就越小,其宏观的总体强度也就越高。 3.工程实例 某工程位于临近港口的工业园区,厂前区建一3层办公楼。岩土工程勘察报告给出,场地上层覆盖较厚的素填土、淤泥质土、淤泥质黏土,属厚层软土地基,地基承载能力特征值在70~80kPa间,地下水位较高;本场地土和场地地下水中SO42-离子含量介于2305~2690mg/L,Mg2+离子含量介于4570~4813mg/L。通过对强夯排水固结法、真空预压法及水泥土搅拌桩法的综合比选采用水泥土搅拌桩复合地基处理技术。试验室进行配比试验采用矿渣硅酸盐水泥,水泥掺量为18%,水胶比控制在0.5,采用两拌四搅的施工方法。施工完成后,经检测地基处理较好,达到了预期的效果。目前建筑物已经投入使用,建筑物的沉降也满足了设计的要求。 4.结论 水泥土搅拌桩在沿海等特殊的环境下的应用还需要我们设计者不断地进行总结、摸索,让水泥土搅拌桩等地基处理方法在沿海具有腐蚀性环境的地基中得到更好地利用。 参考文献: [1]《建筑地基处理技术规范》 JGJ 79-2012 [2]地基处理技术郑俊杰编著

QC小组活动提高型钢水泥土复合搅拌桩施工质量

注册号:FJLJ-2010-022-017 提高型钢水泥土复合搅拌桩施工质量 执笔:陈建辉、林芬 发布:陈建辉 福 建 六 建 集 团 有 限 公 司 前 天 大 厦 项 目 部 QC 小 组 二O 一一年三月 全国工程建设质量管理QC 小组活动成果 发布会资料

目录 一前言 (1) 二小组简介 (2) 三选题理由 (3) 四现状调查 (4) 五目标确定及依据 (6) 六原因分析 (7) 七要因确认 (8) 八制定对策 (14) 九对策实施 (15) 十效果检查 (19) 十一标准化及巩固措施 (22) 十二总结及今后打算 (23) 十三附表 (24)

一、前言 1.1 型钢水泥土复合搅拌桩简介 型钢水泥土搅拌墙是在连续套接的三轴水泥土搅拌桩内插型钢形成的复合挡土止水结构。 型钢水泥土复合搅拌墙又称为SMW(Soil Mixing Wall)工法桩,该工法是以多轴型钻掘搅拌机在钻头处喷出水泥与地基土反复混合搅拌,在水泥土混合体未结硬前插入H型钢或钢板作为其应力补强材,在各施工单元间采取重复搭接施工,最终形成一道具有一定强度和刚度的、连续完整的的地下墙体。 套接的三根搅拌轴连续的挡土止水墙体与地下连续墙和钻孔灌注桩相比,SMW工法桩主要有以下优点:(1)挡水性强(2)对周围地基影响小(3)能适应各种地层(尤其是软土地区)(4)工期短(5)造价低,在我国广泛应用于沿海地区的深基坑止水帷幕。 SMW工法施工顺序如下:1导沟开挖 2、置放导轨 3、设定施工标志 4、SMW钻拌钻掘及搅拌 5、置放H型钢 6、固定应力补强材 7、施工完成SMW。 1.2工程概况 1、工程名称:前田大厦 结构类型:框架剪力墙结构 建设地点:福州市湖东路与六一路交叉口的西南侧。 施工单位:福建六建集团有限公司 场地情况:前田大厦北侧紧靠主干道湖东路,东侧和南侧均为居民住宅楼,西侧为福建省图书馆,建筑物均为桩基础,框架结构。场地长宽均不到50米,距南侧围墙最近处仅3m,大面积开挖深度达到14米。如下面的这张图片所示:

