简述镍铝合金催化剂的生产原理及注意事项

简述镍铝合金催化剂的生产原理及注意事项
简述镍铝合金催化剂的生产原理及注意事项

简述镍铝合金催化剂的生产原理及注意事项

【摘要】将预热至770—810℃镍板与熔化的铝在中频感应炉坩锅内进行合金反应,反应过后将熔融液通过中间包倒入铁槽使其自然冷却,合金冷却后再通过各种机械设备将其粉碎筛分成所需粒度的粉末成品,这种粉末成品被称之为镍铝合金粉,镍铝合金粉经过碱处理后可制成骨架催化剂,又称雷尼镍催化剂,它具有加氢、脱氧、甲烷化等作用。镍铝合金粉的市场范围很广,主要用于石油化工、制药、油脂、香料、染料、合成纤维等行业。

【关键词】镍铝合金;催化剂;金属粉尘

1925年,美国工程师莫里·雷尼用等量镍和铝熔合制备出骨架金属催化剂,并得到出人意料的结果,其活性是普通镍的5倍多,莫里·雷尼次年为他的催化剂申请了专利,因此如今的骨架镍又称为雷尼镍。它是将具有催化活性的镍金属和铝高温熔化后制成合金,再用火碱(氢氧化钠)溶液洗掉合金中的铝,这样就形成多空型的金属骨架。

下面以实例简要阐述其生产原理及注意事项。

1.装置简述

新材料车间催化剂装置始建于1985年5月,是国内镍铝合金粉的专业生产厂家,原有生产能力80吨/年,后经1998年和2005年的两次改造和扩建,其生产能力提高到450吨/年。

2.生产流程

首先将铝锭称重,再根据用户需求的配比称出镍板重量,这里所用的重熔铝锭纯度不小于99.7%,镍板纯度不小于99.9%。然后将铝锭投入到中频感应炉中感应加热,同时将镍板放入电阻炉中预热,待铝锭熔化为金属液体并呈现桔红色时,投入预热到770-810℃的镍板,这时,二者在中频感应炉坩锅内进行合金反应,待镍板完全熔化后用碳棒搅拌使合金反应进行的更充分,之后将熔融液倒入中间包,再由中间包倒入铁槽内使其自然冷却,冷却后即可得到晶格排列均匀的镍铝合金块,具体工艺指标如下:

完全冷却后的合金块硬度较差,可用锤子砸碎,得到规格不均匀的尺寸较小的合金块,小合金块通过大鄂破机粗破后,再用钢磨或(和)粉碎整形机等机械进行细磨,然后经过振动筛、旋振筛筛分得到不同规格的镍铝合金粉。这种合金粉经过氢氧化钠溶液处理,将镍铝合金中的铝浸出,同时释放处氢气。其反应过程如下:

2Al+6NaOH→2Na3AlO3+3H2↑

雷尼镍催化剂的制法

骨架镍催化剂的制法 骨架镍催化剂(Raney nickel,拉尼镍)是利用粉碎了的镍一硅合金或镍一铝合金与苛性钠水溶液反应而制得。用这种方法制得的催化剂具有晶体骨架结构,其内外表面吸附有大量氢气,具有很高的催化活性。在放置过程中,催化剂会慢慢失去氢,在空气中活性下降得特别快。因此只有在密闭良好的容器中,将骨架镍催化剂放在醇或其它惰性溶剂的液面以下,隔绝空气才会保持其活性。 拉尼镍是一种应用范围广泛的催化剂,差不多对所有能进行氢化和氢解的官能团都起作用。对烯烃或芳环的氢化相当有效,能顺利地氢解碳--硫键(脱硫作用);但对酰胺、酯的氢解效果不佳。它的主要特点是在中性或碱性溶液中,能发挥很好的催化作用,尤其是在碱性条件下,催化作用更好。因此在氢化时常加入少量的碱性物质,例如三乙胺、氢氧化钠和氢氧化锂等,均能明显提高活性(硝基化合物除外)。如还原羰基化合物时,加入少量的碱,吸氢速度可以增加3~4倍。与其它贵金属催化剂例如氧化铂、钯/炭等相比,其氢化温度和压力较高,但价格要便宜的多。而且来源方便,制备简便。 卤素(尤其是碘),含磷、硫、砷或铋的化合物及含硅、锗、锡或铅的有机金属化合物在不同程度上可使拉尼镍中毒。在压力下,有水蒸气存在时,拉尼镍会很快失活,使用时应予注意。 拉尼镍活性降低的主要原因是①失去氢;②催化剂表面层组成改变,⑧由于生成结晶而使催化剂表面积减少,④中毒。 镍一硅合金由于较硬,粉碎和溶解都较难,所以使用不普遍。通常,镍一铝合金是制备各种类型拉尼镍的基本原料。含镍一般在30~50%之间,其余为铝。使用上述组成的镍一铝合金,均能制得具有一定活性的拉尼镍,可根据需要加以选择。最常用的镍—铝合金是镍铝各占50﹪的微细颗粒体。其制备过程如下。在氧化铝或石棉坩埚内,按比例先把纯铝放入坩埚,在电炉上熔融。待温度达到 1000℃左右时,加入纯镍粉。这时由于有熔化热产生,使温度升到 1200~1300℃。用石墨棒不断搅动,保温 20~30分钟。然后倒入大容器中,缓缓冷却以保证合金具有规则的晶格结构。若冷的太快、

