电场的分布

电场的分布
电场的分布

专题八 电场的分布

电场的分布问题是近年的高考的热点问题,这部分题目也选择题为主,本专题主要讲解四种情况下的电场分布问题

1、电场由一个或多个点电荷的电场叠加而成,这类题目的处理方法一般为将各个点电荷的场强进行矢量和,也可运用一些已知的结论,如等量同种电荷的场强分布、等量异种电荷的场强分布

2、电场由非点电荷产生,常见的有直杆、圆环或圆环的一部分,平面等。处理这类问题的思路一般是根据对称性或某些特殊位置解决

3、已知等势面的分布判断电场的分布,思路为电场线与等势面垂直,从而画出电场线

4、已知电势的变化规律(φ—x 图象),根据图象的斜率等于场强来判断 1、(2013海南)1.如图,电荷量为q 1和q 2的两个点电荷分别位于P 点和Q 点。已知在P 、Q 连线至某点R 处的电场强度为零,且PR=2RQ 。则

A .q 1=2q 2

B .q 1=4q 2

C .q 1=-2q 2

D .q 1=-4q 2

2、(2010海南)4、(3分)如下图, M 、N 和P 是以为直径的半圈弧上的三点,O 点为半圆弧的圆心,.电荷量相等、符号相反的两个点电荷分

别置于M 、N 两点,这时O 点电场强度的大小为;若将N 点处的点电荷移至P 点,则O 点的场场强大小变为

之比为

A .

B .

C .

D .

4、(2013江苏)6. 将一电荷量为+Q 的小球放在不带电的金属球附近,所形成的电场线分布如图所示,金属球表面的电势处处相等. a 、b 为电场中的两点,则

(A)a 点的电场强度比b 点的大 (B)a 点的电势比b 点的高

(C)检验电荷-q 在a 点的电势能比在b 点的大

(D)将检验电荷-q 从a 点移到b 点的过程中,电场力做负功 6、(2013山东)19、如图所示,在x 轴上相距为L 的两点固定两个等量异种电荷+Q 、-Q ,虚

线是以+Q 所在点为圆心、2

L

为半径的圆,a 、b 、c 、d 是圆上

的四个点,其中a 、c 两点在x 轴上,b 、d 两点关于x 轴对称,下列说法正确的是( ) A 、b 、d 两点处的电势相同 B 、四个点中c 点处的电势最低 C 、b 、d 两点处的电场强度相同

D 、将一试探电荷+q 沿圆周由a 点移至c 点,+q 的电势能减小

5、(2010上海)9、(3分)三个点电荷电场的电场线分布如图所示,图中a 、b 两点处的场强大小分别为E a 、E b ,电势分别为φa 、φb ,则 …( )

A .E a >E b ,φa >φb

B .E a <E b ,φa <φb

C .E a >E b ,φa <φb

D .E

a <E

b ,φa >φb

3、(2011重庆)6、(6分)如图所示,电量为+q 和-q 的点电荷分别位于正方体的顶点,正方体范围内电场强度为零的点有 …( )

A .体中心、各面中心和各边中点

B .体中心和各边中点

C .各面中心和各边中点

D .体中心和各面中心 7、(2012海南)12.N (N >1)个电荷量均为q (q >0)的小球,均匀分布在半径为R 的圆周上,示意如图.如移去位于圆周上P 点的一个小球,则圆心O 点处的电场强度大小为________,方向________.(已知静电力常量为k )

8、如图所示为一均匀带电的直杆,杆长为L ,O 为杆的中点,A 到O 的距离为L/4,B 到O 的距离为3L/4,试比较A 点和B 点的场强大小

9、(2013江苏)3. 下列选项中的各

4

1

圆环大小相同,所带电荷量已在图中标出,且电荷均匀分布,各4

1

圆环间彼此绝缘. 坐标原点o 处电场强度最大的是

10、(2013新课标1)15.如图,一半径为R 的圆盘上均匀分布着电荷量为Q 的电荷,在垂直于圆盘且过圆心c 的轴线上有a 、b 、d 三个点,a 和b 、b 和c 、 c 和d 间的距离均为R ,在a 点处有一电荷量为q (q >0)的固定点电荷.已知b 点处的场强为零,则d 点处场强的大小为(k 为静电力常量)

A.k 3q R 2

B. k 10q 9R 2

C. k Q +q R 2

D. k 9Q +q 9R

2 11、(2013安徽理综)20.如图所示,xOy 平面是无穷大导体的表面,该导体充满z <0的空间,z >0的空间为真空。将电荷为q 的点电荷置于z 轴上z =h 处,则在xOy 平面上会产生感应电荷。空间任意一点处的电场皆是由点电荷q 和导体表面上的感应电荷共同激发的。已知静电

平衡时导体内部场强处处为零,则在z 轴2

h

z =处的场强大小为(k 为静电力常量)

A .24q k

h B .249q

k h C .2329q k h D .2409q k h

12、(2012安徽)20.如图1所示,半径为R 的均匀带电圆形平板,单位面积带电荷量为σ,

其轴线上任意一点P (坐标为x )的电场强度可以由库仑定律和电场强度的叠加原理求出:

1

222

2π[1]()x

E k R x σ=-+,方向沿

x 轴.现考虑单位面积带电荷量为σ0的无限大均匀带电平板,从其中间挖去一半径为r 的圆板,如图2所示.则圆孔轴线上任意一点Q (坐标为x )的电场强度为( )

b a d q

Q c B

A .0

1222

2π()x

k r x σ+ B .0

1222

2π()r

k r x σ+

C .02πx k r σ

D .02πr

k x

σ

13、(2009北京)7、(6分)图示为一个内、外半径分别为R 1和R 2的圆环状均匀带电平面,其单位面积带电量为σ。取环面中心O 为原点,以垂直于环面的轴线为x 轴。设轴上任意点P 到O 点的距离为x ,P 点电场强度的大小为E 。下面给出E 的四个表达式(式中k 为静电力常量),其中只有一个是合理的。你可能不会求解此处的场强E ,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断。根据你的判断,E 的合理表达式应为…( )

A. B.

C.

D.