水泥土深层搅拌桩支护设计与施工

水泥土深层搅拌桩支护设计与施工 【摘要】主要论述水泥土深层搅拌桩支护结构设计与施工。【关键词】土压力的计算、水泥土深层搅拌桩、设计、施工1. 工程概况某商住楼座落在市区临江边,由六座20层塔楼和3 层裙房组成,框剪结构,地下1 层,总建筑面积83300 ㎡,建筑物总高64. 8m,地下室首层~三层为车库商业用房,四层以上为住宅,建筑总长1048m,宽641m,基础为片筏,埋深5.1m, 筏板厚1.8m,地基采用深层搅拌水泥土桩加固,承载力可提高到400kpa。工程距离南面道路8m,东面毗邻三座十层住宅大楼6m,西面和北面与低层民房相距9m。 工程施工程序为先地基深层搅拌水泥土桩加固后基坑土方开挖。因此,坑内土层的内摩擦角可适当提高。 2. 场地水文地质情况商住楼距离河西堤约30m,场地为旧建筑物拆除地,地下存在旧基础或旧的地下管道。上覆地层为第四系冲积层,其下基岩为石炭系石灰岩。场地在地貌上为河流I 级阶地。 工程所在地的土层自上而下为:①人工填土层;②耕植土层;③第四系冲积层;④第四系残积土层;⑤石炭系灰岩。(详见图3) 场地位于江河畔,地下水位受江河水影响较大。场地内地下水主要有第四系孔隙潜水,受大气降水及江河水控制,由于卵石层厚度大,水量较为丰富。另一种为岩溶裂隙水,岩溶裂隙水赋存于灰岩的岩溶带之中,水量的大小和径流条件受地质构造,节理裂隙及岩溶发育程度

控制。两类含水层有统一的地下水位,水力联系较密切,其余各层为弱含水层或相对隔水层。地下水位4.50m。 3. 水泥土深层搅拌桩支护结构设计计算 3.1基坑支护方案的选择及分析根据该工程场地情况和地质条件,基坑开挖提出了三种挡土方案进行比较。 (1)内支撑钢板桩方案, 基坑深5.1m,选用10m长拉森板桩,设一道钢管内支撑,H 型钢为支撑钢柱,拉森板桩有力学性能好、密封性好、耐锤击及施打时对周围环境影响小等优点。但拉森钢板桩内支撑需边开挖边支撑,给施工带来麻烦,并且开挖工作面小,挖土速度慢,有30%的土需人工开挖。在地下室工程施工时,板桩内支撑又不可拆除,对支设模板、绑扎钢筋、浇捣砼带来很大困难。拉森钢板桩需进口,造价很高。(2)人工挖孔桩方案人工挖孔桩支护方案具有刚度大、稳定性好。但人工挖孔桩与桩之间有空隙,有挡水要求时不能满足,并且该方案需穿透粉细砂层才能到达卵石持力层,穿越粉细砂层会出现流砂,涌水给施工造成不安全。 (3)水泥土深层搅拌桩支护方案 深层搅拌水泥土桩是用特制的进入土深层的深层搅拌机将喷出的水泥浆固化剂与地基土进行原位强制拌合,制成水泥土桩,硬化后即形成具有一定强度的壁状挡墙,既可挡土又可形成隔水帷幕,对任何平面都适用。深层搅拌水泥土桩具有无噪音、无振动、无污染、工效高及成本低等优点。此方案做法是采用桩径φ500 格构式布置,桩与桩搭接150mm,水泥土挡土结构宽4m(见图1)。基坑开挖高度 H=5.1m,入土深度3.4m,水泥土挡土结构总高8.5m(见图2),水泥掺量不少于13%。

2018云南省二级建造师继续教育课后习题(建筑工程)