含钼催化剂研究进展

含钼催化剂研究新进展 摘要含钼催化剂广泛用于多种化工生产过程,在含钼精细化学品的研究与开 发中占有重要地位。简要介绍了我国近年来一些含钼催化剂的研究进展和有关文献1前言 催化是现代十分重要的化工技术,据统计,发达国家近三分之一的国民经济总 产值来自催化技术。含钼催化剂在催化领域占有重要地位,广泛用于石油加工和化 工生产,如合成气制造、基本有机合成和精细化工产品等的的生产。因此,长期以 来国内外对含钼催化剂的创新和改进不断进行。这也引起我国钼业界的广泛关注, 逐渐成为我国钼深加工领域的一个新的发展方向。现仅就我国近年来含钼催化剂的 一些新进展作简要介绍。 2烷烃的化学加工催化剂 2.1烷烃芳构化催化剂 四烷无氧脱氢芳构化,为甲烷活化和转化的一个新的研究热点。王林胜等在1 993年首次报道一种以HZSM-5分子筛为载体的含钼催化剂使甲烷于无氧条件下高选择性地转化为苯。该催化剂是甲烷芳构化反应的典型催化剂。此后,对这种催化剂 的研究活跃。舒玉瑛等用机械混合、机械混合后焙烧、机械混合后微波处理等方法 制备这种催化剂,并考察了其对甲烷芳构化反应的催化性能。结果表明:机械混合 法、固相反应法和微波处理法制备的Mo/HZSM-5催化剂,比一般浸渍法能明显提高 芳烃的选择性和减少积碳生成;在不同制法的Mo/HZSM-5催化剂上,Mo物种落位不同,机械混合法、固相反应法和微波处理法能使Mo物种较多地落位于分子筛外表面 ,这对甲烷芳构化反应有利,并明显减少积碳的生成。 王军威等用浸渍法、机械混合法和水热法制备了Mo/HZSM-5催化剂,并考察了 钼含量和反应时间对丙烷芳构化反应的影响,深入研究了Mo物种对HZSM-5分子筛结构和酸性的作用。 最近,田丙伦等报道了对Mo/MCM-22催化剂用于甲烷无氧芳构化的研究结果。MCM-22为晶粒呈片状、含两种孔道结构的高硅沸石分子筛。同Mo/HZSM-5催化剂相比,Mo/MCM-22催化剂稳定性更好,苯产物的选择性较高 。用浸渍法制备的Mo担载量为6%的Mo/MCM-22催化剂性能最佳。此外,还研究了添加钴对Mo/MCM-22催化反应性能和催化剂积碳性质的影响。 2.2烷烃选择氧化催化剂 甲基丙烯酸(MAA)是重要的有机化工原料,当前主要用烯烃为原料生产。然而,饱和烃较烯烃来源广泛,更经济易得,故近年来由异丁烷氧化制MAA已成研究 与开发的新方向。采用一般热表面催化法由异丁烷选择氧化制取MAA主要存在的问 题是MAA选择性低,浓度反应产物(COx)高达40%。激光促进表面反应法是很有应用前景的光催化合成新技术。最近,陶跃武等分别采用在铋钼复合氧化物、钒钼复 合氧化物表面上激光促进异丁烷选择氧化制MAA,取得选择性达到90%和无COx产生的良好结果。

雷尼镍催化剂的制备

雷尼镍催化剂的制备 雷尼镍催化剂是一种十分重要的骨架镍催化剂,其发现和发展最早可以追述到1925年。现在由于其具有的高活性、高选择性以及生产使用成本低的优点,已被广泛应用于有机还原反应,如烯烃芳香环、醛、酮、硝基、腈基等的催化加氢及脱卤反应。本文将主要介绍W-6型拉尼镍催化剂的主要制备方法。 1.W-6型拉尼镍催化剂的制备原理 雷尼镍催化剂最先由Murray Raney(1885-1966)发现,并于1925年申请专利。制备时,先用NaOH溶液溶去镍铝合金中的Al,然后洗涤,残余物为类似海绵状的微粒,大小为25~150A0。催化剂主要含Ni,Al(1~8%),少量NiO 和AL2O3水合物(1~20%),总表面积为50~130m2/g。 Raney-Ni催化剂一般由合金制备,分为两步,即展开和洗涤。展开是指用碱(特别是NaOH)溶出合金中无催化活性的部分(铝),这一步称为展开操作,反应式如下: 2NaOH+2 Al+2H2O→2NaAlO2+3H2 研究表明合金粒度和温度对展开速度有较大的影响,温度越高,展开速度越快;粒度的增大,溶解速度则减小R.Choudary等人通过实验,得出一个展开模型:log(x/1-x)= αlog(tβ),其中α为常数,β为速率参数(单位为1m/s), t为展开时间,展开活化能为56.6Kj/mol。 洗涤展开后的Raney-Ni是类似海绵状的微粒,可用蒸馏水洗涤至中性,最后用乙醇洗涤。由于Raney-Ni是一种易燃的催化剂,故应保存在适当的溶剂中。2.W-6型拉尼镍催化剂的制备方法:固相分离浸取法 熔融,沥滤是制备骨架催化剂的一种方法。其制备主要分为三步:即合金的制备,合金的粉碎及合金的浸溶,其制备工艺流程及简介入下: NaOH溶液 镍┓↓ ┃→熔融→冷却→粉碎→浸溶→洗涤→成品 铝┛ 70年代发明的固相分离浸取法是对传统雷尼镍催化剂制备方法最近的一次突破。原理是向回体NaOH与合金粉的混合物中加水.使其均匀润湿但不形

RaneyNi催化剂

雷尼镍是用镍铝合金用试剂将合金中的铝反应完后得到的,多孔,活性很高,能自燃。使用过程中务必氮气保护,防止发生火灾。镍粉的话由于无多孔结构,活性不如雷尼镍。氢化还原的话一般选择雷尼镍,没见过用镍粉的。一般还原的话用锌粉、铁粉的较多,比较安全。 雷尼镍又叫活性镍有活性的可以吸收大量的氢气一般的颗粒镍由于表面积没有雷尼镍大所以没有活性 Raney Ni就是将铝镍合金在氢氧化钠溶液中溶解掉铝,得到的具有多孔结构状的镍,因而具有高的吸附氢的活性,而普通的镍由于不具有这种结构,也就起不到催化还原的效果。 制取雷尼镍:镍铝合金,还原不能直接用,需要用氢氧化钠水溶液将铝洗掉,再将镍水洗中性,再用乙醇洗,还要试洗出的镍的活性,在空气中能自燃,活性较好。镍活性非常高在空气中能自燃,所以分散在水中或是溶剂中。 买了铝镍合金粉末,缓慢假如氢氧化钠溶液里,保持溶液强碱性,反应完,将碱液倾倒出,用无水乙醇洗涤几次,然后放入无水乙醇中备用就可以了。 1)如果是在实验室里面进行脱铝活化的话,要放在冰水里面,防止过热!反应刚开始就放在冰水里,温度上升是飞快的,如果不预先放入冰水中,等你反应过来就已经来不及了! 2)我是做雷尼钴催化剂的,刚开始反应是很剧烈,没必要放到

冰水里,我把合金粉末慢慢加到氢氧化钠溶液中就可以了,没有太大得危险,慢慢加入就可以。 关于Raney Ni加氢还原中脱氯的问题 这个反应中经GS-MS检测,有脱氯的副产物产生,但是不清楚为什么会脱氯(反应加压3 MPa),在改动Raney Ni的用量及DMSO 量的情况下,脱氯现象没有改善——芳卤尤其是Cl、Br、I在Pd/C、Raney Ni等氢化环境下容易被还原掉。我记得以前有看过文献说貌似用硫酸钡作载体就不会掉。压力跟温度调小点,脱氯在2%左右,再低的脱氯我也很纠结。 首先,在氮气氛围投料然后,氢气置换氮气后就可以反应了,记住,不要在氢气氛围投料,特别是投钯碳类的东西。 在大生产上必须用氮气置换2-3次,在实验室里做的话用一个玻璃三通,用真空泵抽真空后直接通氢就行。 1.雷尼镍是镍铝合金经氢氧化钠处理出去其中的铝而得到多孔结构的镍,其与镍粉的最大不同之处在于其单位质量比表面积大,用于催化氢化。 2.雷尼镍的催化活性比较高,还原硝基应该问题不大,可以自己购买镍铝合金在实验室自己做,也可以直接购买使用。 3.雷尼镍易燃,不知道你用的溶剂是什么,目前市售雷尼镍很多保存在水中,如果需要除水,要注意防火。