14、(2010福建)6、(6分)物理学中有些问题的结论不一定必须通过计算才能验证,有时只需通过一定的分析就可以判断结论是否正确.如图所示为两个彼此平行且共轴的半径分别为R 1和R 2的圆环,两圆环上的电荷量均为q(q >0),而且电荷均匀分布.两圆环的圆心O 1和O 2相距为2a ,联线的中点为O ,轴线上的A 点在O 点右侧与O 点相距为r(r <a).试分析判断下列关于A 点处电场强度大小E 的表达式(式中k 为静电力常量)正确的是 …( )

A .E =

B .E =

C .E =

D .

E =

15、(周检测15)已知电荷q 均匀分布在半球面AB 上,球面半径为R ,CD 为通过半球顶点与球心O 的轴线,如图所示,M 是位于CD 轴线上球面外侧,且OM=ON=L=2R 。已知M 点的场强为E ,则N 点的场强为 A.E B.kq/L 2 C.kq/L 2 -E D.kq/2R 2

-E

16、(2013上海)10.两异种点电荷电场中的部分等势面如图所示,已知A点电势高于B点电势。若位于a、b处点电荷的电荷量大小分别为q

a

和q b,则

(A)a处为正电荷,q a<q b

(B)a处为正电荷,q a>q b

(C)a处为负电荷,q a<q b

(D)a处为负电荷,q a>q b

17、(2012天津)5.两个固定的等量异号点电荷所产生电场的等势面如图中虚线所示,一带负电的粒子以某一速度从图中A点沿图示方向进入电场在纸面内飞行,最后离开电场,粒子只受静电力作用,则粒子在电场中()

A.做直线运动,电势能先变小后变大

B.做直线运动,电势能先变大后变小

C.做曲线运动,电势能先变小后变大

D.做曲线运动,电势能先变大后变小

18、(2011上海)14、(3分)两个等量异种点电荷位于x轴上,相对原点对称分布,正确描述电势φ随位置x变化规律的是图()

19、(2009江苏)8、(4分)空间某一静电场的电势φ在x轴上分布如图所示,x轴上两点B、

C的电场强度在x方向上的分量分别是E

Bx 、E

Cx

.下列说法中正确的有( )

A.E

Bx 的大小大于E

Cx

的大小

B.E

Bx

的方向沿x轴正方向

C.电荷在O点受到的电场力在x方向上的分量最大

D.负电荷沿x轴从B移到C的过程中,电场力先做正功,后做负功

20、(2010江苏)5、(3分)空间有一沿x轴对称分布的电场,其电场强度E随x变化的图象如图所示.下列说法中正确的是( )

A.O点的电势最低

B.x2点的电势最高

C.x1和-x1两点的电势相等

D.x1和x3两点的电势相等

几种典型电场线分布示意图及场强电势特点

匀强电场 等量异种点电荷的电场 等量同种点电荷的电场 点电荷与带电平 孤立点电荷周围的电场 几种典型电场线分布示意图及场强电势特点表重点 一、场强分布图 二、列表比较 下面均以无穷远处为零电势点,场强为零。 孤立的 正点电荷 电场 线 直线,起于正电荷,终止于无穷远。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点 组成的球面上场强大小相等,方向不同。 电势 离场源电荷越远,电势越低;与场源电荷等距的各点组成的球面是等势面,每点的电势为正。 等势面 以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。 孤立的 负点电荷 电场 线 直线,起于无穷远,终止于负电荷。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点组成的球面上场强大小相等,方向不同。

电势 离场源电荷越远,电势越高;与场源电荷等距的各点 组成的球面是等势面,每点的电势为负。 等势面以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。 等量同种负点电荷电场 线 大部分是曲线,起于无穷远,终止于负电荷;有两条 电场线是直线。 电势每点电势为负值。 连 线 上 场 强 以中点最小为零;关于中点对称的任意两点场强大 小相等,方向相反,都是背离中点;由连线的一端 到另一端,先减小再增大。 电 势 由连线的一端到另一端先升高再降低,中点电势最 高不为零。 中 垂 线 上 场 强 以中点最小为零;关于中点对称的任意两点场强大 小相等,方向相反,都沿着中垂线指向中点;由中 点至无穷远处,先增大再减小至零,必有一个位置 场强最大。 电 势 中点电势最低,由中点至无穷远处逐渐升高至零。 等量 电场大部分是曲线,起于正电荷,终止于无穷远;有两条

有限长均匀带电杆的简单复合体的空间电场分布

有限长均匀带电杆及其简单复合体的空间电场分布 邓晓宇 [摘要]利用教材中有限长带电杆的电场分布的结论,将正四边形均匀带电体,田字形均匀带电体视为多段带电直棒,在空间中采取分段计算然后利用场的叠加原理,导出带电正方形杆,可变田字形杆的普遍表达式,并由此创新性的拓展研究两个正方形杆,两个田字形杆的空间相互作用的空间电场分布,利用DTP 平台编程画出其电场的空间分布图形。 [关键词]带电正方形杆,田字形杆;分段计算;叠加原理;空间电场分布;DTP 平台 O 引言 电场强度的计算是电磁学中的一个常见问题,在各种带电体中,具有中心对称性的带电细圆环或薄圆盘的研究比较多,方法也多种多样,而对不具有中心对称性的矩形或正方形的带电体则研究得很少,本文从教材中一个例题的结果引出,将均匀带电正方形杆,田字形杆视为多段带电直棒,采取分段计算然后利用场的叠加原理,导出均匀带电正方形杆,田字形杆空间电场分布的普遍表达式,并由此拓展研究两个正方形杆,两个田字形杆的空间相互作用的空间电场分布,最后利用DTP 平台编程画出其电场的空间分布图形。 1一段均匀带电细棒的空间电场分布 一般来说应从点电荷的场利用叠加原理可计算限线电荷,面电荷,体电荷的场,但是,往往处理积分特别是多重积分会遇到计算上的困难,有限长直线均匀带电体的电场有一个解析表达式,利用这一结果,可以较方便的处理很多问题,其结果如下:如图1所示,均匀带电细棒的线电荷密度为λ,直棒外一点P 到直棒的距离为a ,点P 至棒两端的连线与直棒之间的夹角分别为α和β,则p 点的场强为: )sin (sin 4αβπελ-= a Ex ; ]1[)c o s (c o s 4βαπελ -=a Ey 这是《大学物理学》教材中的结论,若点P 到直棒的垂足为O,O 到直棒两端的距离分别为1l ,和2l ,则p 点的场强为: )(1 1(4221222 a l a l Ex +-+= πελ (1) )(42222 221 1a l l a l l a Ey +++= πελ (2)