建筑工程 一.单项选择题 1.灌注桩后注浆技术在优化工艺参数的条件下,可使单桩承载力提高:(C)。 A.30%~100% B.20%~80% C.40%~120% D.40%~100% 2.灌注桩后注浆技术在优化工艺参数的条件下,可使桩基沉降减小(B)左右。 A.20% B.30% C.40% D.50% 3.灌注桩后注浆技术桩底后注浆导管及注浆阀数量宜根据桩径大小设置,对于d≤1000mm 的桩,宜沿钢筋笼圆周对称设置(B)根。 A.1 B.2 C.3 D.4 4.灌注桩后注浆技术的注浆作业宜于成桩(B)后开始。 A.1d B.2d C.3d D.4d 5.灌注桩后注浆技术对于饱和土中的复式注浆顺序宜(A)。 A.先桩侧后桩底 B.先桩底后桩侧 C.桩底桩侧同时 D.先桩侧后桩底或先桩底后桩侧 1.长螺旋水下成桩的施工效率是泥浆护壁钻孔灌注桩施工效率的(D)。 A.1~2倍 B.2~3倍 C.3~4倍 D.4~5倍 2.长螺旋水下成桩的施工效率是长螺旋钻孔无砂混凝土桩施工效率的(C)。 A.1.1~1.2倍 B.1.2~1.4倍 C.1.2~1.5倍 D.1.3~1.6倍 3.长螺旋水下成桩工艺中要求混凝土中粗骨料可采用卵石或碎石,最大粒径不宜大于(B)。 A.20mm B.30mm C.40mm D.50mm 4.长螺旋水下成桩与泥浆护壁钻孔灌注桩相比,施工费用可节约约(A)。 A.28% B.32% C.40% D.49% 5.长螺旋水下成桩与长螺旋钻孔无砂混凝土桩相比,施工费用可节约约(D)。 A.28% B.32% C.40% D.49% 1.水泥粉煤灰碎石桩的桩距应根据基础形式、设计要求的复合地基承载力和复合地基变形、

水泥搅拌桩复合地基施工质量控制与验收要点

水泥搅拌桩复合地基施工质量控制与验收要点 摘要:水泥搅拌桩是一种良好的软弱地基处理方式,对软土进行就地加固,充分利用原状土的地基承载力,避免了建设工程中对深厚软土地基大规模的开挖换填作业取得了较好的社会经济效益,在建设工程中得到了广泛应用,但该项目施工属于地下隐蔽施工,如果不加强过程控制,完工检测,很难对水泥搅拌桩的施工质量做出正确评定,对后续上部结构施工造成质量隐患,本文就水泥搅拌桩复合地基施工过程质量控制与完工后的检测要点做简要论述。 关键词:水泥搅拌桩过程控制验收检测 1、概述 水泥搅拌桩是利用水泥等材料作为固化剂,通过特制的搅拌机械,在地基深处就地将软土和固化剂(浆液或粉体)强制搅拌,由固化剂和软土间所产生的一系列物理-化学反应,使软土硬结成具有整体性、水稳定性和一定强度的水泥加固土,从而提高地基强度和增大变形模量。根据施工方法的不同,水泥土搅拌法分为水泥浆搅拌和粉体喷射搅拌两种。前者是用水泥浆和地基土搅拌,后者是用水泥粉和地基土搅拌。我国自1978年开始进行水泥搅拌法试验研制工作,随着我国建设工程的高速发展,水泥搅拌桩在软土地基加固中的应用得到迅速推广,其中以上海、浙江、福建等沿海地区为最多。 水泥搅拌桩复合地基主要优点有:最大限度地利用了原状土,造价低,对周围环境影响很小,便于施工,可缩短工期。它适用于淤泥、淤泥质土、流塑及软塑状的粘土、粉土等软土地基。 2、施工过程控制 2.1作业条件 现场应符合“三通一平”的施工条件,地下以及高空的障碍物清除完毕。基础轴线及标高测量完毕,基础的轴线和高程的控制桩,应设置在不受打桩影响的地点,并应妥善加以保护。根据轴线放出桩位线,用木桩钉好桩位,并用白灰作标识,以便于施打。施工前必须打试验桩,确定打桩设备、施工工艺及技术措施是否适宜。要选择和确定打桩机进出路线和打桩顺序,制定施工方案,作好技术交底。进场设备、仪器应有合格证,并经检查验收,应保证起吊设备的平整度和导向架的垂直度。 2.2 作业人员 施工机具应由专人负责使用和维护,大、中型机械特殊机具需执证上岗,操作者须经培训后,执有效的合格证书方可操作。主要作业人员已经过安全培训,并接受了施工技术交底(作业指导书)。 2.3材料要求 施工使用的固化剂和外掺剂必须通过加固土室内试验检验方能使用。固化剂浆液应严格按预定的配比拌制。制备好的浆液不得离析,泵送必须连续,拌制浆液的罐数、固化剂与外掺剂的用量以及泵送浆液的时间等应有专人记录 2.4 操作工艺