镍催化加氢

2绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。 催化加氢反应一般生成产物和水,不会生成其它副产物,具有很好的原子经济性。 加氢反应的应用很广泛。加氢过程在石油炼制工业中,除用于加氢裂化外,还广泛用于加氢精制。在煤化工中用于煤加氢液化制取液体燃料。在有机化工中则用于制备各种有机产品,例如一氧化碳加氢合成甲醇、苯加氢制环己烷、苯酚加氢制环己醇等。此外,加氢过程还作为化学工业的一种精制手段,用于除去有机原料或产品中所含少量有害而不易分离的杂质,例如乙烯精制时使其中杂质乙炔加氢而成乙烯;丙烯精制时使其中杂质丙炔和丙二烯加氢而成丙烯等。 3早在1902年,Normann 就实现了用镍催化剂使脂肪加氢来制取硬化油的工业化生产。近年来,镍系催化剂无论是在制备方法还是在应用领域,都取得了巨大的发展,镍应用于烯烃,炔烃,苯,硝基化合物,含羰基的化合物的催化加氢。 4按照催化剂的改性方法,将镍催化剂分为骨架镍催化剂、负载型催化剂以及其它类型镍催化剂。 5骨架镍,是应用最广泛的一类镍系加氢催化剂,也称雷尼镍。具有很多微孔,是以多孔金属形态出现的金属催化剂,制备骨架形催化剂的主要目的是增加催化剂的表面积,提高催化剂的反应面,即催化剂活性。具体的制备方法:将 Ni 和 Al ,Mg ,Si ,Zn 等易溶于碱的金属元素在高温下熔炼成合金,将合金粉碎后,再在一定的条件下,用碱溶至非活性组分,在非活性组分去除后,留下很多孔,成为骨架形的镍系催化剂。 6薛勇等[8]以邻硝基甲苯和草酸二乙酯为起始原料,合成邻硝基苯丙酮酸乙酯的乙醇碱性溶液,再用雷尼镍催化剂,在60~70℃、1.5MPa 压力下,用催化氢化法合成了吲哚-2-甲酸,总收率为70% (以邻硝基甲苯计算)用熔点、NMR 、GC - MS 谱图表征了该化合物。雷尼镍催化氢化方法合成吲哚-2-甲酸成本较低、后处理简单、无环境污染。其合成路线为: CH 3 NO 2 +(COOC 2H 5)2C H ONa CH 2C O COOCH 2CH 3NO 2 CH 2C O COOCH 2CH 3 NO 2+H 2Ni N H COOH 胡少伟等[10]采用骤冷法制备了改性骨架镍,将其应用于3, 4-二甲基硝基苯

雷尼镍过滤设备

雷尼镍过滤设备技术简介 ■催化剂过滤■脱碳过滤■高温过滤■高粘度过滤■高腐蚀过滤■自动反吹过滤 工艺概述: 雷尼镍催化剂过滤,应用于精细化工、农化工催化加氢反应中的一种催化剂过滤工艺。雷尼镍(Raney Nickel)又译兰尼镍,是一种加氢反应中常用催化剂,又称最早由美国工程师莫里雷尼在植物油的氢化过程中作为催化使用。雷尼镍暴露于空气中干燥,吸附原子态轻,可自然引发火灾隐患,具有危险性,因此对雷尼镍催化剂过滤系统及装置,要求厂商具备高专业度技术水平,以及丰富的项目经验。雷尼镍粒径分布一般较宽,溶媒通常为有机溶剂。 雷尼镍镍催化加氢反应是精细化工、农化工、原料药生产中广泛用到的单元反应之一,加氢催化反应结束后,兰尼镍催化剂需从反应液中过滤分离出。目前一般性过滤方式仍然停留于采用不锈钢金属粉末烧结滤芯,通常数量几十只至上百只不等,在过滤器内部进行纵向排列,底部设计有排渣口。但实际运行中,往往存在金属粉末滤元污堵频繁,反吹效果不佳,影响操作连续等通病弊端。有的系统更是由于设计不合理,缺少项目经验和专业性,过滤几批次后彻底堵死瘫痪,无法再进行反吹操作。给用户企业生产连续和稳定带来了极大困扰。 除此之外,由于金属粉末烧结滤元在高精度值下,有的产品孔隙率往往偏低只有20%~30%左右,这就要求相同处理量下必须填装更多只滤元,方能满足过滤总需求。但滤元填装越多,又带来两个问题。一方面导致过滤器筒体扩增,滤元与过滤器筒体的同时扩增,一套设备下来价格成本不菲。另一方面,由于滤元数量更多,导致每只滤元反吹气压不匀,滤元漏气短路点概率就增高,最终带来反吹不稳定或无法反吹。 某农化厂新建厂区某一工艺段“雷尼镍催化剂过滤”,前期设计采用不锈钢粉末烧结滤元。结果运行几批次后彻底堵死,无法反吹,开盖后发现物料饼结于滤元表面,难以去除。该项目为催化反应釜批次过滤,拦截兰尼镍,过滤器进料口通氮气(不可用泵)施压,工作压力0.2MPa。我公司对该工况进行详细分析,结合相关项目经验,通过模拟实验后确定摒弃行业内一贯采用的金属滤元设计,转而采用有机材料,并对反吹系统进行优化设计。技术改造后用户的棘手难题彻底解决。目前系统运行稳定,反吹效果良好,且运行成本低廉。

雷尼镍催化剂使用方法和注意事项

雷尼镍加氢催化剂的使用方法及注意事项 一、物料名称:雷尼镍(兰尼镍) 危险特性:其粉体化学活性较高,暴露在空气中会发生氧化反应,甚至自燃。 遇强酸反应,放出氢气;粉尘可燃,能与空气形成爆炸性混合物。 储存与运输条件:贮存于阴凉、通风仓间内。远离火种、热源,防止阳光直射。 包装要求密封,不可与空气接触。应与氧化剂、酸类分开存放。 RaneCAT-1000 型高活性雷尼镍加氢催化剂 二、一般用途与使用方法 1、使用前的准备工作 a、相关操作人员必须佩戴劳保用品,使用前必须接受有针对性的培训。