常见的电场电场线分布规律

常见电场电场线分布规律 电场强度、电场线、电势部分基本规律总结 整理:胡湛霏 、几种常见电场线分布: 二、 等量异种电荷电场分析 1、 场强: ① 在两点电荷连线上,有正电荷到负电荷,电场强度先减小后增大,中点 0 的电场强度最小。电场强度方向由正电荷指向负电荷; ② 两点电荷的连线的中垂线上,中点 0的场强最大,两侧场强依次减小。各 点电场强度方向相同。 2、 电势: ① 由正电荷到负电荷电势逐渐降低; ② 连线的中垂线所在的、并且与通过的所有电场线垂直的平面为一等势面; ③ 若规定无限远处电势为 0,则两点电荷连线的中垂线上各点电势即为 0。 3、 电势能:(设带电粒子由正电荷一端移向负电荷一端) ① 带电粒子带正电:电场力做正功,电势降低,电势能减少; ② 带电粒子带负点:电场力做负功,电势降低,电势能增加。 三、 等量同种电荷电场分析 1、 场强: ① 两点电荷的连线上, 由点电荷起,电场强度越来越小, 到终点O 的电场强度 为0,再到另一点电荷,电场强度又越来越大; ② 两点电荷连线的中垂线上, 由中点O 向两侧,电场强度越来越大,到达某一 点后电场强度又越来越小; ③ 两点电荷(正)连线的中垂线上, 电场强度方向由中点 O 指向外侧,即平行 于中垂线。 2、 电势: O 点电势最小,即由一个正点电荷到另一正点电荷电势先降低后升高 O 点电势最大,即由一个负点电荷到另一负点电荷电势先增高后降低。 ③ 其余各点电势由一般规律判断,顺着电场线方向电势逐渐降低。 连线的中垂线上, O 电电势最大,即 O 点两侧电势依次降低。 连线的中垂线上, O 点电势最小,即 O 点两侧电势依次升高 ①两正点电荷连线上, ②两负点电荷连线上,

几种典型电场线分布示意图及场强电势特点

匀强电场 等量异种点电荷的电场 等量同种点电荷的电场 - - - - 点电荷与带电平+ 孤立点电荷周围的电场 几种典型电场线分布示意图及场强电势特点表 一、场强分布图 二、列表比较 下面均以无穷远处为零电势点,场强为零。 孤立 的 正点 电荷 电场线 直线,起于正电荷,终止于无穷远。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点组成的球面上场强大小相等,方向不 同。 电势 离场源电荷越远,电势越低;与场源电荷等距的各点组成的球面是等势面,每点的电势为正。 等势面 以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。 孤立 的 负点 电荷 电场线 直线,起于无穷远,终止于负电荷。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点组成的球面上场强大小相等,方向不同。 电势 离场源电荷越远,电势越高;与场源电荷等距的各点组成的球面是等势面,每点的电势为负。 等势面 以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。 等量 同种 负点 电荷 电场线 大部分是曲线,起于无穷远,终止于负电荷;有两条电场线是直线。 电势 每点电势为负值。 连 线 上 场强 以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是背离中点;由连线的一端到另一端,先减小再增大。 电势 由连线的一端到另一端先升高再降低,中点电势最高不为零。

中 垂线上场强 以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂线指向中点;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。电势 中点电势最低,由中点至无穷远处逐渐升高至零。 等量同种正点电荷电场线大部分是曲线,起于正电荷,终止于无穷远;有两条电场线是直线。 电势每点电势为正值。 连 线 上 场强 以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是指向中 点;由连线的一端到另一端,先减小再增大。 电势由连线的一端到另一端先降低再升高,中点电势最低不为零。 中 垂 线 上 场强 以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂 线指向无穷远处;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。 电势 中点电势最高,由中点至无穷远处逐渐降低至零。 等量异种点电荷电场线大部分是曲线,起于正电荷,终止于负电荷;有三条电场线是直线。 电势中垂面有正电荷的一边每一点电势为正,有负电荷的一边每一点电势为负。 连 线 上 场强 以中点最小不等于零;关于中点对称的任意两点场强大小相等,方向相同,都是由 正电荷指向负电荷;由连线的一端到另一端,先减小再增大。 电势由正电荷到负电荷逐渐降低,中点电势为零。 中 垂 线 上 场强 以中点最大;关于中点对称的任意两点场强大小相等,方向相同,都是与中垂线垂 直,由正电荷指向负电荷;由中点至无穷远处,逐渐减小。 电势 中垂面是一个等势面,电势为零 例如图所示,三个同心圆是同一个点电荷周围的三个等势面,已知这三个圆的半径成等差数列。A、B、C分别是这三个等势面上的点,且这三点在同一条电场线上。A、C两点的电势依次为φA=10V和φC=2V,则B点的电势是 A.一定等于6V B.一定低于6V C.一定高于6V D.无法确定 解:由U=Ed,在d相同时,E越大,电压U也越大。因此U AB> U BC,选B 要牢记以下6种常见的电场的电场线和等势面: 注意电场线、等势面的特点和电场线与等势面间的关系: ①电场线的方向为该点的场强方向,电场线的疏密表示场强的大小。 ②电场线互不相交,等势面也互不相交。 ③电场线和等势面在相交处互相垂直。 ④电场线的方向是电势降低的方向,而且是降低最快的方向。 +