复合地基水泥搅拌桩施工

市政基础设施堤岸一期、人工内河整治及桥梁工程 真 空 堆 载 预 压 施 工 方 案 施工单位:广州市第一市政工程有限公司 日期:2013年10月20日 1

一、编制依据 1、国家现行的有关法律、法规、施工及验收规范、规程等; 2、本合同段招标文件,设计施工图,其它详见设计说明; 3、业主、总监办、驻地监理的有关文件、规定等; 4、本工程地质情况详见《岩土工程勘察报告》。 二、参建主体 工程名称:珠海十字门中央商务区横琴片区市政基础设施堤岸一期工程、人工内河整治工程及桥梁工程二标段 建设单位:珠海十字门中央商务区建设控股有限公司 施工单位;广州市第一市政工程有限公司 监理单位:深圳市恒浩建工程项目管理有限公司 设计单位:湖北省水利水电规划勘测设计院、珠海市规划设计研究院 勘察单位:广东核力工程勘察院 三、工程概况 1、本工程珠海十字门中央商务区横琴片区市政基础设施堤岸一期工程、人工内河整治工程及桥梁工程二标段,位于珠海市横琴新区中心,毗邻湾仔、横琴和拱北三大口岸,东面与澳门仅一水相隔,南至横琴环岛东路,西邻珠海保税区及横琴大桥,北靠将军山脉,通过港珠澳大桥与香港直接相连,占地面积约5.77平方公里; 2、堤岸按100年一遇防洪(潮)标准进行新建。本堤岸级别为Ⅰ级,堤岸工程总长 2

6028.99米,本标段为1432.5米。堤顶标高均为4.10米(黄海高程)。根据堤岸所处位置不同分为外海堤岸和人工内河堤岸,外海堤岸以人工内河为界分为A段与B段,人工内河堤岸按位置分为N段与S段。 3、内河整治工程主由人工内河、堤线布置、堤型结构、地基处理、过堤箱涵、防汛道路、边防巡逻通道、亲水平台、场地填筑等工程组成。 1、本堤岸工程采用深层水泥搅拌桩,固化剂为P.O 42.5普通硅酸盐水泥,桩 径φ600,水泥掺入比不低于15%(每米不少于47kg)。 2、S段K0+441.5~SK0+799.5、N段NK0+411~NK0+54 3、NK0+675~NK0+723堤岸深层水泥搅拌桩密封墙,桩长为5.0m,桩径φ600mm,搭接宽度200mm。接市政路k0+800路口水泥搅拌桩、桩径φ600mm、间距1.2m,三角形布置,共计5760m。 3、本工程地质情况详见《岩土工程勘察报告》。 4、其它详见设计说明。 三、施工部署 搅拌桩由我公司的专业施工队负责施工。根据本工程特点及工程量,本队安排5个工班作业施工,同时每个工班配备相应的人员。 1、施工组织机构框架

型钢水泥土复合搅拌桩支护结构技术

型钢水泥土复合搅拌桩支护结构技术 1.7.1 技术内容 型钢水泥土复合搅拌桩是指:通过特制的多轴深层搅拌机自上而下将施工场地原位土体切碎,同时从搅拌头处将水泥浆等固化剂注入土体并与土体搅拌均匀,通过连续的重叠搭接施工,形成水泥土地下连续墙;在水泥土初凝之前,将型钢(预制混凝土构件)插入墙中,形成型钢(预制混凝土构件)与水泥土的复合墙体。型钢水泥土复合搅拌桩支护结构同时具有抵抗侧向土水压力和阻止地下水渗漏的功能。 近几年水泥土搅拌桩施工工艺在传统的工法基础上有了很大的发展,TRD工法、双轮铣深层搅拌工法(CSM工法)、五轴水泥土搅拌桩、六轴水泥土搅拌桩等施工工艺的出现使型钢水泥土复合搅拌桩支护结构的使用范围更加广泛,施工效率也大大增加。 其中TRD工法(Trench-Cutting& Re-mixing Deep Wall Method)是将满足设计深度的附有切割链条以及刀头的切割箱插入地下,在进行纵向切割横向推进成槽的同时,向地基内部注入水泥浆以达到与原状地基的充分混合搅拌在地下形成等厚度水泥土连续墙的一种施工工艺。该工法具有适应地层广、墙体连续无接头、墙体渗透系数低等优点。 双轮铣深层搅拌工法(CSM工法),是使用两组铣轮以水平轴向旋转搅拌方式、形成矩形槽段的改良土体的一种施工工艺。该工法的性能特点有:(1)具有高削掘性能,地层适应性强;(2)高搅拌性