b、操作现场应配备灭火器(干粉)和消防沙。 c、清理操作现场易燃易爆等危化品。 d、检查内外包装是否完好、无破损,若有破损现象,应停止使用,并立即上报至仓库管理员。 2、使用过程的操作 a、因雷尼镍活性较高,通常用水对其进行保护,称量时,需尽量去除水分,确保数量满足工艺需求。使用后剩余量应按原包装进行封口退库。 b、若氢化反应对水分要求较高,需用反应所使用溶剂进行带水处理,具体措施为:称量时,取用水保护的雷尼镍催化剂(尽量去除水分)至装有适量溶剂的烧杯中,称量数量应略超过实际使用数量,缓慢搅拌均匀(应防止催化剂暴露于空气中),静置分层,倾倒大部分上层清液(留小部分上层清液保护催化剂,下同),下层加入适量溶剂,缓慢搅拌均匀,静置分层,倾倒大部分上层清液,重复此操作步骤2-3次,完毕后,用适量溶剂保护催化剂。 c、若氢化反应对水分不敏感,称量时,取用水保护的雷尼镍催化剂(尽量去除水分)至装有适量溶剂的烧杯中,称量数量应略超过实际使用数量,缓慢搅拌均匀(防止有固体暴露于空气中),静置分层,倾倒大部分上层清液(留小部分上层清液保护催化剂),即可。 d、20L及以下的反应釜雷尼镍投料:打开釜盖向反应釜中加入适量溶剂,通入氮气15min以上;将用溶剂保护的雷尼镍催化剂通过加料管(加料管下端伸入反应釜溶剂液面以下)缓慢加入反应釜,加料过程需缓慢搅拌催化剂,使其悬浮于溶剂中随溶剂一起流入加料管中,投料完毕后用溶剂淋洗加料管内壁。检查工器具是否有雷尼镍残留,若有残留收集至容器中用水液封。 e、50L及以上的反应釜雷尼镍投料:先将反应釜抽真空至0.08MPa,通氮气排空置换空气,连续三次置换操作;再将反应釜抽真空,通过加料管道(反应釜内不的加料管应通入反应釜底部)将雷尼镍抽入反应釜中,控制抽料管在溶剂液面一下,不断补加溶剂防止空气进入;投料完毕后用溶剂淋洗加料管。检查工器具是否有雷尼镍残留,若有残留收集至容器中用水液封。

钼催化剂

书山有路勤为径,学海无涯苦作舟 钼催化剂 1、磷钼酸磷钼酸是丙烯氨氧化制备丙烯睛的催化剂,它在合成纤维加工 中起着重要作用,它还是丝和皮革加重剂、有机颜料的原料、分析试剂。磷 钼酸分子式为H3PO4·12MoO3·30H2O,可溶于水、乙醇、乙醚。密度 2.53g/cm3,熔点78℃。为黄色到桔黄色结晶。主要原料:三氧化钼和磷酸。 反应式为:12MoO3+H3PO4+xH2O 煮沸H3PO4·12MoO3·xH2O→生产过程:按MoO3:水=1:10 的固液比搅拌均匀,加入浓度85%磷酸,加入量按MoO3:H3PO4=12:lmol 数计算。通入蒸汽使溶液煮沸3h,加温时应控制蒸 汽压力,使溶液平稳沸腾,不要暴沸。还要不断补充清水,保持最初的液面高 度。反应前,溶液呈MoO3 的乳白色,反应初变金黄色,后期变为绿色,反应 后期pH 为1.0。液固分离,弃去滤渣(可回收用)。滤液中先滴加30%双氧 水,溶液颜色由绿转黄。蒸发浓缩溶液(温度106℃),将溶液冷却、结晶获产 品流程见图1。图1 磷钼酸生产流程2、钴-钼催化剂在用天然气、油田气、 炼油气、焦炉气或轻油为原料,生产合成氨时,要求气、油中硫含量< 0.3ppm。在脱硫时,无机硫可用脱硫剂全部除净,而有机硫的脱除就很困难。 为此,要用以钼为主催化剂将有机硫加氢变成无机硫(H2S)后脱除。反应式 为: CS2+4H2→CH4+2H2SCOS+4H2→CH4+H2S+H2OC2H5SH+H2→C2H6+H2S加氢脱硫催化剂以钼为主,钴、镍、铁、钒为助催化剂,氧化铝作载体。应用最 早为钴-钼。现亦有用铁-钼或镍-钼。其成份变化,结构复杂,据Richardson 研 究后认为,催化剂活性物是被活性Cox 活化了的MoS2,以Cox/Mo=0.18 为 佳。催化剂组分的化合形态不管以何形式存在,在加氢脱硫前,都必须进行充 分预硫化处理。[next] 加氢脱硫的钴-钼或镍-钼催化剂生产工艺有三种:

雷尼镍的制备

3.w—6型拉尼镍 于50℃,用20%氢氧化钠溶液处理镍—铝合金,反应20一30分钟,在氢气存在下,对拉尼镍进行洗涤,水洗后再用乙醇处理。 该催化剂对双键、三键、醛、酮、肟、硝基、苯环及吡啶等基团具有很高的催化活性。在低温下使用,具有很好的选择性,并比w—4更活泼。w—6在低压、温度低于100℃的条件下反应,效果最好。w—6型拉尼镍的用量一般占底物的5%以下,超过此量,反应变得猛烈。如在125℃,使用过量的催化剂,压力会由3.43MPa猛增至68.9MPa。即使立即放氢降压,压力仍可达数十兆帕,这会产生严重后果。因此要特别注意,使用w—6等高活性的拉尼镍时,其用量不得任意增加,特别是在高压(5.88MPa以上)的情况下,应特别慎重。 制法在配有温度计和不锈钢搅拌器的2L锥形瓶中放进600m1蒸馏水和160 g氢氧化钠,迅速搅拌这个溶液,并让它在装有溢流虹吸管的冰浴中冷却到50℃。然后在25—30分钟之内将125g镍一铝合金粉末分批地加入。用控制镍一铝合金的加入速度和向冰浴中加冰的办法保持温度在50+-2℃。待所有的合金加完后,在该温度下再缓缓搅拌50分钟,使悬浮的镍一铝合金粉完全消化。这往往需要移去冰浴、换上热水浴,以保持温度恒定,此后用蒸馏水滗洗催化剂三次,每次用1L水。 滗洗后立即转移到洗涤装置中进行洗涤。该装置的构造及操作如下。用直径5.1cm、长38cm、在离顶部6cm处接有带支管的玻璃大试管(3),作洗涤催化剂的容器。试管用橡皮塞紧紧地塞住、使其足以承受49kPa的气体压力。塞子有三个孔,通过它们插入直径10mm的玻璃管,直伸到试管底部,用以通入蒸馏水;用以平衡气体压力的“T”形管和一个紧密配合的铜衬套管,穿过套管装有一个不锈钢轴搅拌器(4)(也可以装有用注射器改制的搅拌器),轴直径为6.4mm,并伸到试管底部。一个容量为5L的蒸馏水储水器(2),在瓶的侧面靠底部有一出水口,该瓶为贮备蒸馏水用,这样的装置对使水由瓶中通过开关源源不断地流入试管(3)的底部。试管(3)的支管用厚壁橡皮管与5L溢流瓶(5)相连,溢流瓶(5)的底侧也有一个出水口,洗涤水由试管(3)流到溢流瓶(5),并通过开关将溢流水导入水槽流走。 把经第三次倾滗洗涤后的催化剂,立即转移到催化催洗涤容器(3)中,同时让洗涤容器(3)、储水器(2)和溢流瓶(5)几乎都充满蒸馏水,迅速把装置连接起来,从导管(7)引入49kPa压力的氢气,同时溢流瓶中的大部分水都通过出口(6)被排出,关闭出口,继续通入氢气直到储水器、洗涤管和溢流瓶里的水面处在约比外界大气压高49kPa时为止。开动搅拌器使它的速度能让催化剂悬浮在18—20cm的高度。让蒸馏水以大约每分钟250m1的速度从储水器流经悬浮的催化剂。当储水器近乎放空而溢流瓶已充满的时候,同时打开排水答的活塞和蒸馏水进口活塞,使它们有相等的、能使溢流瓶故空而储水器充满的流速,且体系压力维持恒定。大约15L水通过催化剂之后,停止搅拌和进水,放空解除压力,并拆卸装置,把上清液倾滗掉,然后用95%的乙醇把它转移别250ml离心瓶中。再用95%乙醇把催化剂洗涤三次,每次用150m1,同时搅拌(不要振荡),每加一次都进行离心。以同样的方法再用无水乙醇处理三次。如果希望得到高活性的催化剂,那么所有操作应尽快进行,从加合金开始到制备完成,全过程历需时间不应多于3小时,操作过程使用的橡皮管和胶塞均应用5%的氢氧化钠煮沸,并且用水漂洗除硫。储化剂应保存在装满乙醇的瓶中,而且应立即贮存到冰箱中。如果保存得当,其高活性可维持两周。过了这个期限,活性会降低到与其它低活性拉尼镍相近似的程度。按上述方法制得的储化剂含镍62g,铝为3~8g,体积约为75—80mL。 4.T—1型拉尼镍 于90℃,用10%的氢氧化钠溶解铝,反应1小时,经水洗、醇洗后制得。 制法在一个装有搅拌的1L三口瓶中,加入600m110%氢氧化钠水溶液,加热至90℃,搅拌下,分批小量加入40g镍—铝合金。加入速度应使溶液温度维持在90一95℃之间,约20