物理选修—几种常见电场线特点

几种常见电场线的分布及其特点 1.点电荷的电场:正点电荷的电场线从正点电荷出发延伸到无限远;负点电荷的电场线从无限远出发延伸到负点电荷。 正点电荷的电场负点电荷的电场 ①点电荷的电场中,没有场强相等的点。(或大小不等或方向不同) ②若以点电荷为球心作一个球面,电场线处处与球面垂直。在同一球面上的各点场强大小相等方向不同。 ③若以点电荷为原点作一条射线,则该射线上的各点场强方向相同大小不等,离点电荷越远场强越小。 2.等量同种点电荷的电场(正): ①两点电荷连线中点O处的场强为0,向两侧逐渐增大,方向指向中点。 ②两点电荷连线中点O沿中垂面(线)到无限远,电场线先变密后变疏,即电场强度先变大后变小,方向背离中点。 ③等量同种负点电荷的电场与等量同种正点电荷的电场分布相同,但方向相反。 等量同种正点电荷的电场 3.等量异种点电荷的电场: ①两点电荷连线上的各点电场强度方向从正点电荷指向负点电荷,沿电场线方向先变小后变大,中点处电场强度最小。 ②两点电荷连线的中垂面(线)上,电场强度的方向均相同,且总与中垂面(线)垂直指向负点电荷一侧,从中点到无穷远处电场强度不断减小,中点电场强度最大。 等量异种点电荷的电场 4.平行金属板的电场(匀强电场): ①两平行金属板形成的电场是匀强电场。 电场中各点大小相等方向相同, 其电场线是间隔相等的平行线 匀强电场 5.点电荷与金属板的电场 ①在金属板附近电场方向均垂直于金属板。 点电荷与金属板的电场 6.常见一般电场: ①可假象在B端有一个正电荷,在A端有一个负电荷。 ②E A >E C >E B ③同一电荷在A受到的电场力大于在B受到的电场力。 ④若粒子运动轨迹如沿图中虚线所示,可断定粒子 所受电场力斜向左上(曲线运动中轨迹凹侧为受力方向)。常见一般电场若仅受电场力则粒子带增加(根据力与运动方 E A >E B >E O =0 E D >E C >E O =0 E D >E E >0

带电细圆环以及薄圆盘的空间电场分布

带电细圆环以及薄圆盘的空间电场分布 孝义市第五中学:蔺金林 摘要: 先介绍电位的两种计算方法,一种是用点电荷的电位分布来计算电位(参考点在无穷远时),一种是用电位与场强的积分关系式来计算电位.然后用两种不同的方法求出均匀带电薄圆盘轴线上的电位和电场.根据点电荷电势和电场的叠加原理,导出了均匀带电细圆环电势和电场的级数表达式,再用叠加法推广到均匀带电圆盘周围空间的电场分布(将均匀带电薄圆盘分割成同心的带电圆环,先求出任一带电圆环电位的空间分布,再进行叠加,由点电荷在空间激发电场的电位公式,用两种方法,一种是线电荷元分割法,一种是面电荷元分割法,求出均匀带电圆盘电位的空间分布). 关键词:均匀带电圆环;均匀带电圆盘;电场;电位

The Space Distribution Of Electric Field Of Charged Thin Ring As Well As Thin Disc ABSTRACT:In this paper, we first introduce two computational methods of the electric potential, one kind is that calculating the electric potential with the point charges’ potential distribution (reference point is in infinite distance), another one is that calculating the electric potential with the electric potential and the field intensity integral relationship. Then extract the spool thread on the even charged thin disc with two different methods. According to the principle of superposition of electric potential and the electric field of the point charges, derive the progression expression of the electric potential and the electric field on the even charged thin ring, again we will use the method of superposition to promote the space distribution of electric field (Divide the even charged thin disc to many a concentric charged rings. Extract first the electric potential spatial distribution no matter where on a charged ring. Again carry on the superposition. From the formula of electric potential stirred up by a point charge, we deduce the space distribution of a uniform charged disc’s electric potential with two methods. One kind is the line charge method, one kind is the surface charge method). KEYWORDS:Even charged ring;Even charged disc;Electric field; Electric potential

电场的分布

专题八 电场的分布 电场的分布问题是近年的高考的热点问题,这部分题目也选择题为主,本专题主要讲解四种情况下的电场分布问题 1、电场由一个或多个点电荷的电场叠加而成,这类题目的处理方法一般为将各个点电荷的场强进行矢量和,也可运用一些已知的结论,如等量同种电荷的场强分布、等量异种电荷的场强分布 2、电场由非点电荷产生,常见的有直杆、圆环或圆环的一部分,平面等。处理这类问题的思路一般是根据对称性或某些特殊位置解决 3、已知等势面的分布判断电场的分布,思路为电场线与等势面垂直,从而画出电场线 4、已知电势的变化规律(φ—x 图象),根据图象的斜率等于场强来判断 1、(2013海南)1.如图,电荷量为q 1和q 2的两个点电荷分别位于P 点和Q 点。已知在P 、Q 连线至某点R 处的电场强度为零,且PR=2RQ 。则 A .q 1=2q 2 B .q 1=4q 2 C .q 1=-2q 2 D .q 1=-4q 2 2、(2010海南)4、(3分)如下图, M 、N 和P 是以为直径的半圈弧上的三点,O 点为半圆弧的圆心,.电荷量相等、符号相反的两个点电荷分 别置于M 、N 两点,这时O 点电场强度的大小为;若将N 点处的点电荷移至P 点,则O 点的场场强大小变为 , 与 之比为 A . B . C . D . 4、(2013江苏)6. 将一电荷量为+Q 的小球放在不带电的金属球附近,所形成的电场线分布如图所示,金属球表面的电势处处相等. a 、b 为电场中的两点,则 (A)a 点的电场强度比b 点的大 (B)a 点的电势比b 点的高 (C)检验电荷-q 在a 点的电势能比在b 点的大 (D)将检验电荷-q 从a 点移到b 点的过程中,电场力做负功 6、(2013山东)19、如图所示,在x 轴上相距为L 的两点固定两个等量异种电荷+Q 、-Q ,虚 线是以+Q 所在点为圆心、2 L 为半径的圆,a 、b 、c 、d 是圆上 的四个点,其中a 、c 两点在x 轴上,b 、d 两点关于x 轴对称,下列说法正确的是( ) A 、b 、d 两点处的电势相同 B 、四个点中c 点处的电势最低 C 、b 、d 两点处的电场强度相同 D 、将一试探电荷+q 沿圆周由a 点移至c 点,+q 的电势能减小 5、(2010上海)9、(3分)三个点电荷电场的电场线分布如图所示,图中a 、b 两点处的场强大小分别为E a 、E b ,电势分别为φa 、φb ,则 …( ) A .E a >E b ,φa >φb B .E a <E b ,φa <φb C .E a >E b ,φa <φb D .E a <E b ,φa >φb 3、(2011重庆)6、(6分)如图所示,电量为+q 和-q 的点电荷分别位于正方体的顶点,正方体范围内电场强度为零的点有 …( ) A .体中心、各面中心和各边中点