能;(3)高削掘精度;(4)可完成较大深度的施工;(5)设备高稳定性;(6)低噪声和振动;(7)可任意设定插入劲性材料的间距;(8)可靠施工过程数据和高效的施工管理系统;(9)双轮铣深层搅拌工法(CSM工法)机械均采用履带式主机,占地面积小,移动灵活。 1.7.2 技术指标 (1)型钢水泥土搅拌墙的计算与验算应包括内力和变形计算、整体稳定性验算、抗倾覆稳定性验算、坑底抗隆起稳定性验算、抗渗流稳定性验算和坑外土体变形估算; (2)型钢水泥土搅拌墙中三轴水泥土搅拌桩的直径宜采用650mm、850mm、1000mm,内插H形钢或预制混凝土构件; (3)水泥土复合搅拌桩28d无侧限抗压强度标准值不宜小于0.5MPa; (4)搅拌桩的入土深度宜比型钢的插入深度深0.5~1.0m; (5)搅拌桩体与内插型钢的垂直度偏差不应大于1/200; (6)当搅拌桩达到设计强度,且龄期不小于28d后方可进行基坑开挖; (7)TRD工法等厚度水泥土搅拌墙28d龄期无侧限抗压强度不应小于设计要求且不宜小于0.8MPa;水泥宜采用强度等级不低于P.O 42.5级的普通硅酸盐水泥,水泥土搅拌墙正式施工之前应通过现场试成墙试验以确定具体施工参数(材料用量和水灰比等)。 (8)双轮铣深层搅拌工法(CSM工法)成槽设备在施工过程中采用泥浆护壁来防止槽壁坍塌;膨润土泥浆的配合比通常为

水泥土搅拌桩

水泥土搅拌桩施工作业指导书 1 适用范围 适用于张呼线站前水泥搅拌桩的施工。 2 作业准备 2。1水泥搅拌桩施工前应该满足的施工条件,包括场地、材料、人员和机械的要求. 2。2技术准备:施工前技术人员将设计图纸进行复核,复核无误后进行试桩得 出指导施工工艺的参数。 2。3场地准备:施工前必须经过审查验证,地基需要换填的必须进行换填粘性土料或细粒渗水土(最大块径不大于100mm),不得回填杂土,地表过软时应采取防止机械失稳的措施如铺设砂垫层,并通过审查验证后才能进行施工;场地应该保证足够的平整度,满足设备、人员进场要求。 2。4材料准备:固化剂选用强度等级为P.O32。5级及以上的普通硅酸盐水泥(当地下水具有侵蚀性时,应根据设计要求采取相应措施),原材料应按相关规定进行进场检验。 2.5人员配备(按1台搅拌机人员配备): 表1 人员配备表 2.6机械配备(按1台搅拌机配备): 表2 设备配备表

2。7工艺性试验: ⑴试桩应选择土质有代表性的地段.可选在桩基工程数量集中、施工时间较长或需要尽早开工完成的地段,而且对今后施工有广泛指导作用的地段. ⑵试桩应选择2根以上比较具有指导性,确定工艺参数并报监理单位签认。 3 技术要求 ⑴泥搅拌桩采用po42。5及以上普通硅酸盐水泥,水泥渗入量不小于被加固湿 土质量的12~20%,水泥浆水灰比为0.45~0.55。 ⑵浆液应严格按设计配合比和试验确定的配合比拌制,制备好的浆液应均匀,不得离析。 ⑶水泥土搅拌桩按等边三角形布置,间距由稳定、沉降以及承载力计算确定,桩径0.5m。 ⑷喷浆量及搅拌深度必须采取经国家计量部门认证的有效期内的检测仪器进行自动记录,因故停浆时恢复供浆后的喷叠长度不得小于0.5m. ⑸桩基完整性、均匀性、桩身无侧限抗压强度应满足设计要求。 ⑹桩基处理后的复合地基承载力应满足设计要求。 4施工工艺流程及操作要点 4。1施工工艺流程图如下:

相关文档
最新文档