石油加氢脱硫催化剂的应用进展

石油加氢脱硫催化剂的应用进展 一、前言 一直以来,化石燃料特别是石油一直是各国最重要的能源,尽管近年来世界各国不断加强对二次能源,如太阳能、风能等的研究和应用,但应用比例仍然较小。最受瞩目的从水制氢,甚至从海水制氢研究有所进展,但产业化仍面临一系列问题,如大规模生产催化剂和生产成本等难以绕过的问题。 在石油消耗增长的同时,为了防止汽车尾气对环境污染,使环境中的PM2.5 达到国际标准,石油的加氢脱硫产品——燃油如汽油和柴油的质量也要大幅度提升。2018 年我国使用的柴油含S 要达到≤10 mg /kg,现在除北京外其他地区使用的柴油、汽油含S≤50 mg /kg 或≤100 mg /kg. 降低燃油的含硫、含氮量任务十分艰巨,众所周知,石油加氢精致脱硫要用钼基催化剂如CoMo /Al2O3、NiMo /Al2O3进行轻质油和重质油加氢脱硫。 1 石油加氢脱硫催化剂应用概况 20 世纪末,由于当时防止环境污染的要求相对宽松,一些国家规定燃油含S≤50 ~100 mg /kg,Ni-Mo /Al2O3、CoMo /Al2O3加氢脱硫催化剂就已经满足要求。进入21 世纪后,对环境污染的法规和法律要求日趋苛刻,燃油含S 量至少要达到≤50 mg /kg,从而激励着化学家研究与应用更加有效的加氢脱硫催化剂,使得加氢脱硫催化剂有几项重大创新。

1.1 优化载体 尽管作为钼钴、钼镍催化剂的载体可为SiO2、TiO2、MgO,也可以是各种沸石和纳米含硅化合物等,但当今大多数钼钴催化剂厂家采用γ-Al2O3作催化剂载体,如美国的雪伏龙石油催化剂公司、日本的コヌモ石油株式会社、日本住友金属矿山公司、德国的BASF 化学公司和中国抚顺石油化工研究院等。 γ-Al2O3物理性能较20世纪末有了很大的改进,具有代表性的物理性质如下: 平均孔径7.5 nm,细孔径分布率为78%~88%,细孔容积035 ~ 0.50mL /g,比表面积200 ~ 272 m2 /g,个别厂家为318m2 /g,事实上,γ-Al2O3颗粒组成更加均匀,5~6nm≤10%,10 nm以上的粗粒级≤5%γ-Al2O3载体生产公司专业化,钼钴、钼镍催化剂的载体经多年详尽研究,目前已形成产业化生产,产品质量稳定并不断提升;含磷的钼钴、钼镍催化剂的加氢脱硫活性明显增长。 近10年来,许多化学家研究了磷对钼钴催化剂活性的影响[1],研究者向CoMo /Al2O3催化剂中添加不同数量的磷对噻吩等化合物进行了加氢脱硫影响试验。首先用浸渍法制取MoO3P /Al2O3催化剂,如将Al2O3载体浸渍在含H3PO4或NH4H2PO4与( NH4)6Mo7O24H2O 的浸渍液中,浸渍后过滤,烘干。然后在500 ℃下煅烧5 h,制出含P 分别为0%、0.2%、0.5%、1%、2%、3%和5% ( 质量分数,下同) ,将含13%Mo 的MoO3P / Al2O3催化剂,用10%H2S /H2气流在400 ℃下硫化1.5 h。制出MoS2P /Al2O3催化剂,再用化学气相沉积法将Co 引入催化剂中,制出CoMoS2P /Al2O3催化剂。用这种含磷的催化剂进行加氢

雷尼镍催化剂中磁性过滤法的研究

雷尼镍催化剂中磁性过滤法的研究 摘要: 本文探讨了利用雷尼镍催化的强磁性原理,采用电磁过滤法去除雷尼镍催化剂,克服了雷尼镍的易燃特性,高活性的催化剂回收后循环使用,再次参与反应给企业带来的经济效益。 雷尼镍又译兰尼镍,是一种由带有多孔结构的镍铝合金的细小晶粒组成的固态异相催化剂,因其催化活性高、稳定性强、导热性好等特点,常用于容易进行氢化或选择性加氢的反应,在环丁烯砜加氢制备环丁烷砜,对硝基苯酚加氢制备对氨基苯酚,芳香环加氢制备环烷烃,醛、酮加氢制备醇,芳胺、双氧水的的制备领域有着广泛的应用。 (电磁过滤) 雷尼镍暴露在空气中即可自燃,十分危险。这一个特性给反应后的分离过滤过程带来了极大的挑战。传统的过滤方法将反应液通过内衬尼龙滤袋的不锈钢滤斗,用真空抽入浓缩釜,将催化剂过滤出来,由于过滤滤斗为敞口状态,风险极大。同时经过反应后的雷尼镍催化剂仍具有很高的活性,循环使用将带来巨大的经济效益,然而敞开式的过滤方式容易使雷尼镍催化剂氧化失活,丧失了循环使用的可能性。 为了克服雷尼镍催化剂易燃特性对过滤的影响,飞潮公司利用雷尼镍的强磁效应,采用磁性过滤法分离雷尼镍催化剂。Ferroclean Ⅱ型电磁过滤系统是一种利用电磁吸附原理,能够高效去除各种流体中的铁磁性杂质和顺磁性杂质,采用全封闭模式,自动控制充液、过滤、反洗过程,避免人工操作带来的风险。反吹、反洗时,采用断电除磁控制,使催化剂由于失去磁性吸附混入液体中,一同由排污口排出,液体形成保护层,隔绝了催化剂与空气接触,高活性催化剂可以直接循环使用。 1.4-丁二醇(BDO)是一重要的有机和精细化工原料,Reppe法生产工艺主要有炔化反应和加氢反应两步组成,在加氢工段通常使用镍系催化剂。在新疆某大型煤化企业2012年上马10万吨/年BDO项目时,采用了飞潮Ferroclean Ⅱ型过滤系统对质量流量为13000Kg/h 的反应出料进行过滤,物料中固体质量25Kg/h,液体密度961Kg/m3, 固体密度920Kg/m3,催化剂颗粒粒径10μm。过滤后物料中催化剂质量降至平均1.2Kg/h,回收催化剂效率约95%以上。