电源内部的电场分布

电源内部的电场分布 安徽省萧县中学李峰 核心提示:并不能认为电源内电势均匀地连续的分布着,总是存在着由正极指向负极的 电场。在电源内,也并非由“非静电力”把直接把正电荷由负极传送到电源正极...... 普通高中课程标准《物理》实验教科书(人民教育出版社,2010年4月第三版),第二 章第二节,关于电源的电动势,有这样一段叙述:“由于正、负极总保持一定数量的正、负 电荷,所以电源内部总存在着由正极指向负极的电场。在这个电场中,正 电荷所受的静电力阻碍它继续向正极移动。因此在电源内要使正电荷向正 极移动,就一定要有‘非静电力’作用于电荷才行。”其彩色插图电源部 分如图1: 图1 本人认为:教材对电动势和电源内部电场分布不加区别,不加分析的作如此笼统的概括 的叙述,不仅不符合电源内部实际电场分布,还给学生认识和理解电源内部电场造成知识 和思维上的混乱,更增加了理解电源电动势的难度。 下面我们以蓄电池为例,分析电动势的产生及电源内部的电场分布。 我们知道,蓄电池产生电动势的基本原理都是相同的.都是靠作为正、负两极的不同材 质的金属板(棒,下略)和与金属板附近的电解液之间的化学作用,即“非静电力”将金属 板和电解液中正、负电荷分离,在极板附近产生电偶极层,形成电势差,从而完成将化学能 转化为电能的过程。而正负两电极电势差之和,就是该电源的电动势。 当电路断开时,在电源负极,在“非静电力”作用下,金属离子与电子分离。进入电解 液的正离子与留在金属棒上的电子形成电偶极层,在此电偶极层中,电场方向由极层上正离 子指向负极极板,这一电场阻碍金属离子的进一步分离。当电场力与“非静电力”达到动态 平衡时,溶液与电极间形成相对稳定的电势差,即在电源负极处形成一次电势跃变,记作 U CD。而发生电势跃变的空间尺度应当是很小的。 同理,在电源正极,电极与电解液产生化学作用,溶液中正离子积聚到电源正极。使正 极上积聚的正离子与正极附近电解液中负离子形成电偶极层,电场方向由正极指向溶液,这 一电场阻碍正离子在正极进一步聚集。当电场力与使溶液中正离子积聚到 正极上的化学力即“非静电力”达到动态平衡时,正极与电解液间形成相 对稳定的电势差,即在正极附近也形成一次电势跃变,其电势差记作U AB。 同样,发生此电势跃变的空间尺度也很小。如图2: 图2 以上分析可以看出,在电源内部,除了AB间存在着由A指向B,CD间存在着由C指向 D的电场外,相对于AB,CD发生电势跃变的电偶极层更为广大的BC区域内,并不存在着由 负极指向正极的电场。AB与CD两个电偶极层的电荷在BC区间产生的电场方向相反,合场 强为零。各处电势相等,电源电动势等于两电极处电势跃变之和。即 E=U AB+U CD。 当外电路接通时,负极上电子沿外电路流向正极,形成由正极流向负极的电流。而在电 源内部,负极上电子减少,必然有与之形成电偶的正离子脱离电偶极层进入电源内部的电解液,动态平衡破坏。在“非静电力”作用下,负极又将释放新的正离子使得负极上的电子得

几种典型电场线分布示意图及场强电势特点表

几种典型电场线分布示意图及场强电势特点表一、场强分布图 二、列表比较 下面均以无穷远处为零电势点,场强为零。 孤立的正点电荷电场线直线,起于正电荷,终止于无穷远。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点组成的球面上 场强大小相等,方向不同。 电势 离场源电荷越远,电势越低;与场源电荷等距的各点组成的球面是 等势面,每点的电势为正。 等势面 以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等 势面越密。 孤立的负点电荷电场线直线,起于无穷远,终止于负电荷。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点组成的球面上 场强大小相等,方向不同。 电势 离场源电荷越远,电势越高;与场源电荷等距的各点组成的球面是 等势面,每点的电势为负。 等势面 以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等 势面越密。 等量同种负电场线大部分是曲线,起于无穷远,终止于负电荷;有两条电场线是直线。电势每点电势为负值。 连线上场强 以中点最小为零;关于中点对称的任意两点场强大小相等,方 向相反,都是背离中点;由连线的一端到另一端,先减小再增 大。

等势面 (1)定义:电场中电势相等的点构成的面 (2)等势面的性质: ①在同一等势面上各点电势相等,所以在同一等势面上移动电荷,电场力不做功 ②电场线跟等势面一定垂直,并且由电势高的等势面指向电势低的等势面。

③等势面越密,电场强度越大 ④等势面不相交,不相切 (3)等势面的用途:由等势面描绘电场线,判断电场中电势的高低。 (4)几种电场的电场线及等势面 ①点电荷电场中的等势面:以点电荷为球心的一簇球面如图l所示。 ②等量异种点电荷电场中的等势面:是两簇对称曲面,如图2所示。 ③等量同种点电荷电场中的等势面:是两簇对称曲面,如图3所示。 ④匀强电场中的等势面是垂直于电场线的一簇平面,如图4所示。 ⑤形状不规则的带电导体附近的电场线及等势面,如图5所示。 注意:带方向的线表示电场线,无方向的线表示等势面。图中的等势“面”画成了线,即以“线”代“面”。 + 图1 图2 图3 图5 电场线等势面 图4

大气电场与空间电场

大气电场 大气电场也称自然电场,是地球环境中存在的一种自然现象,并对地球环境中的植物生长发育以及病虫害发生与发展产生着一种“无形”控制,它是继光、温度、水分、空气、土壤、肥料之后于上世纪九十年代才发现的新要素。大气电场的形成是由带负电荷的地球和带正电荷的电离层组成的类似于球形电容器产生的,因此,大气电场的方向指向地面,其强度随时间、地点、天气状况和离地面的高度而变。按天气状况可分为晴天大气电场和讯变大气电场。图2-18给出了全球大气电过程的球形电容器模型,其中E0为大气电场的电场强度。 图2-18全球大气电过程的球形电容器模型(图片设计:韩大鹏刘滨疆) 2.2.4.1 晴天大气电场 晴天大气电场为正电场,具有空间分布特征。其电场强度可随纬度、气溶胶含量、地面高度、局地特点、时间变化而变化。 1)晴天大气电场局地特点与植物的多样性相关 大陆上地面晴天大气电场随地点的变化较为复杂,就全球平均而言,电场强度E0在陆地上为120伏/米,在海洋上为130伏/米。我国广州的大气电场的平均值为87 v·m-1,日较差为11%,而伊宁则为56 v·m-1,日较差为129%,各地区大气电场的不同会导致植物生长变化的多样性。 2)晴天大气电场场强也因时因地而异 通常,晴天大气电场随高度增加近似呈指数规律递减的分布特征。然而,即使在同一时刻,晴天大气电场在不同高度范围内随高度的分布规律也不尽相同,在贴近地面的大气层中,

晴天大气电场将受大地电极效应的影响。由于大地带负电荷,因而在贴近地面的一薄层大气中积累了大量符号相反的正电荷,而且体电荷密度在该气层中很不均匀,具有随高度增加而急剧递减的变化特征,于是该气层中便形成了较强的大气电场。晴天大气电场受大地电极效应影响而增大1倍的高度分别为1m和5m左右,高度为零处的晴天大气电场为未受大地电极效应影响的晴天大气电场的2.8倍。 根据静电学感应原理,贴近地面的晴天大气电场强度的增加,其植物体表层将感应出更多的荷负电的离子。阴离子积累在植株叶缘或叶脉等尖端部位最易获得大气正电荷的中和而发生化学反应。比如叶内的OH-负离子,它可对大气中阳离子或荷正电荷的粒子放电而发生4OH—-4e=O2↑+2H20的还原反应。感应积累于叶面表层的OH-在日光电磁场的激发下很易在气孔等棱缘处放出电子,这个反应也许同植物的光合作用放氧有关。在人为施加静电场的环境中,有些植物也能在黑暗中进行光合作用就是对这一推测的正确性的证明。 3)晴天大气电场时变性 晴天大气电场具有较明显的日变化和年变化,还存在周期约几分钟至十几分钟的脉动起伏变化。晴天大气电场日变化的波形受两种机制的影响,一种是全球普遍变化的机制,主要与全球雷暴活动的日变化有关,另一种是地方性局地变化机制,主要与局地大气状况的日变化所导致大气电导率和大气体电荷密度等大气电学量的日变化有关。根据世界各国的观测结果,可将地面晴天大气电场日变化归纳为二种基本类型。 第一类为地面晴天大气电场日变化具有单峰单谷的变化波形。通常,这类地面晴天大气电场日变化的峰值出现在下午至傍晚,即地方时13时至19时左右。谷值多出现在清晨,即地方时2时至6时左右,远离人口密集的大城市、工业区和气溶胶自然源地的小城镇和乡村地区,其地面晴天大气电场日变化有些属于这一类型。这类地区的植物可在晴天大气电场向峰值变化时从土壤中获得阴离子HCO3-、OH-等,又可在晴天大气电场由峰值向谷值变化时吸收阳离子C a+2等。因而,这类地区的植物在每日中有两次大规模吸收阴离子或阳离子的时间,这类地区的生物产量往往不会太高。 第二类为大陆复杂型。这类地面晴天大气电场日变化具有双峰双谷的变化波形.通常,第一峰值多出现在上午地方时7时至10时左右,第二峰值多出现在晚间地方时18时至21时左右,第一谷值多出现在清晨地方时2时至6时左右,第二谷值多出现在下午地方时13时至16时左右,离人口密集的大城市、工业区和气溶胶自然源地较近的地区的地面晴天大气电场日变化多属于这一类型。这类地区的植物在每日里分别有两次大规模地吸收阴离子和阳离子的时间,故其生物产量一般高于单峰单谷地区。

几种典型电场线分布示意图及场强电势特点

几种典型电场线分布示意图及场强电势特点

匀强 等量异种点电等量同种点 - - 点电荷与+ 孤立点电荷 几种典型电场线分布示意图及场强电势特点表 重点 一、场强分布图 二、列表比较 下面均以无穷远处为零电势点,场强为零。 孤立 的 正点 电荷 电场线 直线,起于正电荷,终止于无穷远。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点 组成的球面上场强大小相等,方向不同。 电势 离场源电荷越远,电势越低;与场源电荷等距的各点组成的球面是等势面,每点的电势为正。 等势面 以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。 孤立 电场直线,起于无穷远,终止于负电荷。

的负点电荷线 场强 离场源电荷越远,场强越小;与场源电荷等距的各点 组成的球面上场强大小相等,方向不同。 电势 离场源电荷越远,电势越高;与场源电荷等距的各点 组成的球面是等势面,每点的电势为负。 等势 面 以场源电荷为球心的一簇簇不等间距的球面,离场源 电荷越近,等势面越密。 等量同种负点电荷电场 线 大部分是曲线,起于无穷远,终止于负电荷;有两条 电场线是直线。 电势每点电势为负值。 连 线 上 场 强 以中点最小为零;关于中点对称的任意两点场强大 小相等,方向相反,都是背离中点;由连线的一端 到另一端,先减小再增大。 电 势 由连线的一端到另一端先升高再降低,中点电势最 高不为零。 中 垂 线 上 场 强 以中点最小为零;关于中点对称的任意两点场强大 小相等,方向相反,都沿着中垂线指向中点;由中 点至无穷远处,先增大再减小至零,必有一个位置 场强最大。

电 势 中点电势最低,由中点至无穷远处逐渐升高至零。 等量同种正点电荷电场 线 大部分是曲线,起于正电荷,终止于无穷远;有两条 电场线是直线。 电势每点电势为正值。 连 线 上 场 强 以中点最小为零;关于中点对称的任意两点场强 大小相等,方向相反,都是指向中点;由连线的 一端到另一端,先减小再增大。 电 势 由连线的一端到另一端先降低再升高,中点电势 最低不为零。 中 垂 线 上 场 强 以中点最小为零;关于中点对称的任意两点场强 大小相等,方向相反,都沿着中垂线指向无穷远 处;由中点至无穷远处,先增大再减小至零,必 有一个位置场强最大。 电 势 中点电势最高,由中点至无穷远处逐渐降低至零。 等量异种点电荷电场 线 大部分是曲线,起于正电荷,终止于负电荷;有三条 电场线是直线。 电势中垂面有正电荷的一边每一点电势为正,有负电荷的