雷尼镍催化剂产品生产工艺

雷尼镍催化剂产品生产工艺及技术发展 第一节质量指标情况 物理化学特性: 雷尼镍催化剂活化前为银灰色无定型粉末(镍铝合金粉),具有中等程度的可燃性,有水存在的情况下部分活化并产生氢气易结块,长久暴露于空气中易风化。镍铝合金粉活化后为灰黑色颗粒,附有活泼氢,极不稳定,在空气中氧化燃烧,须浸在水或乙醇中保存。它最早由美国工程师莫里·雷尼在植物油的氢化过程中,作为催化剂而使用。其制备过程是把镍铝合金用浓氢氧化钠溶液处理,在这一过程中,大部分的铝会和氢氧化钠反应而溶解掉,留下了很多大小不一的微孔。这样雷尼镍表面上是细小的灰色粉末,但从微观角度上,粉末中的每个微小颗粒都是一个立体多孔结构,这种多孔结构使得它的表面积大大增加,极大的表面积带来的是很高的催化活性,这就使得雷尼镍作为一种异相催化剂被广泛用于有机合成和工业生产的氢化反应中。由于“雷尼”是格雷斯化学品公司的注册商标,所以严格地说,仅有这个公司的戴维森化学部门生产的产品才能称作“雷尼镍”,国内除雷尼镍外,还可以称为骨架镍、海绵镍催化剂。而“骨架金属催化剂”或者“海绵金属催化剂”被用于称呼具有微孔结构,而物理和化学性质类似于雷尼镍的催化剂,如雷尼铜、雷尼钴、雷尼铁。 用途: 本产品主要应用于基本有机化工的催化加氢反应中。可用于有机物碳碳键的加氢,碳氮键的加氢,亚硝基化合物与硝基化合物的加氢;偶氮与氧化偶氮化合物、亚胺、胺与连氮二苄的加氢,还可以用于脱氢反应等。最典型的应用是葡萄糖加氢、脂肪腈类的加氢。在医药、染料、油脂、香料、合成纤维等领域有广泛的应用。 例如:葡萄糖加氢生产山梨醇用于合成维生素C、树脂表面活性剂等。苯酚催化加氢生产已二醇用于制备已二胺、油漆、涂料。已二腈加氢生产已二胺是聚酰胺纤维的重要单体。呋喃催化加氢生产四氢呋喃是良好的溶剂。脂肪酸氨化后

加氢催化剂

加氢催化剂 加氢精制催化剂是由活性组分、助剂和载体组成的。其作用是加氢脱除硫、氮、氧和重金属以及多环芳烃加氢饱和。该过程原料的分子结构变化不大,,根据各种需要,伴随有加氢裂化反应,但转化深度不深,转化率一般在10%左右。加氢精制催化剂需要加氢和氢解双功能,而氢解所需的酸度要求不高。 一、加氢精制催化剂的活性组分 加氢精制催化剂的活性组分是加氢精制活性的主要来源,属于非贵金属的主要有ⅥB族和Ⅷ族中几种金属氧化物和硫化物,其中活性最好的有W,Mo和Co,Ni;贵金属有Pt,Pd等。 催化剂的加氢活性和元素的化学特征有密切关系。加氢反应的必要条件是反应物以适当的速度在催化剂表面上吸附,吸附分子和催化剂表面之间形成弱键后再反应脱附。这就要求催化剂应具有良好的吸附特性。而催化剂的吸附特性与其几何特性和电子特性有关。催化剂的电子特性决定了反应物与催化剂表面原子之间键的强度。 研究表明,提高活性组分的含量,对提高活性有利。但综合生产成本及活性增加幅度分析,活性组分的含量应有一最佳范围。目前加氢精制催化剂活性组分含量一般在15%~35%之间。 在工业催化剂中,不同的活性组分常常配合使用。例如,钼酸钴催化剂中含钼和钴,铝酸镍催化剂中含钼和镍等。在同一催化剂内,不同活性组分之间有一个最佳配比范围。 2、加氢精制催化剂中的助剂 为了改善加氢精制催化剂某方面的性能,在制备过程中,常常添加一些助剂。大多数助剂是金属化合物在制备过程中,也有非金属元素。 助剂的作用按机理不同可分为结构性助剂和调变性助剂。结构性助剂的作用是增大表面,防止烧结,提高催化剂的结构稳定性;调变性助剂的作用是改变催化剂的电子结构、表面性质或者晶型结构。

高危物料的使用注意事项-雷尼镍

常用高危物料的使用方法及安全注意事项 1.物料名称:雷尼镍 2.危险特性:其粉体化学活性较高,暴露在空气中会发生氧化反应,甚至自燃。遇强酸反应,放出氢气。粉尘可燃,能与空气形成爆炸性混合物。 3.储存与运输条件:贮存于阴凉、通风仓间内。远离火种、热源,防止阳光直射。包装要求密封,不可与空气接触。应与氧化剂、酸类分开存放。 4.一般用途与使用方法:氢催化剂及镍盐制造。 4.1.使用前的准备工作: 4.1.1.相关操作人员必须佩戴劳保用品,使用前必须接受有针对性的培训。 4.1.2.检查内外包装是否完好、无破损,若有破损现象,应停止使用,并立即上报至仓库管理员。 4.1.3.操作现场应配备灭火器(干粉)和消防沙。 4.1.4.清理操作现场易燃易爆等危化品。 4.2.使用过程的操作: 4.2.1.因雷尼镍活性较高,通常用水对其进行保护,称量时,需尽量去除水分,确保数量满足工艺需求。使用后剩余量应按原包装进行封口退库。 4.2.2.若氢化反应对水分要求较高,需用反应所使用溶剂进行带水处理,具体措施为:称量时,取用水保护的雷尼镍催化剂(尽量去除水分)至装有适量溶剂的烧杯中,称量数量应略超过实际使用数量,缓慢搅拌均匀(应防止催化剂暴露于空气中),静置分层,倾倒大部分上层清液(留小部分上层清液保护催化剂,下同),下层加入适量溶剂,缓慢搅拌均匀,静置分层,倾倒大部分上层清液,重复此操作步骤2-3次,完毕后,用适量溶剂保护催化剂。 4.2.3.若氢化反应对水分不敏感,称量时,取用水保护的雷尼镍催化剂(尽量去除水分)至装有适量溶剂的烧杯中,称量数量应略超过实际使用数量,缓慢搅拌均匀(防止有固体暴露于空气中),静置分层,倾倒大部分上层清液(留小部分上层清液保护催化剂),即可。 4.2.4.20L及以下的反应釜雷尼镍投料:打开釜盖向反应釜中加入适量溶剂,通