带电球体电场与电势的分布

王峰 (南通市启秀中学物理学科 江苏 南通 226006) 在高三物理复习教学中,遇到带电体的内、外部场强、电势的分布特点问题时,我们一般以带电金属导体为例,指出其内部场强处处为零,在电势上金属体是一个等势体,带电体上的电势处处相等;但对带电金属导体的内、外部场强、电势的大小的分布特点及带电绝缘介质球的内、外部电场、电势的大小分布很少有详细说明;而在电场一章的复习中,常常会遇到此类问题,高三学生已初步学习了简单的微积分,笔者在此处利用微积分的数学方法,来推导出上述问题的答案,并给出相应的“r E -”和“r -?”的关系曲线图,供大家参考。 本文中对电场、电势的分布推导过程均是指在真空环境....中,即相对介电常数10=ε; 对电势的推导均取无穷远处为电势零参考点的,即0=∞U 。 1、 带电的导体球:因为带电导体球处于稳定状态时,其所带电荷全部分布在金属球体的表面,所以此模型与带电球壳模型的电场、电势分布的情况是一致的。 电场分布: 1.1.1内部(r

常见电场电场线分布规律

常见电场电场线分布规律

常见电场电场线分布规律 电场强度、电场线、电势部分基本规律总结 整理:胡湛霏 一、几种常见电场线分布: 二、等量异种电荷电场分析 1、场强: ①在两点电荷连线上,有正电荷到负电 荷,电场强度先减小后增大,中点O的 电场强度最小。电场强度方向由正电荷 指向负电荷; ②两点电荷的连线的中垂线上,中点O的场强最大,两侧场强依次减小。各点电场强度方向相同。 2、电势: ①由正电荷到负电荷电势逐渐降低; ②连线的中垂线所在的、并且与通过的所有电场

线垂直的平面为一等势面; ③若规定无限远处电势为0,则两点电荷连线的中垂线上各点电势即为0。 3、电势能:(设带电粒子由正电荷一端移向负电荷一端) ①带电粒子带正电:电场力做正功,电势降低,电势能减少; ②带电粒子带负点:电场力做负功,电势降低,电势能增加。 三、等量同种电荷电场分析 1、场强: ①两点电荷的连线上,由点电荷起,电场 强度越来越小,到终点O的电场强度为 0,再到另一点电荷,电场强度又越来越 大; ②两点电荷连线的中垂线上,由中点O向两侧,电场强度越来越大,到达某一点后电场强度又越来越小; ③两点电荷(正)连线的中垂线上,电场强度方向由中点O指向外侧,即平行于中垂线。 2、电势: ①两正点电荷连线上,O点电势最小,即由一个

正点电荷到另一正点电荷电势先降低后升高。 连线的中垂线上,O电电势最大,即O点两侧电势依次降低。 ②两负点电荷连线上,O点电势最大,即由一个负点电荷到另一负点电荷电势先增高后降低。连线的中垂线上,O点电势最小,即O点两侧电势依次升高。 ③其余各点电势由一般规律判断,顺着电场线方向电势逐渐降低。 3、电势能: ①由电势判断:若带电粒子为正电荷,则电势越高,电势能越大;若带电粒子为负电荷,则电势越高,电势能越小。 ②由功能关系判断:若电场力做负功,则电势能增加;若电势能做正功,则电势能减少。 3、匀强电场 1、特点: ①匀强电场的电场线,是疏密相同的平行的直线。 ②场强处处相等。 ③电荷在其中受到恒定电场力作用,带电粒子在其中只受电场力时做匀变速运动。

第二章 练习题及参考答案

第二章 静电场 练习题及参考答案 1、均匀带电导体球,半径为a ,带电量为Q 。试求 (1) 球内任一点的电场 (2) 球外任一点的电位移矢量 解:(1) (2)a r e ?r Q e ?D D r r >==2 04π 2、放在坐标原点的点电荷在空间任一点r 处产生的电场强度表达式为 r e r q E ?42 0πε= (1)求出电力线方程;(2)画出电力线。 解:(1) y C z x C y 21== 式中,21,C C 为任意常数。 (2)电力线图所示。 3、用球坐标表示的场225 ?r e E r = ,求 (1) 在直角坐标中点(-3,4,5)处的E ; (2) 在直角坐标中点(-3,4,5)处的x E 分量 解:(1)2 1 252== r E (2)3 25r x E x = ,2023-=x E 4、两点电荷C 41-=q ,位于x 轴上4=x 处,C 42=q 位于轴上4=y 处,求空间点()4,0,0 a r E <=0 图18-2

处的(1)电位;(2)该点处的电场强度矢量。 解:(1)()0400=,,φ (2)()y x e e r r q r r q E ??642440 232 02131 01-= + = πεπεπε 5、一个点电荷q +位于()0,0,a -处,另一个点电荷q 2-位于()0,0,a 处,其中0>a 。求 (1) 求出空间任一点()z y x ,,处电位的表达式; (2) 求出电场强度为零的点。 解:(1)建立如图18-1所示坐标 空间任一点的电位 ??? ? ??-= 120214r r q πεφ 其中,()2221z y a x r ++-= ,()2 222 z y a x r +++= (2)根据分析可知,电场等于零的位置只能位于两电荷的连线上的q +的左侧,设位于x 处,则在此处电场强度的大小为 ()()??? ? ??+--= 220214a x a x q E πε 令上式等于零得 () () 2 2 2 1 a x a x += - 求得 () a x 223+-= 6、真空中均匀带电球体,其电荷密度为ρ,半径为a ,试求 (1) 球内任一点的电位移矢量 (2) 球外任一点的电场强度 解:(1)r D 3 ρ= a r < (2)当a r >时,r r a E 3 033ερ= 7、设无限长直线均匀分布有电荷,已知电荷密度为l ρ,如图所示,求 (1) 空间任一点处的电场强度;

几种典型电场线分布示意图及场强电势特点

匀强电 等量异种点电荷的电等量同种点电荷- - - 点电荷与带电 + 孤立点电荷周围的 几种典型电场线分布示意图及场强电势特点表重点 一、场强分布图 二、列表比较 下面均以无穷远处为零电势点,场强为零。 孤 立 的 正 点电 荷 电场线 直线,起于正电荷,终止于无穷远。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点组成的球 面上场强大小相等,方向不同。 电势 离场源电荷越远,电势越低;与场源电荷等距的各点组成的球 面是等势面,每点的电势为正。 等势面 以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越 近,等势面越密。 孤立 的 电场 线 直线,起于无穷远,终止于负电荷。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点组成的球

负点电荷 面上场强大小相等,方向不同。 电势 离场源电荷越远,电势越高;与场源电荷等距的各点组成的球 面是等势面,每点的电势为负。 等势 面 以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越 近,等势面越密。 等量同种负点电荷电场 线 大部分是曲线,起于无穷远,终止于负电荷;有两条电场线是 直线。 电势每点电势为负值。 连 线 上 场 强 以中点最小为零;关于中点对称的任意两点场强大小相等, 方向相反,都是背离中点;由连线的一端到另一端,先减 小再增大。 电 势 由连线的一端到另一端先升高再降低,中点电势最高不为 零。 中 垂 线 上 场 强 以中点最小为零;关于中点对称的任意两点场强大小相等, 方向相反,都沿着中垂线指向中点;由中点至无穷远处, 先增大再减小至零,必有一个位置场强最大。 电 势 中点电势最低,由中点至无穷远处逐渐升高至零。 等电场大部分是曲线,起于正电荷,终止于无穷远;有两条电场线是

解析几种典型电场的电场线、场强、电势的分布.doc

解析几种典型电场的电场线、场强、电势的分布 一、场强分布图 点电荷的电场线等量异种点电荷电场线等量同种正电荷电场线二、列表比较 下面均以无穷远处为零电势点,场强为零。 孤立的正点电荷 孤立的负点电荷 等量同种负点电荷电场 线 直线,起于正电荷,终止于无穷远。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点组 成的球面上场强大小相等,方向不同。 电势 离场源电荷越远,电势越低;与场源电荷等距的各点组 成的球面是等势面,每点的电势为正。 等势以场源电荷为球心的一簇簇不等间距的球面,离场源电面荷越近,等势面越密。 电场 直线,起于无穷远,终止于负电荷。 线 场强 离场源电荷越远,场强越小;与场源电荷等距的各点组 成的球面上场强大小相等,方向不同。 电势 离场源电荷越远,电势越高;与场源电荷等距的各点组 成的球面是等势面,每点的电势为负。 等势以场源电荷为球心的一簇簇不等间距的球面,离场源电面荷越近,等势面越密。 电场大部分是曲线,起于无穷远,终止于负电荷;有两条电线场线是直线。 电势每点电势为负值。 以中点最小为零;关于中点对称的任意两点场强大连场强小相等,方向相反,都是背离中点;由连线的一端线到另一端,先减小再增大。 上由连线的一端到另一端先升高再降低,中点电势最电势 高不为零。 编辑版 word

等量同种正点电荷中 以中点最小为零;关于中点对称的任意两点场强大 小相等,方向相反,都沿着中垂线指向中点;由中垂场强 点至无穷远处,先增大再减小至零,必有一个位置线 场强最大。 上 电势中点电势最低,由中点至无穷远处逐渐升高至零。电场大部分是曲线,起于正电荷,终止于无穷远;有两条电线场线是直线。 电势每点电势为正值。 以中点最小为零;关于中点对称的任意两点场强大连场强小相等,方向相反,都是指向中点;由连线的一端线到另一端,先减小再增大。 上 电势 由连线的一端到另一端先降低再升高,中点电势最 低不为零。 中 以中点最小为零;关于中点对称的任意两点场强大 小相等,方向相反,都沿着中垂线指向无穷远处;垂场强 由中点至无穷远处,先增大再减小至零,必有一个线 位置场强最大。 上 电势中点电势最高,由中点至无穷远处逐渐降低至零。 等量异种点电荷电场大部分是曲线,起于正电荷,终止于负电荷;有三条电 线场线是直线。 电势 中垂面有正电荷的一边每一点电势为正,有负电荷的一 边每一点电势为负。 连 以中点最小不等于零;关于中点对称的任意两点场 场强强大小相等,方向相同,都是由正电荷指向负电荷;线 由连线的一端到另一端,先减小再增大。 上 电势由正电荷到负电荷逐渐降低,中点电势为零。 中以中点最大;关于中点对称的任意两点场强大小相 垂场强等,方向相同,都是与中垂线垂直,由正电荷指向线负电荷;由中点至无穷远处,逐渐减小。 上电势中垂面是一个等势面,电势为零。 (此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内 容,供参考,感谢您的配合和支持) 编辑版 word

常见的电场电场线分布规律

常见的电场电场线分布 规律 SANY GROUP system office room 【SANYUA16H-

常见电场电场线分布规律 电场强度、电场线、电势部分基本规律总结 整理:胡湛霏 一、几种常见电场线分布: 二、等量异种电荷电场分析 1、场强: ①在两点电荷连线上,有正电荷到负电荷,电场强度先减小后增 大,中点O的电场强度最小。电场强度方向由正电荷指向负电 荷; ②两点电荷的连线的中垂线上,中点O的场强最大,两侧场强依 次减小。各点电场强度方向相同。 2、电势: ①由正电荷到负电荷电势逐渐降低; ②连线的中垂线所在的、并且与通过的所有电场线垂直的平面为一等势面; ③若规定无限远处电势为0,则两点电荷连线的中垂线上各点电势即为0。 3、电势能:(设带电粒子由正电荷一端移向负电荷一端) ①带电粒子带正电:电场力做正功,电势降低,电势能减少; ②带电粒子带负点:电场力做负功,电势降低,电势能增加。 三、等量同种电荷电场分析 1、场强: ①两点电荷的连线上,由点电荷起,电场强度越来越小,到终点O 的电场强度为0,再到另一点电荷,电场强度又越来越大; ②两点电荷连线的中垂线上,由中点O向两侧,电场强度越来越 大,到达某一点后电场强度又越来越小; ③两点电荷(正)连线的中垂线上,电场强度方向由中点O指向外 侧,即平行于中垂线。 2、电势: ①两正点电荷连线上,O点电势最小,即由一个正点电荷到另一正点电荷电势先降低后升高。连线的中垂线上,O电电势最大,即O点两侧电势依次降低。 ②两负点电荷连线上,O点电势最大,即由一个负点电荷到另一负点电荷电势先增高后降低。 连线的中垂线上,O点电势最小,即O点两侧电势依次升高。 ③其余各点电势由一般规律判断,顺着电场线方向电势逐渐降低。 3、电势能: ①由电势判断:若带电粒子为正电荷,则电势越高,电势能越大;若带电粒子为负电荷,则电势越高,电势能越小。 ②由功能关系判断:若电场力做负功,则电势能增加;若电势能做正功,则电势能减少。 3、匀强电场 1、特点:

相关文档
最新文档