雷尼镍催化加氢过滤器

雷尼镍催化加氢过滤器简介 ■催化剂过滤■脱碳过滤■高温过滤■高粘度过滤■高腐蚀过滤■自动反吹过滤 工艺概述: 雷尼镍(Raney Nickel)又译兰尼镍,是一种加氢反应中常用催化剂,又称最早由美国工程师莫里雷尼在植物油的氢化过程中作为催化使用。雷尼镍催化剂是一种带有多孔结构的镍铝合金细小晶体组成的固态异相催化剂,其粒径分布一般较宽,选择适合精度的滤元也尤为重要。由于雷尼镍暴露于空气中干燥,吸附原子态轻,可自然引发火灾隐患,具有危险性,因此对雷尼镍催化剂过滤系统及装置,要求厂商具备高专业度技术水平,以及丰富的项目经验。 兰尼镍催化加氢反应是精细化工、农化工、原料药生产中广泛用到的单元反应之一,加氢催化反应结束后,兰尼镍催化剂需从反应液中过滤分离出。目前一般性过滤方式仍然停留于采用不锈钢金属粉末烧结滤芯,通常数量几十只至上百只不等,在过滤器内部进行纵向排列,底部设计有排渣口。但实际运行中,往往存在金属粉末滤元污堵频繁,反吹效果不佳,影响操作连续等通病弊端。有的系统更是由于设计不合理,缺少项目经验和专业性,过滤几批次后彻底堵死瘫痪,无法再进行反吹操作。给用户企业生产连续和稳定带来了极大困扰。 除此之外,由于金属粉末烧结滤元在高精度值下,有的产品孔隙率往往偏低只有20%~30%左右,这就要求相同处理量下必须填装更多只滤元,方能满足过滤总需求。但滤元填装越多,又带来两个问题。一方面导致过滤器筒体扩增,滤元与过滤器筒体的同时扩增,一套设备下来价格成本不菲。另一方面,由于滤元数量更多,导致每只滤元反吹气压不匀,滤元漏气短路点概率就增高,最终带来反吹不稳定或无法反吹。 某农化厂新建厂区某一工艺段“雷尼镍催化剂过滤”,前期设计采用不锈钢粉末烧结滤元。结果运行几批次后彻底堵死,无法反吹,开盖后发现物料饼结于滤元表面,难以去除。该项目为催化反应釜批次过滤,拦截兰尼镍,过滤器进料口通氮气(不可用泵)施压,工作压力0.2MPa。我公司对该工况进行详细分析,结合相关项目经验,通过模拟实验后确定摒弃行业内一贯采用的金属滤元设计,转而采用有机材料,并对反吹系统进行优化设计。技术改造后用户的棘手难题彻底解决。目前系统运行稳定,反吹效果良好,且运行成本低廉。

钼加氢催化剂

[K10716-0276-0002] 钴钼加氢精制催化剂的制备方法 [摘要] 本发明涉及一种钴钼加氢精制催化剂的制备方法。该方法是将乙酸钴溶于水后加入乙二胺,使其形成钴乙二胺的混合溶液,最后加入钼酸铵制成含有钴钼金属的共浸液,将多孔载体用此溶液浸渍后在无氧或微氧气氛中焙烧得产品。本方法所用设备简单,配制时间短,焙烧时不会产生飞温,因而保证了催化剂的高活性。本方法制备的催化剂加氢脱硫活性远高于UOP公司生产的同类型催化剂。 [K10716-0557-0003] 用于马来酸加氢制1,4-丁二醇的改进的催化剂 发现了一种用于马来酸、马来酸酐或其它可加氢前体催化加氢成1,4-丁二醇和四氢呋喃的改进的催化剂。该加氢催化剂含有负载在炭载体上的钯、银、铼和至少一种选自铁、铝、钴和它们中的混合物的金属。 [K10716-0521-0004] 一种加氢处理催化剂及其制备方法 [摘要] 本发明公开了一种石油烃类加氢处理(加氢裂解和加氢精制,如加氢脱硫、加氢脱氮及加氢脱金属等)催化剂及其制备方法。将高浓度、高稳定性的溶液(至少含一种第ⅥB族元素如钼或钨;一种第ⅧB族元素如镍或钴,和一种无机酸如H3PO4)和拟薄水铝石(pseudo-boehmite)以及含有强电负性元素(通常为第ⅦA族)的物质一起,经充分混合、捏合成可塑状,挤成条状,在110℃~130℃下干燥。然后采用三段恒温焙烧,制得具有较高活性的加氢处理催化剂。 [K10716-0224-0005] 用于中间馏分加氢裂化的新型改进催化剂及其使用方法 [摘要] 本发明与一种中间蒸馏产品的加氢裂化方法有关,并涉及一种具有改进的选择性、活性和稳定性的加氢裂化催化剂,该催化剂用于在700°F以上沸腾的重气体油原料中生产中间蒸馏产品。 [K10716-0153-0006] 在固定床钯催化剂上进行炔的部分加氢制备链烯烃 [摘要] 液相炔在钯催化剂进行部分加氢制备链烯烃的方法,该方法包括:A.使用一种固定床催化剂,该催化剂是通过将优选的金属载体在空气中加热,冷却,减压下用金属钯涂覆,适当成型并处理成一整块催化剂制得的;和B.将10到180ppm的CO加入到加氢所用的氢气中。 [K10716-0162-0007] 改进的采用活性铑催化剂分离和循环的加氢甲酰化方法 [摘要] 通过将活性催化剂和杂质结合在酸性离子交换树脂上,使活性铑催化剂和杂质从含有活性和钝性有机铑催化剂的加氢甲酰化过程料流中分离出来。纯化了的加氢甲酰化料流可返回到加氢甲酰化反应器中。在将经纯化的加氢甲酰化过程料流循环回到反应器之前,将其中所含的全部或部分的钝性铑催化剂进行再活化。在树脂再生过程中,首先使用中性溶剂除去杂质,然后用酸性溶剂从树脂中分离出活性有机铑催化剂。这些活性催化剂可再氢化,然后返回到加氢甲酰化反应器中。可以产生具有至少一个在硅骨架上的酸基团的离子交换树脂,在加氢甲酰化过程料流中的活性有机铑配合物则结合在树脂上。

简述镍铝合金催化剂的生产原理及注意事项

简述镍铝合金催化剂的生产原理及注意事项 【摘要】将预热至770—810℃镍板与熔化的铝在中频感应炉坩锅内进行合金反应,反应过后将熔融液通过中间包倒入铁槽使其自然冷却,合金冷却后再通过各种机械设备将其粉碎筛分成所需粒度的粉末成品,这种粉末成品被称之为镍铝合金粉,镍铝合金粉经过碱处理后可制成骨架催化剂,又称雷尼镍催化剂,它具有加氢、脱氧、甲烷化等作用。镍铝合金粉的市场范围很广,主要用于石油化工、制药、油脂、香料、染料、合成纤维等行业。 【关键词】镍铝合金;催化剂;金属粉尘 1925年,美国工程师莫里·雷尼用等量镍和铝熔合制备出骨架金属催化剂,并得到出人意料的结果,其活性是普通镍的5倍多,莫里·雷尼次年为他的催化剂申请了专利,因此如今的骨架镍又称为雷尼镍。它是将具有催化活性的镍金属和铝高温熔化后制成合金,再用火碱(氢氧化钠)溶液洗掉合金中的铝,这样就形成多空型的金属骨架。 下面以实例简要阐述其生产原理及注意事项。 1.装置简述 新材料车间催化剂装置始建于1985年5月,是国内镍铝合金粉的专业生产厂家,原有生产能力80吨/年,后经1998年和2005年的两次改造和扩建,其生产能力提高到450吨/年。 2.生产流程 首先将铝锭称重,再根据用户需求的配比称出镍板重量,这里所用的重熔铝锭纯度不小于99.7%,镍板纯度不小于99.9%。然后将铝锭投入到中频感应炉中感应加热,同时将镍板放入电阻炉中预热,待铝锭熔化为金属液体并呈现桔红色时,投入预热到770-810℃的镍板,这时,二者在中频感应炉坩锅内进行合金反应,待镍板完全熔化后用碳棒搅拌使合金反应进行的更充分,之后将熔融液倒入中间包,再由中间包倒入铁槽内使其自然冷却,冷却后即可得到晶格排列均匀的镍铝合金块,具体工艺指标如下: 完全冷却后的合金块硬度较差,可用锤子砸碎,得到规格不均匀的尺寸较小的合金块,小合金块通过大鄂破机粗破后,再用钢磨或(和)粉碎整形机等机械进行细磨,然后经过振动筛、旋振筛筛分得到不同规格的镍铝合金粉。这种合金粉经过氢氧化钠溶液处理,将镍铝合金中的铝浸出,同时释放处氢气。其反应过程如下: 2Al+6NaOH→2Na3AlO3+3H2↑

P123模板剂用量对超细镍钼加氢催化剂结构及性能的影响

P123模板剂用量对超细镍钼加氢催化剂结构及性能的影响熊良军,李为民,朱毅青,兰永平 【摘要】摘要:以三嵌段共聚物P123为模板剂,采用溶胶-凝胶法制得不同P123用量(以n(P123)/n(Ti+Si)计)的Ni-Mo/TiO2-SiO2催化剂前躯体;采用TG-DTA、N2吸附-脱附、XRD、H2-TPR和HRTEM对催化剂进行表征;在固定床连续流动微反装置上,以200#低硫煤油为原料,考察催化剂的加氢脱芳烃性能。结果表明,P123用量对催化剂活性组分晶粒尺寸和孔结构参数有明显的影响;催化剂的活性组分分布均匀,没有明显的团聚现象,粒径在4~5nm;催化剂适宜的比表面积和孔结构有利于煤油的加氢脱芳烃;经过工艺优化,采用P123模板剂的Ni-Mo/TiO2-SiO2系列催化剂中,n(P123)/n(Ti+Si)为0.005的催化剂能将煤油中的烷基苯质量分数降至0.41%,萘质量分数降至280μg/g,芳烃脱除率达到95.98%,产品的芳烃含量达到JLD-40脱芳烃溶剂油的产品标准要求。 【期刊名称】石油学报(石油加工) 【年(卷),期】2011(027)006 【总页数】7 【关键词】关键词:P123模板剂;溶胶-凝胶法;镍钼催化剂;加氢脱芳烃溶剂油、汽油、煤油、柴油和润滑油为中国五大类石油产品。商品上称为“无味煤油”的煤油馏分溶剂油也称特种煤油型无味溶剂油,要求其硫、氮和芳烃等含量低,烃族组成中的饱和烃含量高,使用过程中组成应稳定,且具有无毒、无色、无味等特点,是精细化工用特种溶剂之一,广泛应用于印刷油墨、农药、橡胶、医药等各个领域[1]。目前无味煤油来源虽少,但商品应用面和需要量

雷尼镍催化剂

摘要 本文主要叙述雷尼镍催化剂的制备、性能、应用、安全和发展。重点是催化剂的制备和工业上的应用。雷尼镍(Raney-Ni) 是一种历史悠久、应用广泛的催化剂, 近几十年来, 在Raney-Ni制备、表征和改性等方面的研究进展, 大大加深了对其物性和制备机理的了解。Raney镍在大量的工业加工和在有机合成反应中使用,因为它在室温下的稳定性和较高的催化活性。未来,雷尼镍还会有更好的发展。 关键词:雷尼镍,制备,性能,应用,发展 雷尼镍催化剂 Wainwright MS In Preparation of Solid Catalysts, Ertl G, Kn?zinger H, Weitkamp J (eds). Wiley-VCH: Weinheim, 1997: 28-42. 引言: Raney镍是一种用于许多工业生产,由镍铝合金组成的细晶粒固体催化剂。它是1962年美国工程师默里.雷尼(Murray Raney)[1]用作于工业生产中菜油加氢的一种代替催化剂。现在Raney镍作为一种异构催化剂,在各种有机合成、加氢反应中被广泛应用。 Raney镍的制备,是用镍铝合金与氢氧化钠一起反应制得。这种方法,就是所谓的“活化”,把大部分的铝溶解在合金以外。这种多孔的结构拥有很大面积,能给予较高的催化活性。一个典型的催化剂中镍大约占85 %(质量分数),相应的是每两个原子镍就有一个原子铝与之构成催化剂。铝有利于维护孔的结构,对催化剂整体有帮助。 由于Raney镍的一个注册商标是属于W.R.恩典公司(W. R. Grace and Company) ,那些产品在其商标注册期内只能称为“Raney镍”。更通用的术语“骨架催化剂”或“海绵体金属催化剂”可能是用来指其物理和化学特性与Raney镍相似的催化剂。 1. 合金制备 合金的工业化制备方法是通过熔化活性金属(镍催化剂是在这种情况下制得,但铁、铜等“骨架型”催化剂也可以用相同的方法制备)和铝在一个坩埚内淬火,由此产生熔体,然后把它粉碎成细粉[2]。这粉末根据实际应用催化剂的需要而设定在一个特定的粒子尺寸范围内。

相关文档
最新文档